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Abstract

Mobile agents technology has been a popular topic in the area of information engi-
neering for several years. Lots of expectations have been laid on them, but large-scale
usage of agents is still waiting. One of the main reasons for the immaturity of agent
technology is that we have not been able to make it effective enough to meet the strict
requirements put on it. This dissertation addresses the problems of what affects the
performance of agent-driven networks and how to improve the network performance. In
detail, we analyze some key parameters for characterizing the behaviors of mobile agents,
such as population distribution, probability of success, migration time, life expectancy,
and propose new effective models based on the analytical results. The main contributions
of this dissertation are outlined as follows:
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• We address the problem of mobile agent-based network routing. Several routing
models and stochastic analysis are presented. We first focus on the traditional ant-
like routing algorithm, analyze both the population distribution and the probability
of success as two important parameters for measuring the network performance.
Based on our analytical results, we proposed several agent-based routing strategies
for improving the network performance and presented relevant analysis. We also
extend our solution to solve the problem of mobile agent-based e-shopping. Exten-
sive simulation experiments are conducted to evaluate our proposed solutions over
a wide range of performance metrics in comparison with existing solutions proposed
in the literature.

• We address the problem of fault-tolerant execution of mobile agents. we propose
a new fault-tolerant execution model of mobile agents, which effectively combines
the replication approach and the checkpointing approach. The behaviors of mo-
bile agents are statistically analyzed through several key parameters, including the
migration time from node to node, the life expectancy of mobile agents, and the
population distribution of mobile agents, to evaluate the performance of our model.
We compare the performance of our solutions with other solutions over various per-
formance metrics through extensive simulation experiments. The simulation results
show that our solutions outperform existing solutions proposed in the literature.

• We address the problem of agent-based peer-to-peer networks. We consider the
problem of traffic congestion when agents roaming in the network and propose a
new agent-based model which can balance the network traffic. We also prove the
convergence of the approximating function to the optimal solution and analyze the
properties of the approximate function to show the rationality of our algorithm.

Key words: Mobile agents, Internet, routing, fault tolerance, peer-to-peer networks,
performance evaluation.
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Chapter 1

Introduction

1.1 Background

The World Wide Web has become the most successful application on the Internet since it
provides a simple way to access a wide range of information and services. Mobile agents
have been a popular topic in the area of information engineering for several years. Lots
of expectations have been laid on them, but large-scale usage of agents is still waiting.
One of the main reasons for the immaturity of agent technology is that we have not been
able to make it effective enough to meet the strict requirements put on it.

Mobile agents are programs with persistent identity which move around a network on
their own volition and can communicate with their environment and with other agents.
These systems use specialized servers to interpret the agent’s behavior and communicate
with other servers. Mobile agents may execute on any machine in a network without
the necessity of having the agent code pre-installed on every machine the agent could
visit. Mobile agents represent a new model in the evolution of executable content on the
Internet, introducing program code that can be transported along with state information.

Mobile agents appeared in the scene the last decade of the previous millennium. They
have been embraced by researchers and practitioners as a potential technology that could
revolutionize the way we perform computations, develop applications and systems. They
were, and still are, viewed as a unique way to approach mobile and wireless comput-
ing. Indeed, this is not an exaggeration; mobile agents have been used in a variety
of applications and computing areas. The driving force motivating mobile agent-based
computation is multifold: Mobile agents provide an efficient, asynchronous method for
searching for information or services in rapidly evolving network; mobile agents may be
launched into the unstructured network and roam around to gather information. Second,
mobile agents support intermittent connectivity, slow networks, and light-weight devices.
Thus, mobile agents provide many benefits in Internet system programming (otherwise
networking programming) [48, 68, 137], in which there is a need for different kinds of
integrated information, monitoring and notification, encapsulating artificial intelligence
techniques, security and robustness [30, 66, 67, 105]. Also the mobile agent paradigm has
demonstrated satisfactory performance when deployed for distributed access to Internet
databases, distributed retrieving and filtering of information and minimizing network
workload [67, 88, 95, 104, 129]. Finally, mobile agents have proved very effective in sup-
porting asynchronous execution of client requests, weak connectivity and disconnected
operations and the dynamic adaptation to the various types of user connectivity common
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in wireless environments [67, 103,113].
Various mobile agent platforms have been developed. They can be broadly catego-

rized as Java and non-Java based ones, and they can be further split into experimental
and commercial ones. The Java-based mobile agents platforms include IBM’Aglets Work-
bench [4], Recursion Software’s Voyager [131], Mitsubishi’s Concordia [140], and General
Magic’s Odyssey [85]. The non-Java-based systems include, for example, TACOMA [58]
and Agent Tcl [45]. There is an increasing interest in Java-based platforms due to the
inherent advantages of Java, namely, platform independence support, highly secure pro-
gram execution, and small size of compiled code. These features of Java combined with
its simple database connectivity interface (JDBC) that facilitates application access to
multiple relational databases over the Web, make the Java approaches very attractive.

Mobile agent technology has already been applied successfully in a wide range of appli-
cation domains. At the head we have e-commerce, which has for a long time shown poten-
tial benefits of agents in theory, and lately proven many agent solutions to be functional
also in practice. Another creditable participant in the research of mobile agent technology
is the telecommunication industry, which has successfully adapted mobile agents in their
applications.

1.2 A Closer Look at the Mobile Agents

Mobile agents technology originally emerged from advances made in distributed systems
research [18]. Mobile agents are computational software processes capable of roaming
wide area networks (WANs) such as the WWW, interacting with foreign hosts, gathering
information on behalf of its owner and coming “back home” having performed the duties
set by its user (owner).

But for a mobile agent to work on the different host environments on a network, each
host must have a software environment in which mobile agent can exist. We call this
the mobile agent environment, which is built on top of a host system. This environment
supports services that relate to the mobile agent environment itself, services pertaining
to the environments on which the mobile agent environment is built, services to support
access to other mobile agent systems, and finally support for openness when accessing
non-agent-based software environments.

There are some reasons that mobile agents are highlighted in recent years. Firstly,
although much of the earlier work done on mobile agents has been important, the benefit
of these agents did not scale up well when they were placed alongside large real-time
applications, including manufacturing, network management, and distance learning. In
addition, previous research has failed to comprehensively address the behavior of agents
serving the telecommunications and applications infrastructure.

Secondly, mobile agents can work against the problems of latency and bandwidth of
client-server applications and reduce vulnerability of network disconnection.

Thirdly, WWW and the Internet, which are growing and becoming ubiquitous, dy-
namic and mobile, are driving mobile agents. People believe that current trends in Inter-
net technology and usage lead to the use of mobile agents. Mobility (users, devices, and
programs) becomes important paradigm, in particular e-commerce and mobile commerce.
Agent system must be integrated with the Internet and WWW.

Fourthly, mobile agents also provide a single, general framework in which distributed,
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information-oriented applications can be implemented efficiently and easily, with the pro-
gramming burden spread evenly across information, middleware, and client providers.

The idea about agent, autonomous entities able to solve problems by themselves has
been fascinating people for a long time. Nowadays, various kinds of agents can be found
around us, we just might not realize all of them. Classification of the agents at the main
level can be divided into three categories: biological, robotic and computational agents.
Our interest focuses on computational agents.

Although the definition of a mobile agent varies largely between different interest
groups, there are some common characteristics that fit with most definitions of mobile
agents. At minimum, a mobile agent is defined to be an autonomous, self-contained,
and identifiable computer program that is able to move within a network, interact with
its environment, and act on behalf of the user or another entity. Thus, it is able to
react independently without user intervention to stimulus from outside, for example,
from humans, platforms or other agents. A few other properties of mobile agents are
listed below:

• Mobility – Agent’s ability to transport itself from one execution environment to
another.

• Adaptive – Being able to learn and improve with experience.

• Character/Personality – An agent has personality and emotional state.

• Co-operative/Collaborative – An agent can act together with other agents for a
common purpose.

• Intelligence – Ability to sense its environment, reflect upon it, and take actions to
achieve a goal. State is formalized by knowledge.

• Proactive – Agent’s actions are goal-orientated. It is able to choose if certain action
will bring it closer to its goal and acts accordingly.

• Reactive – Responds in a timely fashion to changes in its environment.

• Social – Can communicate with other agents or people.

• Temporally continuous – Is a continuously running process.

One of the most interesting additional properties of software agents form our point of
view is mobility, which means that the agent is able to transport itself from one execution
environment to another. This moving mechanism is also referred to as migration. A
mobile agent is a specific form of software agent, which is a self-contained and identifiable
computer program that can move within a network and act on behalf of the user or
another entity.

Most mobile agent systems base their agent mobility on code mobility, where both
the data and the code of the agent are transferred during migration. This kind of agent
mobility can be classified as either strong or weak. The difference between these is that
strong mobility allows the code and entire execution state of the agent to be transferred,
while weak mobility only makes the code to transfer. Strong code mobility is more
complex to achieve, it negatively affects performance and introduces more security risks
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than weaker mobility, however, it allows an agent to restart execution from the exact point
where it was before migration. Weak code mobility also has some unsolved weaknesses in
security when applying it to mobile agent systems.

It is evidently clear that there are some of deficiencies in agent technology. First of
all, the development of multi-agent systems is still in the hands of top experts in the
domain. We are missing efficient tools that would make it possible for non-specialists to
unlock the power of agents, which would make it easier to spread mobile agent technology.
Secondly, among others, there are also some unsolved problems with interoperability,
scalability and security. Most of the developed multi-agent systems are built from scratch
for specific purposes in an ad hoc manner, thus thy are on quite a small scale, without
good reusability possibilities, and unable to co-operate with other multi-agent systems.
Development towards large-scale multi-agent systems and connecting them to each other
thus forming large interconnected networks of multi-agent systems has begun lately, but it
has raised complexity issues that we are still not able to cope with. Quantitative analysis,
the issue in which this thesis is concentrating on, has also proved to be very complex.
Some have even claimed that mobile agents will never be analyzed quantitatively enough
to be controlled, but this is what we will discuss later on.

1.2.1 Applications of Mobile Agents

Recent years mobile agent systems have become sufficiently well developed to be con-
sidered as using them as tools in other areas, such as gathering information, network
management, electronic commerce, and mobile user and devices. Applications of mobile
agents include, but are not limited to:

• Management and maintenance: In large networks, monitoring, fault detection and
remote installation of software components is very difficult and involves large amounts
of logging data. It is not possible to produce out-of-the-box diagnostic programs for
every purpose, but it would be possible to use mobile agents to monitor the system
and bring possible trouble spots to the attention of the system maintainer. There
are some telecommunications service providers, such as Lucent Technologies Inc.
and Bell Atlantic Corp., who have tried developing products by using mobile agents
to facilitate their network management. They believe that mobile agent technology
can detect and react to network faults, and enable installable/extensibel/modifiable
services, and so on. The system, such as Perpetuum Mobile Procura, uses mobile
agents - Netlets to enable advanced network management [94].

• Electronic commerce: Electronic commerce is becoming a reality as standards for
electronic payment are deployed. Mobile agents can help to locate the most appro-
priate offerings, negotiate deals or even conclude business transactions on behalf of
their owners. In InAMos project [53], electronic commerce consists of sellers, buyers,
traders, and brokers. There are mobile agents to represent consumers in the market
environment and also other ordinary mobile agents and services. They attempt to
bring electronic market places to the mobile user.

• Mobile devices, mobile users, and mobile computing: Mobile devices are one of the
hottest areas of growth in the computer industry. Portable computers get smaller
and smaller. Devices from laptops to palmtops to electronic books, from cars to
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telephones to pagers, will access Internet services to accomplish user tasks. Yet the
wireless access to the services is likely to stay slow. Users will not want to stay online
while some complicated query is handled on behalf of the user (power consumption,
connection fees). Users can submit a mobile agent which embodies their queries and
log off, waiting for the agents and the results to be picked up at a later time.

• Information search and retrieval: The nature of today’s work enhances mobile
agents’ attractions because they offer better ways to deal with information and
manipulating it. Agents can act as sophisticated assistants for exposing informa-
tion systems, move to the place where the data are actually stored rather than
moving all of the data through the network and search for the desired information,
freeing people to interact with information indirectly and efficiently. For example,
the Stormcast system [115] uses mobile gents created at the client side and sent to
servers to retrieve and process huge amounts data. Another scenario is to use mobile
agent approach instead of traditional client-server approach in search engines. The
mobile agent approach processes data and data source.

• Secure brokering. An interesting application of mobile agents is in collaborations in
which not all the collaborators are trusted. The parties could let their mobile agents
meet on a mutually agreed secure host where collaboration takes place without risk
of the host taking the side of one of the visiting agents.

• Telecommunication networks services. Support and management of advanced telecom-
munication services are characterized by dynamic network reconfiguration and user
customization. The physical size of these networks and the strict requirements under
which they operate call for mobile agent technology to function as the glue keeping
the system flexible yet effective.

• Workflow applications and groupware. The nature of workflow applications includes
support for the flow of information among coworkers. Mobile agents can be useful
here because, in addition to mobility, they provide a degree of autonomy to the
workflow item. Individual workflow items fully embody the information and be-
havior they need to move through the organization-independent of any particular
application.

• Parallel processing. Mobile agents are capable of cloning themselves in the network,
this makes them suitable for parallel processing tasks. If a computation requires so
much processor power that it must be distributed among multiple processors, an
infrastructure of mobile agent hosts can be a plausible way to allocate the related
processes.

1.2.2 Standardizations of agent technology

Today there are numerous different research groups and commercial actors researching
agent technologies and implementing various agents and platforms for therm. Because of
the diversity of the agent technology research, a common standardization organization was
needed. the Foundation for Intelligent Physical Agents (FIPA) was formed in 1996 to fill
this gap and since then it has contributed a lot to agent technology. FIPA is a non-profit
organization that produces software standards for heterogeneous and interacting agents
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and agent-based systems. In the production of these standards, FIPA requires input
and collaboration from its memberships and from the agent’s field in general to build
specifications that can be used to achieve interoperability between agent-based systems
developed by different companies and organizations. Also these days, FIPA is the main
driving force aiming to produce standards for the interoperation of heterogeneous software
agents.

FIPA’s core standardization activities are mainly handled by Technical Committees,
which concentrate on creating and maintaining specifications. There are currently many
active Technical Committees including, for example, ontology, interaction protocols, se-
mantics and security, which is particularly interesting to us. The Security Technical
Committee’s objective is to lead the research and development of multi-agent systems.
Its area of responsibility covers the understanding of security requirements and properties,
defining FIPA-based abstract security specification and to concretizes security specifica-
tions to form an agent-based security service for deployment in application domains. The
Security Technical Committee’s work started in the beginning of 2003 and is planned to
be ready at the end of 2004.

Another major standardization organization and contributor in the field of mobile
agent technology is the object Management Group (OMG), which has been particularly
active in making initiatives and standards for interoperability and security. OMG’s core
infrastructure for mobile agent technology is specified in MASIF (Mobile Agent System
Interoperability Facility) with its main objective to enable interoperability between agents
systems. Although MASIF addresses security quite extensively, concentrating on authen-
tication and authorization, it has a few deficiencies and limitations. For example, MASIF
does not address multi-hop authentication, thus agents are only allowed to migrate one-
hop from the source system. An agent’s itinerary is also restricted to only trusted nodes,
which limits autonomous agent activity. MASIF’s security solutions conform extensively
to CORBA security services. Agent communication is also dependent on CORBA stan-
dards, since communication goes through the ORB communication channel. Despite the
promising standardization work OMG has carried out mainly in the late 1990’s, a number
of its contributions seem to have diminished noticeably in recent years. It remains to be
seen how important a part OMG will have in the future of mobile agent technology.

In addition to FIPA and OMG, there are also a few other standardization organizations
that are working towards initiations and standards for mobile agent technology. IETF
(Internet Engineering Task Force) has paid special interest to Internet-agent technologies.
Another standard body, W3C has addressed Web languages and ontology for mobile
agents. Some other research groups and formal forums that have promoted mobile agent
technology are the Agent Society, NIST and the Agent InteropWorking Group.

Standardization is always very important from interoperability and reusability points
of view, having thus also an important effect on extended use of any new technology. On
the other hand, standardization is a compromise, and the standardization process itself
can be very slow. Therefore, there is also a possibility that the standardization process
itself prevents the broad use of new technology. In the area of multi-agent systems, the
main problem of standardization is the lack of consistent theory and definitions, although
agent communities are working all the time to bridge these problems.
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1.2.3 Existing Mobile Agents Platforms

Enabling Technologies

Java and Obliq [18] are the two main technologies, which enable the building of mobile
agent frameworks.

• Obliq is a lexically-scoped un-typed interpreted language that supports distributed
object-oriented computation. It is one of the oldest mobile agent systems around.
It is impractical as an implementation system.

• Java environment is a new approach to distributed computing. It is an interpreted,
object-oriented language and library set. Java and its run-time system have com-
bined them to produce a flexible and powerful programming system which supports
distributed computing. It has recently received a lot of attention, which has resulted
in significant revisions of the important RMI and OS facilities.

Existing Mobile Agents Systems

Today, there are many mobile agents systems, some of them are still in the research phase,
some are commercial systems. Five of the most important mobile agents systems in use
of research today are reviewed in this section. They are Bee-agent [126], Aglets [52],
Hive [81], AgentTcl [44], and Telescript [135].

• Ara

The Agent for Remote Action (ARA) [93] system is a platform for mobile agents
developed at the University of Kaiserslautern. Mobile agents in Ara are programmed
in Tcl, Java, and C/C++. For all three languages, Ara provides a go instruction,
which automatically captures the complete state of the agent, transfers the state to
the target machine, and resumes agent execution at the exact point of the go. Ara
also allows the agent to checkpoint its current internal state at any time during its
execution. Unlike other multiple-language systems, the entire Ara system is multi-
threaded; the agent server and the language interpreters run inside a single Unix
process. Although this approach complicates the implementation, it has significant
performance advantages, since there is little interpreter startup or communication
overhead. When a new agent arrives, it simply begins execution in a new thread, and
when one agent wants to communicate with another, it simply transfers the message
structure to the target agent, rather than having to use inter-process communication.

The Ara group is finishing implementation work on their initial security mechanisms.
An agent’s code is cryptographically signed by its manufacturer (programmer); its
arguments and its overall resource allowance are signed by its owner (user). Each
machine has one or more virtual places, which are created by agents and have agent-
specified admission functions. A migrating agent must enter a particular place.
When it enters the place, the admission function rejects the agent or assigns it a
set of allowances based on its cryptographic credentials. These allowances, which
include such things as filesystem access and total memory, are then enforced in
simple wrappers around resource-access functions.
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• D’Agents:

D’Agents, formerly known as Agent Tcl [46], is a mobile-agent system developed
in the Darthmouth College in Hanover, New Hampshire. It is based on the Tcl
scripting language, to run agents, and the Safe Tcl extension, to ensure security.
Like Ara, D’Agents provides a go instruction for each language, and automatically
captures and restores the complete state of a migrating agent. Unlike Ara, only the
D’Agent server is multi-threaded; each agent is executed in a separate process, which
simplifies the implementation considerably, but adds the overhead of inter-process
communication.

The D’Agent server uses public-key cryptography to authenticate the identity of
an incoming agent’s owner; stationary resource-manager agents assign access rights
to the agent based on the authentication and the administrator’s preferences; and
language-specific enforcement modules enforce the access rights, either preventing
a violation from occurring (e.g., filesystem access) or terminating the agent when a
violation occurs (e.g., total CPU time exceeded). Each resource manager is asso-
ciated with a specific resource such as the filesystem. The resource managers can
be as complex as desired, but the default managers simply associate a list of access
rights with each owner. Unlike Ara, most resource managers are not consulted when
the agent arrives, but instead only when the agent (1) attempts to access the cor-
responding resource or (2) explicitly requests a specific access right. At that point,
however, the resource manager forwards all relevant access rights to the enforcement
module, and D’Agents behaves in the same way as Ara, enforcing the access rights
in short wrapper functions around the resource-access functions. D’Agents has been
used in several information-retrieval applications.

• Aglet:

Aglets [4,67] is developed at the IBM Japan. Agents in Aglets are Java objects that
can move from one host on the Internet to another. That is, an agent that executes
on one host can suddenly halt execution, dispatch to a remote host, and resume
execution there. When the agent moves, it brings along its program code as well as
its data.

Rather than providing the go primitive of Ara and D’Agents, Aglets uses variants
of Tacoma model where agent execution is restarted from a known entry point
after each migration. In particular, Aglets uses an event-driven model. When an
agent wants to migrate, it calls the dispatch method. The Aglets system calls the
agent’s onDispatching method, which performs application-specific cheanup, kills
the agent’s threads, serializes the agent’s code and object state, and sends the code
and object state to the new machine. On the new machine, the system calls the
agent’s onArrival method, which performs application-specific initialization, and
then calls the agent’s run method to restart agent execution.

Aglets includes a simple persistence facility, which allows an agent to write its code
and object state to secondary storage and temporarily “deactivate” itself; proxies,
which act as representatives for Aglets, and among other things, provide location
transparency; a lookup service for finding moving Aglets; and a range of message-
passing facilities for inter-agent communication.
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• Telescript:

Telescript [136], developed by General Magic in the early 1990s as the first system
designed expressly to support mobile agents in commercial applications, includes
an object-oriented, type-safe language for agent programming. Telescript servers,
which are called places, offer services, usually by installing stationary agents to
interact with visiting agents. Agents use the go primitive for absolute migration
to places, specified using DNS-based hostnames. The system captures execution
state at the thread level, so the agent resumes operation immediately after the go
statement. Relative migration is also possible using the meet primitive. collocated
agents can invoke each other’s methods for communication. An event-signaling
facility is also available.

Telescript was not commercially successful, primarily because it required program-
mers to learn a completely new language. In 1997, the supporting company, General
Magic Inc, has now shelved the Telescript project and embarked on a similar, Java-
based system called Odyssey [85] that uses the same design framework.

• Ajanta:

Ajanta (Mobile Agent Research Project) is a mobile agent programming system
developed at the university of Minnesota. The first evaluation version of Ajanta
was made publicly available in 1999 and few years later in 2003, Ajanta’s second
commercial version was released. The Ajanta agent system is implemented using
Java language and is built from agent platforms called agent servers and mobile
agents.

In Ajanta, an agent executes in an isolated protection domain, to prevent any in-
terference by other agents. A server protects its resources by encapsulating them
in proxy objects, which are created dynamically and customized for specific client
agents. The same mechanism can allow secure interagent communication via method
invocation. Communication across the network is also possible using remote-method
invocation. Authenticated control functions allow applications to recall or terminate
their remote agents at any time. Ajanta also addresses the problem of protecting
agent state from malicious servers. It provides cryptographic mechanisms that let
an agent’s owner secure parts of the agent’s state and detect any subsequent tamper-
ing. Agents can also keep parts of their state private and selectively reveal certain
objects to specific servers.

• Voyager

Voyager, a Java-based agent system developed by Object Space, provides a conve-
nient way to interact, somewhat transparently, with remote objects (via proxy ob-
ject called “virtual” references), and for objects to move from host to host [84,131].
When an object moves, it leaves behind a forwarder object that redirects any mes-
sages to the new location. “Agent” objects, unlike other objects, may move them-
selves autonomously by applying the moveTo() method on themselves. Voyager
moves the code and data of the agent, but not thread state, to the new location
and invokes the desired method there. Voyager also allows objects and agents to be
made persistent through explicit saveNow() calls, supports group communication
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(multicase), and a provides federated directory service. Voyager provides the same
basic security mechanisms as other Java-based systems.

• Tacoma

Tacoma is a joint project of Norway’s University of Tromso and Cornell Univer-
sity [56]. The project focuses on OS support for MA and how MA can help solve
problems traditionally addressed by operating systems. TACOMA proposes abstrac-
tions such as briefcase, folder, and file cabinet as extensions to the OS to provide
mechanisms for data transfer and broker agent for scheduling agents. It supports
both synchronous and asynchronous communication. An alternative communication
mechanism is the use of cabinets, which are immobile repositories for shared state.
Agents can store application-specific data in cabinets, which other agents then can
access. Unlike Ara and D’Agents, Tacoma does not provide automatic state-capture
facilities. Instead, when an agent wants to migrate to a new machine, it creates a
folder into which it packs its code and any desired state information . The folder is
sent to the new machine, which starts up the necessary execution environment and
then calls a known entry point within the agent’s code to resume agent execution.
For fault tolerance, Tacoma uses checkpointing and provides rearguard agents for
tracking mobile agents as they migrate.

• Concordia

Concordia is developed by Mitsubishi Electric [132,140]. It is a Java-based mobile-
agent system that has a strong focus on security and reliability. Like most other
Java-based systems, it moves an agent’s object code and data, but not thread state,
from one machine to another. Like many other systems, Concordia agents are
bundled with an itinerary of places to visit, which can be adjusted by the agent
while en route. Agents, events, and messages can be queued if the remote site is
not currently reachable. Agents are carefully saved to a persistent store, before
departing a site and after arriving at a new site, to avoid agent loss in the event of
a machine crash. Agents are protected from tampering through encryption while
they are in transmission or stored on disk; agent hosts are protected from malicious
agents through cryptographic authentication of the agent’s owner, and access control
lists that guard each resource.

• Jumping Beans

Computers wishing to host mobile agents run a Jumping Beans [60] agency, which
is associated with some Jumping Beans domain. Each domain has a central server,
which authenticates the agencies joining the domain. Mobile agents move from
agency to agency within the domain, and agents can send messages to other agents
in the domain. Both mechanisms are implemented by passing through the domain
server. Thus the server becomes a central point for tracking, managing, and au-
thenticating agents. It also becomes a central point of failure or a performance
bottleneck, although the company plans to develop scalable servers to run on par-
allel machines. Another approach to scalability is to create many small domains,
each with its own server. In the current version, agents cannot migrate between do-
mains, but the company plans to support cross-domain migration in future versions.
Security and reliability are key aspects of Jumping Beans. Public-key cryptography
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is used to authenticate agencies to the server and vice versa, and access-control lists
are used to control an agent’s access to resources, based on the permissions given
to the agent’s owner.

• Obliq

An Obliq object is a collection of named fields that contain methods, aliases and
values [17,18]. An object can be created at a remote site, cloned onto a remote site,
or migrated with a combination of cloning and redirection. Implementing mobile
agents on top of these mobile objects is straightforward. An agent consists of a
user-defined procedure that takes a briefcase as its argument; the briefcase contains
the Obliq objects that the procedure needs to perform its task. The agent migrates
by sending its procedure and current briefcase to the target machine, which invokes
the procedure to resume agent execution.

• Bee-Agent:

Bee-agent [54], which is developed by Computer and Network Systems Laboratory
Corporate Research and Development Center, TOSHIBA Corporation in 1999, is
a new type of development framework in that it is a 100% pure agent system. As
opposed to other following systems, which make only some use of agents, Bee-agent
completely “Agentifies” the communication, that takes place between software ap-
plications. The applications become agents, and all messages are carried by agents.
Bee-agent allows developers to build flexible open distributed systems that make
optimal use of existing applications, and is able to work with Java 2 environment.
In this research, Bee-Agent is used to implement the mobile agents within the Web-
based prototype developed by using Java 2.

• Hive System:

Hive system is a decentralized system for building applications by networking lo-
cal system resources. It is applied to the problem of networking “Things That
Think” [125] embedding computation and communication in everyday objects and
appliances. Hive consists of three components: cells-nodes in the decentralized net-
work, shadows-local resources, and agents-active computation. Its mobility is in
many ways a reimplementation of systems such as Telescript, AgentTcl, Aglets, and
Mole. But the research intends to create a simple version of mobility to the hard
problems.

1.3 Dissertation Outline

For easy understanding and reading, we organize each chapter in a self-contained format
as follows:

Chapter 2 addresses the problem of network routing by using of mobile agents. First,
an ant-like mobile agent-based routing algorithm is described and the behavior of mobile
agents is analyzed by two parameters: the population distribution and the probability of
success. A smaller upper bound of the number of mobile agents was provided compared
with existing results and for the first time the probability of success was considered.
Second, we extend this solution to two more complex cases, namely settleable case and
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non-settleable case, and faulty networks. Finally, extensive simulation experiments are
conducted to evaluate our solutions.

Chapter 3 concentrates on the problem of fault-tolerant execution of mobile agents.
In this chapter, we first surveyed existing fault-tolerant schemes. Based on the existing
literature, s solution, we present a new fault-tolerant execution model of mobile agents by
effectively combining existing techniques. We then theoretically analyzed the migration
time, the life expectancy, and the population distribution of mobile agents to evaluate
the performance of our model. Finally, we compare the performance of our solutions with
existing solutions proposed in the literature with simulation experiments.

Chapter 4 focuses on agent-based peer-to-peer networks. We propose an effective
agent-based execution algorithm for use in peer-to-peer networks and present an optimal
solution for agents deciding their routes.

Chapter 5 summarizes our work and discusses some future work.
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Chapter 2

Mobile Agent-Based Network
Routing

Mobile agent-based network routing is a new technique for routing in large-scale networks.
An analysis of the searching activity and population growth of mobile agents is important
for improving performance in agent-driven networks.

Many network routing techniques have been developed to deal with the enormous
amount of data available on the Internet. These techniques have created exciting oppor-
tunities for both business and science [16, 69, 74, 114]. The deployment of mobile agents,
which are small decision-making programs capable of migrating autonomously from node
to node in a computer network, is an important representative of these new techniques and
is an effective way to reduce network load and latency [68]. In [78], Milojicic described that
mobile agents are autonomous, adaptive, reactive, mobile, cooperative, interactive, and
delegated software entities. The application of mobile agents in network routing has at-
tracted significant attention [24,98,143]. Successful examples of mobile agent applications
can be found in [67,68]. The use of mobile agents in applications ranging from electronic
commerce to distributed computation has also been studied extensively [11,109,137].

Routing is a key factor for network performance. It is the process of moving a packet of
data from source to destination. As searching for the optimal path in a stationary network
is already a difficult problem, the searching for the optimal path in a dynamic network
or mobile network will be much more difficult. Mobile agent-based routing algorithm
is a promising option for use in these environments [19, 21, 122]. In a mobile agent-
based routing algorithm [31,50], once a request is received from the server, the server will
generate a number of mobile agents, which will then begin to search for the corresponding
destination host. These agents roam around the network and gather relevant information.
When a mobile agent finds the destination, the collected information will be sent back
to the source host along the same path and marks will be left on the host along the
path. Once all the mobile agents come back, the server will determine the best path
to satisfy the request. Since little communication is needed between the agents and the
server during the process of searching, the burden on the network generated by mobile
agents is very light.

In order to conserve network resources and achieve a good probability of success, it is
desirable to dispatch a small number of mobile agents. In a mobile agent-based routing
algorithm for large-scale networks, mobile agents will be generated frequently. If there are
too many agents running in the network, they will consume too many network resources;
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thus, affecting the network performance and ultimately blocking the entire network; on
the other hand, if there are too few agents running in the network, there is no guarantee
that the destination will be found quickly. Therefore, for network management, it is
necessary to analyze both the probability of success and the population growth of mobile
agents. Furthermore, the probability of success directly affects the searching process.
Unfortunately, there are few work done on the analysis for mobile agents, therefore,
analysis on mobile agents is necessary and important for network management. In this
chapter, we analyze both the probability of success and the population distribution of
mobile agents. From the population distribution formula, we estimate the number of
mobile agents running in the total network and in one host. The probability of success
serves as an important measure for monitoring network performance, and the analysis
of population distribution provides a useful tool for reducing the computational resource
consumption.

2.1 Related Work

With the exploitation of the Internet, mobile agent technology has attracted an increasing
attention. In [143], the authors used a system net, agent nets, and a connector net to
model the environment, agents, and the connector, respectively. They also presented a
case study of modelling and analyzing an information retrieval system with mobile agents.
In [24], an overview of the security issues of mobile agents was given and a state-of-the-art
survey of mobile agent-based secure electronic transactions was presented. In [98], the
authors identified two important properties (i.e., nonblocking and exactly-once) for fault-
tolerant mobile agent execution and showed that fault-tolerant mobile agent execution
could be modelled as a sequence of agreement problems.

Routing is a key feature of the Internet because it enables messages to pass from one
computer to another and eventually reach the target machine [134]. Existing routing
algorithms can be broadly classified into two classes: static or dynamic. In static routing,
packets are sent to the destination following a predetermined path, without considering
the current network state. Static routing are appropriate for small networks and some
dedicated links. In a large distributed network with irregular topology, routing decisions
can only be made on the basis of local and approximate information about the current and
the future network states. Dynamic routing can discover the changes of network states,
automatically adjust its routing tables, and inform other routers of the changes.

RIP (Routing Information Protocol) is a popular dynamic routing protocol for small
private networks [111]. With RIP, routers periodically exchange entire routing tables.
OSPF (Open Shortest Path First) is now the most important protocol on large networks
that provide Internet service [111]. With OSPF, routers send routing information to all
nodes by calculating the shortest path to each node based on a topology of the Internet
constructed by each node. Each router sends that portion of the routing table that
describes the state of its own links. Both RIP and OSPF choose the path with minimum
cost (generally the shortest path) between the pair of nodes. In [27, 102], the authors
studied the behavior of routers and announced that specific routers are the cause of
bottlenecks in the Internet. This is because the path with minimum cost could congest,
in spite of other paths, possibly expensive, but less congested. In [55], the authors provided
necessary and sufficient conditions for deadlock-free unicast and multicast routing with

14



the path-based routing model in interconnection networks.
Real ants are capable of finding the shortest path from a food source to the nest

based only on local information [11, 31, 43, 51]. Inspired from the research on ants, Caro
and Dorigo [19, 21] firstly proposed mobile agent-based routing algorithm in 1996. In
a mobile agent-based routing algorithm, a group of mobile agents build paths between
pair of nodes, exploring the network concurrently and exchanging data to update routing
tables. In [19, 21], the authors showed that this mobile agent-based routing algorithm is
very encouraging with many experiments over real and artificial IP datagram networks by
comparing it with both static and adaptive state-of the-art routing algorithms, such as RIP
and OSPF. A number of experiments have been conducted to compare the performance
between the mobile agent-based routing algorithm and other routing algorithms. The
results showed both favorable performances and robustness to classic routing algorithms
like RIP and OSPF.

Although the efficiency of applying the mobile agent technique has been demonstrated
and reported in the literature, the mathematical modelling and analysis of mobile agents’
behaviors are still in its infancy. In [16], Brewington et al. formulated a method of mobile
agent planning, which is analogous to the travelling salesman problem [39] to decide the
sequence of nodes to be visited by minimizing the total execution time until the desired
information is found. In [64], several statistical analysis of mobile agents were proposed,
including dwell time on nodes, average life-span, and the reports arrival process. Besides
the execution time for a task, theoretical analysis on the number of agents can be found
in [6–8,118].

In [118], an ant-like routing model was studied and the number of mobile agents was
estimated. In [99], a smaller upper bound of the number of mobile agents was provided
based on the same model, and for the first time the probability of success was considered.
Mobile agents in the model were assumed to be blind; they could only know information
about the node they were in and know nothing about the surrounding nodes. This made
the action of mobile agents for each step static and reduced the analytical difficulty. In
the model proposed in this chapter, mobile agents know information not only about their
host nodes, but also about the neighboring nodes of their host nodes. We analyze both
the probability of success and the population distribution of mobile agents.

A mobile agent is an autonomous object that possesses the ability for migrating au-
tonomously from node to node in a computer network. Usually, the main task of a mobile
agent is determined by specified applications of users, which can range from E-shopping
and distributed computation to real-time device control. In recent years, a number of
research institutions and industrial entities have been engaged in the development of
elaborating supporting systems for this technology [66, 141]. Different results have been
published describing mobile agents perform with different performance when compared
with the other technology. In [66], several merits for mobile agents are described, includ-
ing network load and latency reduction, protocol encapsulation, adaption, heterogeneity,
robustness and fault-tolerance. Successful examples using mobile agents can be found
in [62,67].

Network routing is a problem in network management. Ant routing is a recently
proposed mobile agent based network routing algorithm for use in these environments
[137, 138]. The continuing investigation and research of naturally occurring social sys-
tems [43] offer the prospect of creating artificial systems that are controlled by emergent
behavior and promise to generate engineering solutions to distributed systems manage-
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ment problems such as those in communication networks [19,109].
Real ants are able to find the shortest path from a food source to the nest without

using visual cues. Also, they can adapt to changes in the environment, for example finding
a new shortest path once the old one is no longer feasible due to a new obstacle [11, 43].
In ant routing algorithm described in [31], artificial ants are agents which concurrently
explore the network from node to node and exchange collected information when they
meet each other. They irrespectively choose the node to move to using a probabilistic
function which was proposed here to be a function of the connecting situation of each node.
Artificial ants probabilistically prefer nodes that are connected immediately. Initially, a
number of artificial ants are placed on randomly selected nodes. At each time step they
move to new nodes and select useful information. When an ant has completed it’s task,
it will send a message back to the source host.

[118,119] analyzes the population growth in one host and the number of agents move
out from one host to any of the neighboring hosts. The probability that the jumping hops
exceed a given number is also estimated.

2.2 Preliminaries

In this section, we first introduce some notations and definitions used in this chapter,
then describe the network model used in this chapter.

As we know, the topology of a network can be decided uniquely by its connectivity
matrix. Assume that there are n nodes in the network, matrix C = (c1, c2, · · · , cn) =
(cij)n×n is the connectivity matrix which describes the connectivity of the network, i.e.,
if there is a direct link between node i and node j, then cij = cji = 1; otherwise, cij =
cji = 0. Let dj = ‖cj‖1 =

∑n
i=1 |cij|, σ1 = max1≤j≤n dj, σn = min1≤j≤n dj. Clearly,

D = diag(d1, d2, · · · , dn) is a diagonal matrix. It is easy to see that dj is the number
of neighboring nodes of the j-th node, i.e., the degree of the j-th node, and ‖C‖1 =
max
1≤j≤n

‖cj‖1 = σ1.

Figure 2.1: An example of a small network.

For the small network shown in Figure 2.1, we have n = 5, σ1 = 3, and σ5 = 2.
Matrices C and D are as follows:

C =




0 1 1 0 0
1 0 0 1 1
1 0 0 1 1
0 1 1 0 0
0 1 1 0 0




D =




2 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 2



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In our model, mobile agents are the medium for carrying routing information. The
behavior of agents corresponds to the transport of routing information among nodes. For
a large network, suppose that agents can be generated from every node in the network, and
each node in the network provides to mobile agents an execution environment. Routing
table on each node only details its neighboring nodes. A node which generates mobile
agents is called the server of these agents. At any time, requests may be keyed in the
network. Once a request for sending a packet is received from a server, the server will
generate a number of mobile agents. Each agent carries the addresses of its server, its
destination, the previous node it jumped from, and some control information for routings
such as life-span limit and hop counter. All these data can be contained in several lines
of Java code, thus the size of a mobile agent is very small, resulting in great reduction on
network load and latency.These agents will then move out from the server and roam in
the network. Once an agent reaches a node, it will search for the destination in the set
of neighboring nodes of the host node. If the agent finds its destination, it will go back
to the server along the path searched, update the routing tables on the nodes along the
path, and submit its report about the searched path to the server. Otherwise, it will select
a neighboring node and move on. To eliminate unnecessary searching in the network, a
life-span limit is assigned to each agent. An agent will die if it cannot find its destination
in its life-span limit. Moreover, if an agent cannot return to its server in two times the
life-span limit (e.g., its return route is interrupted due to a link/node failure), the agent
also will die.When a certain number of those agents have come back, the server selects
the optimal path by certain criterion and send the packet to the destination along the
new path. At the same time, the server updates its routing table by the information of
the new path.

There are also some assumptions convenient for our analysis:

1. There are n nodes in the network, and each node has the same probability of 1/n to
be the destination. The assumption of uniform probability of 1/n has been widely
applied in the open literature [19, 21,137].

2. The expected number of requests received from a server once is m. Once a request
arrives, k agents are created and sent out into the network.

3. The life-span limit of agents is set to be d.

2.3 Ant-like Routing

In this section, we consider the problem of ant-like mobile agent based network routing.
We analyze the probability of success (the probability that an agent can find the desti-
nation) and the population growth of mobile agents. First, We give an estimation on the
probability of success, P (d), than an agent can find the destination in d jumps as P (d) ≤
1
n

(
1− 1

n

)d
(

σ1−1
σ1

)d−1

, n is the number of nodes in the network, and σ1, σn are the largest

and smallest degrees of nodes in the network respectively. The probability of success that

k agents can find the destination in d jumps is estimated as P ∗(d) ≤ 1 −
(

n−1
n+σ1−1

)k

,

where k is the number of agents generated per request. Second, the distribution of mobile
agents in the network is analyzed, −→p (t) = (I + A + · · ·+ At−1)km−→e when 0 < t ≤ d and
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−→p = (I +A+ · · ·+Ad−1)km−→e when t > d, where A is a matrix derived from the connec-
tivity matrix. We further estimate that the number of agents running in the network is
less than n2σ1km

n+σ1−1
, and the population of mobile agents running in each host, pj(t), satisfies:

km + (1− ξd−1)[1− 1
n(1−ξ)

](Dj − 1)km ≤ pj(t) ≤ km + (1− ζd−1)[1− 1
n(1−ζ)

](Dj − 1)km,

where ξ = ‖A‖1 = max
1≤j≤n

‖aj‖1, ζ = min
1≤j≤n

‖aj‖1, aj is the jth column of matrix A, and Dj

is the degree of the jth host.
The rest of this section is organized as follows. Subsection 2.3.1 describes the net-

work model used in this section and introduces the idea of ant routing. Subsection 2.3.2
presents some analysis results for mobile agents, including the probability of success and
the population of agents. Subsection 2.3.4 concludes this section.

2.3.1 Execution Model

Based on the one presented in [118], the main idea of our algorithm as follows:
1. Assume that at any time t, the expected number of requests keyed in one host is

m. Once a request arrives, k agents (the explorer agents) are created and sent out into
the network.

2. The explorer agents traverse the network from the source to search for the desti-
nation. At each intermediate node, if the node is the destination of the agent, the agent
will die and a new message agent is generated and send the message back to the source
node. Otherwise, it will randomly select a neighbor node to move on.

3. In the source node, each message agent returned will compare its path explored with
other explorer agents returned. If the cost of the corresponding traverse path is acceptable,
then an allocator agent will thus be sent out immediately, and allocate network resources
on the notes and links used in the path.

4. When the path is no longer required, a de-allocator agent traverses the path, and
de-allocates the network resources used on the nodes and links.

5. To reduce unnecessary searching in the network, we further assume that if an agent
cannot find its destination in d jumps, it will die.

2.3.2 Analysis

The Probability of Success

First, we assume that the length of each link between two nodes are the same, and the
probability that an agent can find its destination at current host is 1

n
, then the searching

time is determined by the number of jumping. Assume that the probability of jumping
to any neighboring host or die is the same, then we have the following theorem on the
probability that an agent can find the destination in d jumps as follows:

Theorem 1 The probability, P ∗(d), that at least one agent among the k agents can find
the destination in d jumps satisfies the following inequality:

P ∗(d) ≤ 1−
(

n− 1

n + σ1 − 1

)k

(2.1)

Proof Denote the sequence number of node that the agent entered at dth jump by Jd

and the probability that an agent can find its destination at the d th jump by P (d). The
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probability that an agent can find its destination at the first jump is P (1) = 1
n

and the
probability it can’t find the destination is 1 − 1

n
. If the agent can’t find its destination,

the probability that it can jump out and search on is (1− 1
n
) · DJ1

−1

DJ1
, and the probability

that it can find its destination at the second jump is P (2) = 1
n
(1 − 1

n
) · DJ1

−1

DJ1
, and the

probability it can’t find its object at the second jump is (1 − 1
n
)2 · DJ1

−1

DJ1
. If the agent

can’t find its destination at the second jump, the probability that it takes the third jump

is (1− 1
n
)2 · DJ1

−1

DJ1
· DJ2

−1

DJ2
, and P (3) = 1

n
(1− 1

n
)2 · DJ1

−1

DJ1
· DJ2

−1

DJ2
. Similarly, the probability

that an agent can find its destination host at the dth jump is

P (d) =
1

n

(
1− 1

n

)d−1 d−1∏
i=1

DJi
− 1

DJi

≤ 1

n

(
1− 1

n

)d (
σ1 − 1

σ1

)d−1

So the probability, P ∗(d), that at least one agent among k agents can find the destination
host in d jumps satisfies the following:

P ∗(d) =
k∑

s=1

Cs
k

[
d∑

t=1

P (t)

]s [
1−

d∑
t=1

P (t)

]k−s

= 1−
[
1−

d∑
t=1

P (t)

]k

Due to

d∑
t=1

P (t) ≤
d∑

t=1

1

n

(
1− 1

n

)t−1 (
σ1 − 1

σ1

)t−1

≤ 1

n
· 1

1− (
1− 1

n

) (
1− 1

σ1

) =
σ1

n + σ1 − 1

we have

P ∗(d) ≤ 1−
[
1− σ1

n + σ1 − 1

]k

= 1−
(

n− 1

n + σ1 − 1

)k

Hence the theorem is proven. ¤
The probability that an agent can find its destination is decided by the topology of

network and parameters k and d, which coincides with practice. From the theorem above,
we can easily get that the probability that none of those k agents can find the destination

is equal to
(

n−1
n+σ1−1

)k

, and the probability that all the k agents can find the destination

is equal to
(

σ1

n+σ1−1

)k

.

The Population of Agents

Assume that at time t− 1, there are pi(t− 1) agents in the ith host, these agents search
for the destination locally, and the expected number of agents cannot find the destination
is equal to

(
1− 1

n

)
pi(t − 1), and the expected number of mobile agents move from the

ith host to the jth host is equal to
(
1− 1

n

)
1

Di
pi(t− 1). The total number of agents move

to the jth host at time t is
∑

i∈NB(j)

(
1− 1

n

)
1

Di
pi(t − 1), where NB(j) denotes the host

set make up of the neighboring hosts of the jth host. Consider about the new generated
agents in the jth host at time t, we have the following equation:

pj(t) = km +
∑

i∈NB(j)

(
1− 1

n

)
1

Di

pi(t− 1) (2.2)
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where m is the average number of requests initiated at time t at a host, and k is the
number of agents generated per request. Let −→p (t) = (p1(t), p2(t), · · · , pn(t))T , and −→e be
a vector that all the elements of it are 1, we can express the population distribution of
mobile agents in vector-matrix format:

−→p (t) = A−→p (t− 1) + km−→e (2.3)

where A = (1− 1
n
)(C − I)D−1 = (a1, a2, · · · , an) is a matrix, aj is the jth column vector

of A. Obviously, we have ‖aj‖1 = (1− 1
n
)

Dj−1

Dj
.

Theorem 2 The distribution of mobile agents can be expressed as follows:

−→p (t) =





0 t = 0
(I + A + A2 + · · ·+ At−1)km−→e 0 < t ≤ d
(I + A + A2 + · · ·+ Ad−1)km−→e t > d

(2.4)

Proof First If the distribution of mobile agents initialled at time 0 is −→p (0), then after
time t, the distribution of the survival among these agents is Ad−→p (0).
Second, by the recursive formula of the distribution of mobile agents, −→p (t) = km−→e +
A−→p (t− 1), and the assumption that if an agent cannot find the destination in d steps, it
will die, we have
(1) If t ≤ d,

−→p (t) = km−→e + A−→p (t− 1)

= km−→e + A(km−→e + A−→p (t− 2))

= (I + A)km−→e + A2−→p (t− 2)

= · · ·
= (I + A + · · ·+ At−1)−→e + At−→p (0)

As we assumed that the initial population of mobile agents −→p (0) = 0, the result for t ≤ d
is proven.
(2) If t > d, then at time t, all the survival agents generated at time t − d die, so the
distribution of agents under this case can be illustrated as

−→p (t) = km−→e + A−→p (t− 1)− Adkm−→e
= (I + A + · · ·+ At−d−1)km−→e + At−d−→p (d)− (I + A + · · ·+ At−d−1)Adkm−→e
= (I + A + · · ·+ At−d−1)km−→e + At−d[(I + A + · · ·+ Ad−1)km−→e + Ad−→p (0)]

−(I + A + · · ·+ At−d−1)Adkm−→e
= (I + A + · · ·+ Ad−1)km−→e

Hence the theorem is proven. ¤
From the theorem above, we can easily see that the distribution of mobile agents will

not exceed (I + A + · · ·+ Ad−1)km−→e , that is, the number of mobile agents in our model
has a upper limitation.

Since mobile agents are generated frequently and dispatched to the network, it is
important to estimate the maximum number of mobile agents running in the network and
in each host. When there are too many agents in the network, they will introduce too
much computational overhead to host machines, which will eventually become very busy
and indirectly block the network traffic.

Regarding the number of agents running in the network, we have the following theorem.
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Theorem 3 The number of agents running in the network can be estimated as follows:

n∑
j=1

pj(t) ≤ n2σ1km

n + σ1 − 1
(2.5)

Proof By the definition of matrix 1−norm,we have

n∑
j=1

Pj(t) = ‖−→p (t)‖1 ≤ ‖I + · · ·+ · · ·+ Ad−1‖1 · ‖km−→e ‖1

≤ nkm ·
d−1∑
i=0

(‖A‖1)
i ≤ nkm

1− ‖A‖1

Due to ‖A‖1 =
(
1− 1

n

)
σ1−1

σ1
, it is easy to prove that

‖−→p (t)‖1 ≤ nkm

1− (
1− 1

n

) (
1− 1

σ1

)

hence the theorem is proven. ¤
Denote that ξ = ‖A‖1 = max

1≤j≤n
‖aj‖1 =

(
1− 1

n

)
σ1−1

σ1
, and ζ = min

1≤j≤n
‖aj‖1

=
(
1− 1

n

)
σn−1

σn
. For the number of agents running in a host, we have the following

theorem.

Theorem 4 The number of agents running in the jth host can be estimated as follows:

km + (1− ξt−1) [1− 1

n(1− ξ)
](Dj − 1)km

≤ pj(t) ≤ km + (1− ζt−1)[1− 1

n(1− ζ)
](Dj − 1)km

where 0 < t ≤ d, and when t ≥ d,

km + (1− ξd−1) [1− 1

n(1− ξ)
](Dj − 1)km

≤ pj(t) ≤ km + (1− ζd−1)[1− 1

n(1− ζ)
](Dj − 1)km
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Proof Assume that NB(j) is a set constituted by all the neighboring hosts of the jth
host. By recursion, we have

pj(0) = 0

pj(1) = km

pj(2) = km +
∑

i∈NB(j)

(1− 1
n
)pi(1)

Di

≤ km +
∑

i∈NB(j)

[km− 1

n
km− ζkm]

= Djkm− 1

n
[Dj − 1]km− ζ[Dj − 1]km

pj(3) = km +
∑

i∈NB(j)

(1− 1
n
)pi(2)

Di

≤ km +
∑

i∈NB(j)

[km(1− 1

n
)− 1

n
ζkm− ζ2km]

= Djkm− 1

n
[Dj − 1]km− 1

n
ζ[Dj − 1]km− ζ2[Dj − 1]km

= Djkm− 1

n
[Dj − 1]km(1 + ζ)− ζ2[Dj − 1]km

· · · · · · · · ·
pj(t) ≤ Djkm− 1

n
[Dj − 1]km(

t−2∑
s=0

ζs)− ζt−1[Dj − 1]km

= km + (1− ζt−1)[1− 1

n(1− ζ)
](Dj − 1)km

Similarly, we have

pj(t) ≥ Djkm− 1

n
[Dj − 1]km[

t−2∑
s=0

ξs]− ξt−1[Dj − 1]km

= km + (1− ξt−1)[1− 1

n(1− ξ)
](Dj − 1)km

When t ≥ d, since −→p (t) = (I + A + A2 + · · · + Ad−1)km−→e , the bounds are fixed and
irrelevant with t. Hence, the theorem is proven. ¤

It is easy to see that pj(t) is related with the values of k, m, t and the topology of
the network which is coherent with our intuition. When t is big enough, both ζ and ξ
approximate to 0, then we have the following corollary:

Corollary 1 If t is big enough, then we have

pj(t) ≈ km + (1− 1

n
)[Dj − 1]km (2.6)

Furthermore, since both (1 − ζd−1) and [1 − 1
n(1−ζ)

] are less than 1, we have pj(t) ≤
Djkm, which is a result given in [118].
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2.3.3 Experimental Results

In this section, we present some experimental results to explain the analytical results
given in Section 2.3.2. The following cases of network topologies are included in the
experiments:

1. Case A: σ1 large, σn large;

2. Case B: σ1 large, σn middle;

3. Case C: σ1 large, σn small;

4. Case D: σ1 middle, σn middle;

5. Case E: σ1 middle, σn small;

6. Case F: σ1 small, σn small.

Figure 2.2 gives some simple examples for these cases.

Case A Case B Case C

Case D Case E Case F

Figure 2.2: Simple Examples for Each Case

The Searching Time Per Quest

First, we present the experimental results on the upper bound of the survival probability
(UBSP) and the lower bound of the successful probability (LBSP) in Table 2.1, where
the survival probability is defined as the probability that an agent can survive after d
jumps and the successful probability is defines as the probability that the destination can
be found in d jumps. Here, k is set to be 20. From Table 2.1, we can see that when d
increases, USBP will decrease and LBSP will increase. When the number of n increases,
USBP will increase and LBSP will decrease. Furthermore, if UBSP is very large, LBUP
will increase rapidly with the growth of d, and if USBP is very small, LBUP will increase
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Table 2.1: The Experiment Results on UBSP and LBSP

20 50 100
n case UBSP LBSP UBSP LBSP UBSP LBSP

A 0.8266 0.8519 0.6119 0.9878 0.3707 0.9995
B 0.7511 0.7700 0.4780 0.9076 0.2251 0.9359

200 C 0.8258 0.1810 0.6104 0.1813 0.3688 0.1813
D 0.3756 0.7273 0.0801 0.8449 0.0061 0.8642
E 0.4774 0.3276 0.1486 0.3284 0.0212 0.3284
F 0.0131 0.2586 1.3955e-05 0.2586 1.5502e-10 0.2586
A 0.9267 0.5441 0.8219 0.8510 0.6727 0.9729
B 0.7953 0.4455 0.5540 0.6205 0.3033 0.6784

500 C 0.8744 0.0769 0.7074 0.0769 0.4969 0.0769
D 0.3978 0.4067 0.0928 0.5315 0.0082 0.5592
E 0.5055 0.1472 0.1722 0.1476 0.0286 0.1476
F 0.0139 0.1129 1.6174e-05 0.1130 2.0885e-10 0.1130
A 0.9267 0.3273 0.9066 0.6232 0.8203 0.8507
B 0.8106 0.2556 0.5819 0.3856 0.3349 0.4364

1000 C 0.8912 0.0392 0.7430 0.0392 0.5486 0.0392
D 0.4054 0.2300 0.0974 0.3170 0.0091 0.3385
E 0.5152 0.0766 0.1808 0.0768 0.0316 0.0768
F 0.0140 0.0582 1.6987e-05 0.0582 2.3062e-10 0.0582
A 0.9962 0.0.0392 0.0.9902 0.0948 0.9804 0.1805
B 0.8246 0.0291 0.6081 0.0478 0.3661 0.0563

10000 C 0.9066 0.0040 0.7765 0.0040 0.5998 0.0040
D 0.4124 0.0258 0.1018 0.0376 0.0099 0.0408
E 0.5241 0.0080 0.1890 0.0080 0.0345 0.0080
F 0.0144 0.0060 1.7753e-05 0.0060 2.5212e-10 0.0060
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slowly. If LBUP increases too slowly, the process of searching should be shut down. All
of these are coherent with Theorem 1 and its conclusions.

Table 2.2 shows the experimental results of the lower bound on k when d approximates
to infinity. We can see that the larger the degrees of nodes (the number of neighboring
hosts) are, the fewer the agents are needed, which is also coincided with our analytical
results.

The desired probability of success
n case 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A 1 1 1 1 1 2 2 3 4
B 1 1 1 2 2 3 4 5 7

200 C 1 1 1 1 2 2 3 3 5
D 2 3 4 5 7 9 12 16 22
E 1 2 3 4 5 7 9 12 17
F 5 9 15 21 28 37 49 65 93
A 1 1 1 1 1 2 2 3 4
B 1 2 2 3 4 6 7 9 13

500 C 1 1 2 2 3 3 4 5 8
D 3 6 9 12 17 22 28 38 54
E 2 4 7 9 12 16 21 28 40
F 11 23 36 52 70 92 121 162 231
A 1 1 1 1 1 2 2 3 4
B 2 3 4 6 8 10 13 17 25

1000 C 1 2 3 3 4 6 7 9 13
D 5 11 17 24 32 43 56 74 106
E 4 8 13 18 24 31 41 55 78
F 22 45 72 103 139 184 242 323 462
A 1 1 1 1 1 2 2 3 4
B 11 23 36 52 70 93 121 162 232

10000 C 6 12 19 27 35 47 62 83 118
D 48 102 163 233 316 417 548 733 1048
E 36 75 120 171 232 306 402 538 769
F 211 447 714 1022 1387 1833 2409 3220 4606

Table 2.2: The lower bound on k when d approximates to infinity

The Population of Agents

Second, we present some experiment results on the population of mobile agents by com-
paring our results with existing results [118]. We use UBA to denote our results, i.e.,
the upper bound on the population of agents running in a host, while ER to denote the
existing results. Figures 2.3, 2.4, 2.5, 2.6, 2.7, and 2.8 show the results on the population
of agents running in a host. From the experimental results we can obviously see that our
results can outperform the existing results greatly when the number of neighboring hosts
is not very small.

2.3.4 Concluding Remarks

In this section, we addressed the problem of ant-like mobile agents-based network routing
and management by deploying mobile agents. We analyzed the growth of the popu-
lation of mobile agents under a modified ant routing algorithm. We obtained the fol-
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Figure 2.3: Results for Case A
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Figure 2.4: Results for Case B
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Figure 2.5: Results for Case C
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Figure 2.6: Results for Case D
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Figure 2.7: Results for Case E
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Figure 2.8: Results for Case F
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lowing analytical results: (1) The probability of success, P (d), that an agent can find

the destination in d jumps is less than 1
n

[(
1− 1

n

) (
1− 1

σ1

)]d−1

, where n is the num-

ber of hosts in the network, σ1 is the maximum degree of hosts in the network, and d
is the number of jumping hops. (2) The probability of success that k agents can find

the destination in d jumps is estimated as P ∗(d) ≤ 1 −
(

n−1
n+σ1−1

)k

, where k is the num-

ber of agents generated per request. (3) The population distribution can be express as−→p (t) = km−→e + A−→p (t − 1) or −→p (t) = (I + A + · · · + At−1)km−→e when 0 < t ≤ d and−→p (t) = (I +A+ · · ·+Ad−1)km−→e , where m is the average number of request keyed in one
host once, −→e is a vector that all its elements are 1, and A is a matrix can be derived from
the connectivity matrix. (4) The total number of agents running in the network is less
than nσ1

n+σ1−1
·nkm. (5) The population of mobile agents running in each host, pj(t), satis-

fies km+(1−ξd−1)[1− 1
n(1−ξ)

](Dj−1)km ≤ pj(t) ≤ km+(1−ζd−1)[1− 1
n(1−ζ)

](Dj−1)km,

where ξ = max ‖aj‖1, ζ = min ‖aj‖1, aj is the jth column of matrix A, and Dj is the
degree of the jth host.

2.4 Two Extended Routing Algorithms

In this section, considering the fact that the neighborhood information of a host node is
readily available (e.g. it is built in the routing table in TCP/IP), we propose a general
agent-based routing model, in which a mobile agent knows information not only about its
host node, but also about the neighboring nodes of its host node. Since the connectivity of
different nodes may change dynamically over time, the agents have to dynamically adapt
themselves to the environment, which increases the difficulty for theoretical analysis. We
further classify the model into two cases, namely settleable and nonsettleable (to the host
node):

• Settleable case: If the host node is not the agent’s destination, the agent can either
stay in the host node or move to a neighboring node.

• Nonsettleable case: An agent will not die unless it finds its destination or it is out of
its life-span limit. If an agent cannot find its destination on the host node, it must
to jump out from the host node and go on searching.

, and analyze the probability of success and the population distribution of mobile agents
for each case. Both our theoretical and experimental results show that we can control the
probability of success and the number of mobile agents by tuning the number of agents
generated per request and the number of jumps each mobile agent can make. The main
contributions of this section are summarized as follows:

• A general and more practical agent-based routing model is described and is further
classified into settleable and nonsettleable cases.

• The probability of success is analyzed, which serves as an important measure for
monitoring network performance.

• An analysis on population growth of mobile agents is presented, providing a useful
tool to reduce computational resource consumption by adjusting the number of
agents to be generated at individual nodes.
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• Extensive experiments validating our analysis have been performed and compared
with previous work.

The rest of this section is organized as follows: Subsection 1 and Subsection 2 present
mathematical analysis on the probability of success and population distribution for both
cases. Subsection 3 describes our experimental results, and subsection 4 concludes our
section.

2.4.1 Probability of Success

Analysis of the probability of success is important because the probability of success
directly affects the searching process, and influences the network performance as a result.
However, it has not been sufficiently taken into account in existing work. In this section,
the probabilities of success for both single agent and multiple agents are analyzed. Our
results show that the probability of success is affected by the connectivity of the network,
the life-span limit, and the number of mobile agents.

In a mobile agent-based network routing model, a mobile agent will visit a sequence
of nodes. The sequence of nodes between the server and the destination is called the
itinerary of the mobile agent. A static itinerary is entirely defined at the server and
does not change during the agent’s travels, whereas a dynamic itinerary is subject to
modification by the agent itself. In this context, the mobile agents traverse the network
with a dynamic itinerary. Suppose that the w-th node in the network is the destination.
The sequence of nodes in the itinerary of an agent is denoted by J (0), J (1), · · · , w or J (d),
where J (0) denotes the server node and J (i) is the i-th node visited by the agent.

Lemma 1 Let i → j indicates the event that an agent jumps from the i-th node to the
j-th node (in one jump), the probability of success that an agent can find its destination
at the t-th jump, denoted by p(t), satisfies

p(t) =
∑

l∈NB(J(t−1))

Pr
{

J (t−1) → l
} dl − 1

n

[
1−

t−1∑

k=0

p(k)

]
(2.7)

where NB(j) is the set of node j’s neighboring nodes and node j itself, p(0) = (dJ(0)+1)/n,
and t ≤ d.

Proof After being generated by the server, J (0), mobile agents move out from the server
and search for their destination in the network. The probability that an agent can find
its destination at birth, p(0), i.e., the probability that the destination is in NB(J (0)),
equals to (dJ(0) + 1)/n. If the agent cannot find its destination in NB(J (0)),it will jump
to one of the server’s neighboring node, J (1), and continue searching.Since both J (0) and
J (1) are not the destination, the probability that the agent can find its destination at the
first jump equals to p(1) =

∑
i∈NB(J(0))

di−1
n

Pr{J (0) → i}[1 − p(0)]. If the agent cannot

find its destination in NB(J (1)), it will jump to a neighboring node, J (2), and continue
searching.The probability that an agent can find its destination at the second jump is
p(2) =

∑
j∈NB(J(1))

dj−1

n
Pr{J (1) → j}[1 − p(0) − p(1)]. By recursion, it is easy to prove

that the probability, p(t), that an agent can find its destination at the t-th jump for t > 1
satisfies:

p(t) =
∑

l∈NB(J(t−1))

dl − 1

n
Pr{J (t−1) → l}

[
1−

t−1∑

k=0

p(k)

]

28



¤
It can be seen that the probability p(t) is relevant to the connectivity of the network

and the number of jumps. From Lemma 1, it is easy to estimate the probability of success
that an agent can find its destination in d jumps, denoted by P (d), by the relationship

P (d) = p(0) +
d∑

t=1

p(t)

=
dJ(0) + 1

n
+

d∑
t=1

∑

l∈NB(J(t−1))

Pr{J (t−1) → l}

·dl − 1

n

[
1−

t−1∑

k=0

p(k)

]
(2.8)

From Lemma 1, it can be seen that p(t) is a decreasing function on d. Therefore, based on
Eq. (2.8), the increase of P (d) is slower when d becomes larger.Obviously, if the increase
of P (d) is too small, it is not necessary to go on searching. Thus, the life-span limit of
mobile agents, d, can be defined by a given threshold ε ≥ 0 such that P (d)−P (d−1) ≤ ε.
Based on Eq. (2.7) and (2.8), we have the following theorem:

Theorem 5 The probability of success, Ps, that at least s agents from k agents can find
the destination in d jumps satisfies the following inequality:

4s

√
2πs

< Ps <
4s

√
2πs

· 1

1− λ/(s + 1)
(2.9)

where λ = kP (d) and 4 = λ
s
e1−λ/s.

Proof As we know, this probability satisfies binomial distribution, so we have

Ps =
k∑

i=s

Cs
kP (d)s[1− P (d)]k−s

Since it can be approximated by a Poisson distribution, we have

Ps ≈
k∑

i=s

λse−λ

s!

where λ = kP (d). Therefore, we have

e−λ λs

s!
<

k∑
i=s

λse−λ

s!

= e−λ λs

s!
·
[
1 +

λ

s + 1
+

λ2

(s + 1)(s + 2)

]

+ · · ·+ e−λ λs

s!
·
[

λk−s

(s + 1) · · · k
]

≤ e−λ λs

s!
·
[
1 +

λ

s + 1
+

(
λ

s + 1

)2
]

+ · · ·+ e−λ λs

s!
·
[(

λ

s + 1

)k−s
]

≤ e−λ λs

s!
· 1

1− λ/(s + 1)
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Applying Stirling’s formula

n! ≈
√

2πnnne−n, for large n.

we have

4s

√
2πs

< Ps <
4s

√
2πs

1

1− λ/(s + 1)

¤
In particular, P1, the probability that at least one agent among k agents can find the

destination, is 1− [1− P (d)]k.

Settleable Case

In the settleable case, both the host node and its neighboring nodes have the same possi-
bility to be selected since each direction is equally likely to connect with the destination.
Thus, the probability Pr{i → j} equals to 1/(di + 1) where j ∈ NB(i) and di is the
number of neighboring nodes of node i. Therefore, the probability p(t) in Lemma 1
satisfies

p(t) =
∑

l∈NB(J(t−1))

dl − 1

n
· 1

dJ(t−1) + 1
·
[
1−

t−1∑

k=0

p(k)

]
(2.10)

where p(0) = (dJ(0) + 1)/n and 0 < t ≤ d. In particular, when the average connectivity of
the network , denoted by θ, is available, we can further estimate p(t) based on Eq. (2.10)
as follows:

p(t) =
∑

l∈NB(J(t−1))

θ − 1

n(θ + 1)
·
[
1−

t−1∑

k=0

p(k)

]

=
θ(θ − 1)

n(θ + 1)
·
[
1−

t−1∑

k=0

p(k)

] (2.11)

p(t− 1) =
θ(θ − 1)

n(θ + 1)
·
[
1−

t−2∑

k=0

p(k)

]
(2.12)

where θ = E[di]. Denote θ(θ − 1)/[n(θ + 1)] by a, then we have

p(t)− p(t− 1) = a · [−p(t− 1)] (2.13)

Therefore

p(t) = (1− a)p(t− 1) = (1− a)t−1p(1)

= a(1− a)t−1

(
1− θ + 1

n

)
(2.14)
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since p(1) = a[1 − p(0)] and p(0) = (θ + 1)/n. Furthermore, the probability of success,
P (d), that an agent can find its destination in d jumps satisfies

P (d) =
d∑

t=0

p(t) = p(0) +
d∑

t=1

p(t)

=
θ + 1

n
+

d∑
t=1

a(1− a)t−1

(
1− θ + 1

n

)

=
θ + 1

n
+ a

(
1− θ + 1

n

)
1− (1− a)d

a

= 1−
(

1− θ + 1

n

)
(1− a)d

(2.15)

Nonsettleable Case

In the nonsettleable case, the probability Pr{J (t) → l} equals to 1/dJ(t) since all neigh-
boring nodes have the same possibility to be selected. Substituting this value in Eq. (2.7),
the probability of success that an agent can find its destination at the t-th jump can be
estimated as follows:

p(t) =
∑

l∈NB(J(t−1))

dl − 1

n · dJ(t−1)

[
1−

t−1∑

k=0

p(k)

]
(2.16)

where p(0) = (dJ(0) + 1)/n and 0 < t ≤ d. Similar to the analysis for the settleable case,
when the average connectivity θ is available, the probability can be estimated as follows

p(t) = b(1− b)t−1

(
1− θ + 1

n

)
(2.17)

where b = (θ−1)/n. The probability of success, P (d), that an agent can find its destination
in d jumps satisfies

P (d) = 1− (1− b)d

(
1− θ + 1

n

)
(2.18)

2.4.2 Population Distribution

As we mentioned in sections 2.2 and 2.3,mobile agents are frequently generated and dis-
patched to the network. If the number of agents generated per request is small, there
is no guarantee that the destination will be found quickly. On the other hand, if there
are too many agents running in the network, they will introduce too much computational
overhead; the host nodes will eventually become very busy and indirectly block the net-
work traffic. Therefore, analysis of the number of mobile agents running in the network
and on each node is another important task. Since mobile agents will search for their
destinations node by node in the network, the agents in one node can be divided into two
parts, as shown in Figure 2.9.

We claim that the population distribution of mobile agents running in the network at
time t can be expressed as follows:

−→p (t) = k−→r (t− 1) + kA−→r (t− 2)
+B−→p (t− 1)−Bdk−→r (t− d− 1)

(2.19)
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Figure 2.9: Mobile agents in one node can be divided into two parts: Part 1 – the set of
mobile agents generated by the j-th node, Part 2 – the set of mobile agents coming from
neighboring nodes.

where

−→p (t) =




p1(t)
p2(t)
· · ·
pn(t)


 , −→r (t) =




r1(t)
r2(t)
· · ·
rn(t)


 ,

pj(t) is the number of mobile agents running on the j-th node, while rj(t) indicates the
number of requests received by the j-th node at time t and rj(t) = 0 when t < 0. k is the
number of mobile agents generated per request, d is the life-span limit of mobile agents.
A = (aji) and B = (bji) are n× n coefficient matrices with elements

aji =





Pr(1){i → j}
−Pr(2){i → j} if j ∈ NB(i)

0 otherwise
(2.20)

and

bji =

{
Pr(2){i → j} if j ∈ NB(i)

0 otherwise
(2.21)

Pr(l){i → j} (l=1,2) is the probability that a mobile agent in the l-th part at node i will
select the j-th node to move when j ∈ NB(i).

From Eq. (2.19), we can see that the population distribution of mobile agents can be
modelled as a stochastic process. In the following, we explain the validity of Eq. (2.19)
in detail. It is easy to see that the number of mobile agents newly generated at time t
(part 1 in Figure 2.9) equals to k · rj(t − 1). Denote the number of agents in node j at
time t that come from the i-th node by pji(t), then the number of mobile agents in part
2 equals to

∑
i∈NB(j) pji(t). Therefore, the total number of mobile agents running on the

j-th node at time t, denoted by pj(t), satisfies

pj(t) = k · rj(t− 1) +
∑

i∈NB(j)

pji(t) (2.22)

The analysis of pji(t) is much more complex. To simplify the analysis, we first consider
the situation that mobile agents have an infinite life-span. Regarding to the population
distribution of mobile agents with infinite life-span in the network, we have the following
lemma.
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Lemma 2 The number of mobile agents with infinite life-span running on the j-th node
with infinite life-span satisfies

−→p (t) = k−→r (t− 1) + kA−→r (t− 2) + B−→p (t− 1) (2.23)

Proof It is no surprise that each neighboring node of the i-th node has the same
possibility to be selected by mobile agents in the i-th node since each direction is equally
likely to link with the destination. Thus, the average number of mobile agents that
traverse from the i-th node to the j-th node at time t, denoted by pji(t), equals to∑2

l=1 p
(l)
i (t − 1)Pr(l){i → j}, where p

(l)
i (t − 1) (l = 1, 2) is the number of mobile agents

belong to the l-th part on the i-th node at time t− 1(see Figure 2.9). Thus, the number
of mobile agents on the j-th node with infinite life-span satisfies

pj(t) = krj(t− 1) +
∑

i∈NB(j)

2∑

l=1

p
(l)
i (t− 1)Pr(l){i → j}

Since p
(1)
i (t − 1) equals to kri(t − 2), and p

(2)
i (t − 1) equals to pi(t − 1) − kri(t − 2), we

have

pj(t) = krj(t− 1) +
∑

i∈NB(j)

[
kri(t− 2)Pr(1){i → j}

+ (pi(t− 1)− kri(t− 2)) Pr(2){i → j}]

= krj(t− 1) +
∑

i∈NB(j)

[
Pr(2){i → j}pi(t− 1)

+
(
Pr(1){i → j} − Pr(2){i → j}) kri(t− 2)

]

Let [ · ]j denotes the j-th entry of a vector. From Eq. (2.20) and (2.21), we have

∑

i∈NB(j)

Pr2{i → j}pi(t− 1)

=
∑

i

Pr2{i → j}pi(t− 1)

=
∑

i

bji · pi(t− 1) = [B−→p (t− 1)]j

and
∑

i∈NB(j)

(
Pr(1){i → j} − Pr(2){i → j}) kri(t− 2)

=
∑

i

(
Pr(1){i → j} − Pr(2){i → j}) kri(t− 2)

=
∑

i

aji · ri(t− 2) = [A−→r (t− 2)]j

Therefore, we have

−→p (t) = k−→r (t− 1) + kA−→r (t− 2) + B−→p (t− 1)

¤
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Lemma 3 Suppose that the distribution of mobile agents generated at t = 0 in the network
is −→p (0), then the population distribution of these agents at time t is Bt−→p (0).

Proof Since we only consider the distribution of mobile agents that generated at t = 0
and do not pay attention to other agents, −→r (t) in Eq. (2.23) equals to 0. Therefore,

−→p (t) = B · −→p (t− 1) = Bt−→p (0)

¤
From Lemma 3, it is straightforward that at time d, the distribution of mobile agents

that are generated at time t = 0 is Bd−→p (0). Since these agents will die at time d, they
should be removed from the distribution in Eq. (2.23). Thus, based on Lemma 2 and
Lemma 3, the population distribution of mobile agents with life-span limit at time t can
be expressed as Eq. (2.19).

In particular, take expectation on both side of Eq. (2.19) and denote the average
number of requests received from a node at any time by r, then when t ≤ d, the population
distribution of mobile agents satisfies

−→p (t) = kr(I + A)−→e + B−→p (t− 1)

=
t−1∑
i=0

Bikr(I + A)−→e + Bt−→p (0)
(2.24)

where −→e = (1, · · · , 1)T . Here we still use the notation −→p (t) as E[−→p (t)]. When t > d, the
population distribution of mobile agents satisfies

−→p (t) = (I + A)kr−→e + B−→p (t− 1)−Bdkr−→e

=
t−d−1∑

i=0

Bikr(I + A)−→e −
t−d−1∑
j=0

BjkrBd−→e

+Bt−d−→p (d)

=
t−d−1∑

i=0

Bikr(I + A)−→e −
t−d−1∑
j=0

BjkrBd−→e

+Bt−d

[
d−1∑

l=0

Blkr(I + A)−→e + Bd−→p (0)

]

=
t−1∑
i=0

Bikr(I + A)−→e + Bt−→p (0)−
t−1∑

j=d

Bjkr−→e

Thus, the population distribution of mobile agents in Eq. (2.19) can be described as
follows

−→p (t) =





t−1∑
i=0

Bikr(I + A)−→e
+Bt−→p (0) 0 ≤ t ≤ d

t−1∑
i=0

Bikr(I + A)−→e

+Bt−→p (0)−
t−1∑

j=d

Bjkr−→e t > d

(2.25)
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Settleable Case

As shown in Figure 2.9, mobile agents in the i-th node can be subdivided into two kinds:
newly generated in the i-th node or coming from its neighboring nodes. If an agent is
newly generated, it can find its destination at birth with probability (di+1)/n. Otherwise,
the agent will select a neighboring node with probability 1/(di + 1). Therefore, we have

Pr(1){i → j} =
1

di + 1

(
1− di + 1

n

)

For those agents came from neighboring nodes, since the i-th node and the node they
came from have been checked, their chance of finding their destination has the probability
(di− 1)/n. If they cannot find their destination, they will select a neighboring node with
probability 1/di. Therefore, we have

Pr(2){i → j} =
1

di

(
1− di − 1

n

)

Substitute these two parameters into Eq. (2.19), the corresponding matrix A and B can
be expressed as A = C(D+I)−1−(1+ 1

n
)CD−1 and B = (1+ 1

n
)CD−1+C/n, respectively.

Lemma 4 If there are ‖−→p (0)‖1 = δ agents initially in the network (at time 0), then
the total number of the survival agents running in the network at time t, is less than
δ
(
1− σn−1

n

)t
.

Proof From the definition of matrix B, it is easy to see that

‖B‖1 = max

∣∣∣∣1−
di − 1

n

∣∣∣∣ = 1− σn − 1

n

Therefore, from Lemma 3, we have

∑
1≤j≤n

pj(t) = ‖−→p (t)‖1 = ‖Bt−→p (0)‖1

≤ (‖B‖1)
t ‖−→p (0)‖1

¤

Theorem 6 If −→p (0) = 0, the total number of agents running in the network at any time

is no more than α(σ1, σn, d)nkr where α(σ1, σn, d) = nσ1−σ1−1
(σ1+1)(σn−1)

[
1− (

1− σn−1
n

)d
]
.

Proof According to Eq. (2.25), when 0 ≤ t ≤ d, the total number of mobile agents in
the network can be estimated as follows

n∑
j=1

pj(t) = ‖−→p (t)‖1 =

∥∥∥∥∥
t−1∑
i=0

Bikr(I + A)−→e
∥∥∥∥∥

1

≤ nkr · ‖I + A‖1 ·
t−1∑
i=0

(‖B‖1)
i
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From the definitions of matrices A and B, it is easy to see that ‖I + A‖1 = 1− 1
n
− 1

σ1+1

and ‖B‖1 = 1− σn−1
n

. Substitute these two values into the above, we have

n∑
j=1

pj(t) ≤ (nσ1 − σ1 − 1)nkr

(σ1 + 1)(σn − 1)

[
1−

(
1− σn − 1

n

)t
]

= α(σ1, σn, t)nkr

where α(σ1, σn, t) is nσ1−σ1−1
(σ1+1)(σn−1)

[
1− (

1− σn−1
n

)t
]

for short1. When t ≥ d, from Eq.

(2.25), we have

−→p (t) =
d−1∑
i=0

Bikr(I + A)−→e +
t−1∑

i=d

BikrA−→e

Due to the fact that

aji =
1

di + 1

(
1− di + 1

n

)
− 1

di

(
1− di − 1

n

)
< 0

when j ∈ NB(i) and aji = 0 otherwise, we have

‖−→p (t)‖1 ≤
∥∥∥∥∥

d−1∑
i=0

Bikr(I + A)−→e
∥∥∥∥∥

1

≤ nkr · ‖I + A‖1 ·
d−1∑
i=0

(‖B‖1)
i

≤ α(σ1, σn, d)nkr

¤
For the number of agents running on each node, we have the following theorem.

Theorem 7 The number of agents running on the j-th node, denoted by pj(t), is no more

than
ndjkr

(σn−1)2+1
.

Proof See Appendix. ¤
We now estimate the number of agents in each link by the following theorem.

Theorem 8 The number of agents moving out from the j-th node to each of its neigh-
boring nodes at time t, denoted by fj(t), satisfies:

fj(t) =

(
1− dj − 1

n

)
pj(t)

dj

≤ n− σn

n− σn + σ2
n

kr (2.26)

1α(σ1, σn, t)is analyzed in Section 6.

36



Proof This theorem is proved by induction as follows. Based on Eq. (2.25), we have

pj(0) = 0

pj(1) = kr
...

pj(t) = kr +
∑

i∈NB(j)

(
1− di − 1

n

)
pi(t− 1)

di

Then, by the definition of fj(t), we have:

fj(0) = 0

fj(1) =
1

dj

(
1− dj − 1

n

)
kr ≤ n− σn + 1

σn(σn − 1)
kr

If the theorem holds for time t− 1, then at time t, we have

fj(t) ≤ 1

dj

(
1− dj − 1

n

) 
kr +

∑

i∈NB(j)

fi(t− 1)




≤ 1

dj

(
1− dj − 1

n

) 
kr +

∑

i∈NB(j)

n− σn + 1

σn(σn − 1)
kr




≤ 1

σn

(
1− σn − 1

n

)
kr

+

(
1− σn − 1

n

)
n− σn + 1

σn(σn − 1)
kr

=
kr

σn

[(
1− σn − 1

n

)(
1 +

n− σn + 1

σn − 1

)]
kr

=
kr

σn

[
n− σn + 1

n
· n

σn − 1

]

=
n− σn + 1

σn(σn − 1)
kr

¤

Nonsettleable Case

In this case, the corresponding probabilities are

Pr(1){i → j} =
1

di

(
1− di + 1

n

)
(2.27)

Pr(2){i → j} =
1

di − 1

(
1− di − 1

n

)
(2.28)

and the corresponding coefficient matrix in Eq. (2.19) are A = C[(1− 1
n
)D−1− (D−I)−1]

(where aji ≤ 0) and B = C[(1+ 1
n
)(D−I)−1− I

n
]. Furthermore, based on the definition of

matrix 1-norm, we have ‖A‖1 = 1
n
+ 1

σn−1
, ‖A+I‖1 = 1− 1

n
− 1

σ1−1
, and ‖B‖1 = 1+ 1

n
− σn

n
.

Similar to that in settleable case, we have the following theorem.
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Theorem 9 If −→p (0) = 0, the total number of mobile agents running in the network is

no more than β(σ1, σn, d)nkr where β(σ1, σn, d) = n(σ1−2)−(σ1−1)
(σ1−1)(σn−1)

[1− (1 + 1
n
− σn

n
)d].

Regarding to the number of agents running at one node, we have the following theorem.

Theorem 10 The number of agents running on the j-th node is no more than kr+
ndjkr

(σn−1)2
.

Proof See Appendix. ¤
Regarding to the number of agents moving out from the j-th node at time t, fj(t) =

(1− dj−1

n
)

pj(t−1)

dj−1
, we have the following theorem.

Theorem 11 The number of agents moving out from the j-th node at time t, denoted by
fj(t), satisfies:

fj(t) ≤ n− σn + 1

(σn − 1)2
kr (2.29)

Proof By the definition of fj(t), we have

fj(t) =

(
1− dj − 1

n

)
1

dj − 1


kr +

∑

i∈NB(j)

fi(t− 1)




and fj(0) = 0 for j = 1, · · · , n. Then, by induction, the theorem can be easily proven. ¤
It can be seen that the number of agents in the settleable case is smaller than that

in the nonsettleable case, but with a lower probability of success. Therefore, each case
has its own strength and weakness. Thus we can apply the different cases to control the
number of mobile agents running in the network and improve network performance for
differing application requirements and network characteristics.

2.4.3 Experimental Results

We have conducted extensive simulation experiments to validate our analytical results for
many network topologies with different parameters and found that our results were well
suited for various network topologies.

The experimental results for the probabilities of success are depicted in Figure 2.10.
The figures in the upper row show the results of the probability of success that an agent
can find its destination at the t-th jump, denoted by p(t), and those in the lower row show
the results of the probability of success that an agent can find its destination in t jumps,
denoted by P (t). The figures in the left column are the probabilities of success in the
settleable case, and those in the right are for probabilities of success in the nonsettleable
case. In each figure, there are three curves, which indicate the following three cases
respectively:

• Case 1: n = 10000, θ = 100;

• Case 2: n = 10000, θ = 50;

• Case 3: n = 10000, θ = 20.
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Figure 2.10: Probabilities of Success.
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where θ is the average connectivity degree of the network.
From the figures on the upper row we can see that p(t) is a monotonically decreasing

function of t and decreases more quickly for large θ. We can also see that p(t) for the
nonsettleable case is larger than that for the settleable case, which conforms to the analysis
presented previously for each case. From the figures on the lower row we can see that P (t)
is a monotonically increasing function of t. It can also be seen that for a network which
has larger θ, a higher probability of success, P (t), can be gained in a shorter time. P (t)
for the nonsettleable case is larger than that for the settleable case, which also conforms to
our analysis for each case. We also compare the probability of success between settleable
case and nonsettleable case in Table 2.3.

t = 100 t = 200 t = 500 t = 1500 t = 2500
S 0.0033 0.0012 6.4040e-005 3.3768e-009 1.7806e-013

p(t) N 0.0037 0.0014 6.8403e-005 3.2669e-009 1.5603e-013
1 S 0.6067 0.8406 0.9727 0.9800 0.9800

P (t) N 0.6340 0.8647 0.9932 1.0000 1.0000
S 0.0027 0.0016 3.8908e-004 3.1528e-006 2.5548e-008

p(t) N 0.0030 0.0018 4.2022e-004 3.0917e-006 2.2747e-008
2 S 0.3624 0.5984 0.8900 0.9793 0.9800

P (t) N 0.3882 0.6257 0.9142 0.9994 1.0000
S 0.0014 0.0011 6.5825e-004 1.0760e-004 1.7589e-005

p(t) N 0.0016 0.0013 7.3400e-004 1.0958e-004 1.6361e-005
3 S 0.1459 0.2841 0.5758 0.9139 0.9692

P (t) N 0.1734 0.3165 0.6137 0.9423 0.9914

Table 2.3: The comparison of the probability of success between settleable case (denoted
by “S”) and nonsettleable case (denoted by “N”).

Figure 2.11 shows the results of α(σ1, σn, d) and β(σ1, σn, d) as functions on σ1 and σn,
respectively. It can be seen that both of them are increasing functions on σ1 and decreasing
functions on σn. Meanwhile, β(σ1, σn, t) is greater than α(σ1, σn, t) as a function on the
connectivity of the network.

Figure 2.12 shows the number of mobile agents running on each node as a function
on the number of nodes n where n = 10000, r = 100, and k = 50. The figures on the
upper row show the number of mobile agents running on a node at time t, denoted by
pj(t), and the figures on the lower row show the number of mobile agents running in the
network at time t, denoted by

∑n
j=1 pj(t). The figures on the left column are for the

number of mobile agents for the settleable case, and the figures on the right column are
for the number of mobile agents for the nonsettleable case. In each graph, there are two
curves, which indicate the following two cases respectively:

• Case 1: σ1 = 50, σn = 20;

• Case 2: σ1 = 200, σn = 20.

From the figures on the upper row we can see that pj(t) is a monotonically increasing
function on t. For both cases, pj(t) increases more quickly for large connectivity. We
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Figure 2.11: The changes of α(σ1, σn, d) and β(σ1, σn, d).
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can also see that pj(t) for the settleable case is less than that for the nonsettleable case,
which conforms to our analysis proposed previously for each case. From the figures on
the lower row we can see that

∑n
j=1 pj(t) is a monotonically increasing function on t. It

can also be seen that for a network which has larger connectivity, the number of mobile
agents is larger.

∑n
j=1 p(t) for settleable case is less than that for nonsettleable case, which

conforms to our analysis for each case. We also compare the number of agents between
settleable and nonsettleable cases in Table 2.4.

d = 100 d = 500 d = 1000 d = 2000 d = 3000
S 4.0911e+005 9.5692e+005 1.0386e+006 1.0462e+006 1.0462e+006

pj(t) N 2.2431e+006 8.0491e+006 1.1175e+007 1.2849e+007 1.3099e+007
1 S 4.2410e+009 1.5026e+010 2.0831e+010 2.3941e+010 2.4406e+010∑n

j=1 pj(t) N 5.2550e+009 1.8618e+010 2.5812e+010 2.9666e+010 3.0241e+010
S 4.4737e+005 5.1502e+005 5.1504e+005 5.1504e+005 5.1504e+005

pj(t) N 4.4711e+006 1.6083e+007 2.2334e+007 2.2583e+007 2.6183e+007
2 S 4.5343e+009 1.6065e+010 2.2272e+010 2.5597e+010 2.6094e+010∑n

j=1 pj(t) N 5.6592e+009 2.005e+010 2.7798e+010 3.1948e+010 3.2568e+010

Table 2.4: The comparison of the number of agents between settleable case (denoted by
“S”) and nonsettleable case (denoted by “N”).

2.4.4 Concluding Remarks

In this section, we described a general agent-based routing model in which the neighbor-
hood information of each node is known in the node’s routing table.We further classify
the model into settleable and nonsettleable cases according to whether an agent may
stay at the host node during the next step of the search. For each case, we analyzed
both the probability of success and the population distribution of mobile agents. We
also presented experiments to validate our theoretical results. Both the theoretical and
experimental results showed that the behaviors of mobile agents can be characterized by
the population of mobile agents and the probability of success, and both two parameters
can be controlled by tuning the number of agents generated per request and the number
of jumps each mobile agent can make. Our results reveal new theoretical insights into
the statistical behaviors of mobile agents and provide useful tools for effectively managing
mobile agents in large networks.

2.4.5 Appendix: Proof of Theorem 7 and Theorem 10

Assume that −→p (0) = 0, the number of mobile agents running on a node can be estimated
as follows based on Eq. 2.19 and the fact aji ≤ 0:
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• When 0 ≤ t ≤ d,

−→p (t) =
t−1∑
i=0

Bikr(I + A)−→e + Bt−→p (0)

≤
t−1∑
i=0

Bikr−→e = kr−→e + B−→p (t− 1)

• When t ≥ d,

−→p (t) =
t−1∑
i=0

Bikr(I + A)−→e

+Bt−→p (0)−
t−1∑

j=d

Bjkr−→e

=
d−1∑
i=0

Bikr(I + A)−→e + Bt−→p (0) +
t−1∑
j=0

Akr−→e

≤
d−1∑
i=0

Bikr−→e

From the analysis, it is easy to see that

pj(t) ≤ kr +
∑

i∈NB(j)

Pr(2){i → j}pj(t− 1) (2.30)

In the following, we will present analysis on the number of mobile agents running on a
node for each cases respectively.

Proof of Theorem 7

Proof Substitute the value of Pr(2){i → j} for settleable case in inequality (2.30), we
have

pj(t) ≤ kr +
∑

i∈NB(j)

1

di

(
1− di − 1

n

)
pj(t− 1)

Since pj(0) = 0 and pj(t) = 1, we have

pj(t) ≤ (dj + 1)kr

−
[
σn − 1

n
− σn − 1

σn

(
1− σn − 1

n

)]
djkr

= (dj + 1)kr − µdjkr

where µ = σn−1
n

+ σn−1
σn

(
1− σn−1

n

)
. If the following inequality is hold,

pj(t) ≤ (dj + 1)kr −
[
σn − 1

n
− 1

σn

(
1− σn − 1

n

)]

·
t−2∑
i=0

(
1− σn − 1

n

)i

djkr − µ

(
1− σn − 1

n

)t−1

djkr
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then, it can be easily proved that the inequality is also hold for t + 1. Therefore, we have

pj(t) ≤ (dj + 1)kr − µ

(
1− σn − 1

n

)t−1

djkr

−σ2
n − n− 1

nσn

t−2∑
i=0

(
1− σn − 1

n

)i

djkr

= (dj + 1)kr − σ2
n − n− 1

σn(σn − 1)
djkr

+

[
σ2

n − n− 1

σn(σn − 1)
− µ

](
1− σn − 1

n

)t−1

djkr

= kr + ξdjkr + ζ

(
1− σn − 1

n

)t−1

djkr

where ξ = n−σn+1
σn(σn−1)

and ζ = σ2
n−n−1

σn(σn−1)
−µ = 2

σn
− n2+(σn−1)2

nσn(σn−1)
. Therefore, a convenient upper

bound of the number of mobile agents is gain as follows

pj(t) ≤
[

ndj

(σn − 1)2 + 1

]
kr

¤

Proof of Theorem 10

Proof Similar to that in the proof of theorem 7, substitute the value of Pr(2){i → j}
for unsettleable case in inequality (2.30), we have

pj(t) ≤ kr +
∑

i∈NB(j)

1

di − 1

(
1− di − 1

n

)
pj(t− 1)

By induction, it can be proved that

pj(t) ≤ kr +
n

(σn − 1)2
djkr

[
1−

(
1− σn − 1

n

)t
]

≤ kr +
n

(σn − 1)2
djkr

¤

2.5 Routing in Faulty Networks

This section focuses on behavior analysis on mobile agents used in vulnerable network
routing. We describe a general agent-based routing model and classify it into two cases
based on the reaction of mobile agents to a system failure, namely MWRC (mobile agents
with weak reaction capability) and MSRC (mobile agents with strong reaction capability).
For each case, we analyze the probability of success (the probability that an agent can
find the destination) and the population distribution (the number of mobile agents) of
mobile agents.
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Since any component of the network (machine, link, or agent) may fail at any time,
we classify mobile agents into two kinds based on their reaction to a failure: weak and
strong. A mobile agent with weak reaction capacity (MWRC) will die if it subjects to a
failure, while one with strong reaction capacity (MSRC) will go back to the previous node,
reselect another node, and go on its trip. In this section, we analyze both the probability
of success and the population distribution for each case, respectively.

The rest of this section is organized as follows. Subsection 2.5.1 presents the analytical
results for mobile agents on the probability of success. Subsection 2.5.2 presents the ana-
lytical results for mobile agents on the the population of agents. Section 2.5.3 concludes
the section.

2.5.1 The Probability of Success

The Probability of Success for MWRC

For a network with n nodes (i.e., n1, n2, · · · , nn), every node can be the destination of a
request, and each node has an independent error rate. Let Xi be a binary valued variable
defined as follows:

Xi =

{
1 agent dies in the i-th node due to a failure
0 otherwise

with a probability Pr{Xi = 1} = p. Then, the parameter p measures the incidence of
failure in the network. We say a node is down if it is out of work; otherwise, it is up. Once
a point-to-point request 2 is made, a number of agents are generated and dispatched into
the network. Once an agent reaches an up node, it will find its destination locally with
a probability 1

n
. If the agent cannot find its destination here, it will select a neighboring

node and move on. Assume that the probability of jumping to any neighboring nodes or
die in the current node is same. Regarding to the probability that an agent can find the
destination in d jumps, we have the following theorem:

Theorem 12 The probability, P ∗(n, d, p, k), that at least one agent among the k agents
can find the destination in d jumps satisfies the following equality:

P ∗(n, d, p, k) = 1−
[
1− a(1− τ d)

1− τ

]k

, (2.31)

where a = (1− p)/n, b = E[1/ci], and τ = (1− a)(1− b).

Proof Denote the sequence number of node that the agent entered at i-th jump by Ji

and the probability that an agent can find its destination at the i-th jump by P (i). The
probability that an agent can find its destination at the first jump is P (1) = 1

n
(1 − p)

and the probability that it can’t find the destination is 1 − 1
n
(1 − p). If the agent can’t

find its destination, the probability that it can jump out and search on is (1 − 1
n
(1 −

p)) · cJ1
−1

cJ1
, and the probability that it can find its destination at the second jump is

P (2) = 1−p
n

[1 − 1
n
(1 − p)] · cJ1

−1

cJ1
, and the probability it can’t find the destination at the

second jump is (1 − 1−p
n

)2 · cJ1
−1

cJ1
. If the agent can’t find its destination at the second

2For point-to-multiple-point requests, the idea is intrinsic same.
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jump, the probability that it takes the third jump is (1− 1−p
n

)2 · cJ1
−1

cJ1
· cJ2

−1

cJ2
, and P (3) =

(1 − p) 1
n
(1 − 1−p

n
)2 · cJ1

−1

cJ1
· cJ2

−1

cJ2
. Similarly, the probability that an agent can find its

destination node at the i-th jump is

P (i) = (1− p)
1

n

[
1− 1

n
(1− p)

]d−1 d−1∏
i=1

cJi
− 1

cJi

.

Assume that the number of neighboring nodes of each node in the network is independent
with each other with the same distribution, then take expectation on both side of the
above equation, and denote (1− p)/n by a, we have

P̂ (i) = a(1− a)i−1

i−1∏
j=1

[
1− E

(
1

cJi

)]
= a(1− a)i−1

[
1− E

(
1

cJi

)]i−1

.

Denote E(1/cJi
) by b and (1− a)(1− b) by τ , we have

P̂ (i) = aτ i−1.

So the probability, P ∗(n, d, p, k), that at least one agent among k agents can find the
destination node in d jumps satisfies the following:

P ∗(n, d, p, k) =
k∑

s=1

Cs
k

[
d∑

i=1

P (i)

]s [
1−

d∑
i=1

P (i)

]k−s

= 1−
[
1−

d∑
i=1

P (i)

]k

.

Due to

d∑
i=1

P (i) =
d∑

i=1

aτ i−1 = a · 1− τ d

1− τ
,

we have

P ∗(n, d, p, k) = 1−
[
1− a(1− τ d)

1− τ

]k

.

Hence the theorem is proven. ¤
The value of b is depended on the probability distribution of ci. For example, if ci

(1 ≤ i ≤ n) are independent and satisfy the uniform distribution, we have

b = E[1/ci] =

∫ n

1

1

ci

· 1

n− 1
dci =

ln n

n− 1
.

From theorem 12, it is easy to estimate P ∗(n, d, p, k) as follows.

Corollary 2 The probability P ∗(n, d, p, k) satisfies the following inequalities:

1−
(

1− a

1 + aσn − a

)k

≤ lim
d→∞

P ∗(n, d, p, k) ≤ 1−
(

1− a

1 + aσ1 − a

)k

,

where a = (1− p)/n, σ1 and σn are the maximum and minimum number of ci.
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Proof Since

P (d) = a(1− a)d−1

d−1∏
i=1

cJi
− 1

cJi

≤ a(1− a)d−1

d−1∏
i=1

σ1 − 1

σ1

= a(1− a)d−1

(
σ1 − 1

σ1

)d−1

,

we have

d∑
t=1

P (t) ≤
d∑

t=1

a(1− a)t−1

(
σ1 − 1

σ1

)t−1

≤ a · 1

1− (1− a)
(
1− 1

σi

) =
aσ1

1 + aσ1 − a
.

Therefore,

P ∗(n, d, p, k) = 1−
[
1−

d∑
t=1

P (t)

]k

≤ 1−
(

1− a

1 + aσ1 − a

)k

.

Similarly, the second inequality can be proved. ¤
The probability that an agent can find its destination is decided by the connectivity of

network and parameters k and d, which coincides with practice. From the theorem above,
we can easily get that the probability that none of those k agents can find the destination

is less than
(

1−a
1+aσ1−a

)k

and the probability that all the k agents can find the destination

is less than
(

a·σ1

1+aσ1−a

)k

.
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Figure 2.13: The changes of P ∗(n, d, p, k) over d for MWRC where ci satisfies uniform
distribution. It is easy to see that P ∗(n, d, p, k) is an increasing function on d with a
loose upper bound 1. When p 6= 0, P ∗(n, d, p, k) will not reach 1 no matter how long
time the agent can search. The reason is that there is a possibility that the agent will die
before it finds its destination. From the figure, it also can be seen that P ∗(n, d, p, k) is an
increasing function on k and a decreasing function on p.
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The Probability of Success for MSRC

Since for MSRC an agent will not die if it has not reached its destination within its life-
span, the probability of success for MSRC equals to r/n where r is the number of nodes
that the agent has entered and checked. Denote the i-th node that an agent enters by
hi, the number of neighboring nodes of the i-th node ci, and the number of neighboring
nodes that the agent has selected by vi (i.e., the agent fails to enter the first vi − 1 nodes
and can only enter the vi-th selected node). Regarding to the average number of nodes
selected, we have the following result.

Lemma 5 The average number of neighboring nodes selected by an agent at each node
E(vi) = 1−E[pci ]

1−p
− E [cip

ci ].

Proof The probability that an agent can enter the first selected node, h1
i , in NB(i),

equals to 1 − p, and the probability that the agent can enter the second selected node
equals to p(1 − p). By recursion, the probability that the agent enters the vi-th node
equals to pvi−1(1 − p). Therefore, the average number of nodes the agent selected in
NB(i) satisfies

E(vi|NB(i)) =

ci∑
vi=1

vip
vi−1(1− p) =

1− p

p
· cip

ci+2 − (ci + 1)pci+1 + p

(1− p)2
=

1− pci

1− p
− cip

ci .

Thus, the average number of nodes the agent selected at each node during the agent’s
trip satisfies

E(vi) = E[E(vi|NB(i))] =
1− E [pci ]

1− p
− E [cip

ci ] .

Hence, the lemma is proven. ¤
Regarding the estimation of r, we have the following result.

Lemma 6 Let r be the number of nodes that the agent visits, then the average number of
nodes that an agent enters satisfies

E(r) =

⌊
d

2E(vi)− 1

⌋
,

where bxc indicates the greatest integer less then or equal to x (i.e., x− 1 < bxc ≤ x).

Proof Denote the j-th selected node from the neighboring nodes of node hi by hj
i , the

path the agent traverse from hi to hi+1 can be expressed as hi, h
1
i , hi, h

2
i , · · · , hi, h

vi
i . The

vi-th selected node is the node hi+1. Inside this process, there are 2(vi− 1) + 1 jumps the
agent takes. Since an agent will die if it cannot find its destination in d jumps, we have

r = max

{
l :

l∑
i=1

(2vi − 1) ≤ d

}
.

Taking expectation on the inequality, we have

d ≥ E

[
l∑

i=1

(2vi − 1)

]
= E(l) · [2E(vi)− 1],
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Table 2.5: The comparison of the probability of success between MWRC and MSRC

k 1 2 5 10
MWRC 0.0571 0.1110 0.2548 0.4447

d=500
MSRC 0.0832 0.1594 0.3522 0.5803

n = 6000, p = 0.001
MWRC 0.0826 0.1583 0.3501 0.5776

d=1000
MSRC 0.1663 0.3050 0.5973 0.8378
MWRC 0.0391 0.0767 0.1809 0.3292

d=500
MSRC 0.0499 0.0973 0.2258 0.4006

n = 10000, p = 0.001
MWRC 0.0626 0.1213 0.2763 0.4762

d=1000
MSRC 0.0998 0.1896 0.4089 0.6505

since l and vi are independent to each other, and the distributions of vi are same for
1 ≤ i ≤ l. Let r = max{l}, then the lemma is proven. ¤

From Lemma 1 and Lemma 2, it is readily to get the following theorem.

Theorem 13 The probability, P ∗(n, d, p, k), that at least one agent among k agents can

find the destination in d jumps equals to 1− [1− E(r)/n]k, where E(r) =
⌊

d
2E(vi)−1

⌋
and

E(vi) = E[E(vi|NB(i))] = 1−E[pci ]
1−p

− E [cip
ci ].
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Figure 2.14: The changes of P ∗(n, d, p, k) over d for MSRC where ci satisfies uniform
distribution. From the figure, it can be seen that P ∗(n, d, p, k) is an increasing function
on k and a decreasing function on p.

Table 1 compares the probability of success P ∗(n, d, p, k) between MWRC and MSRC
with different n, d, and k. Since a node failure is a rare event, we set p = 0.001 in this
simulation. From the table, it can be seen that P ∗(n, d, p, k) for MSRC is greater than
that for MWRC with the same parameters n, d, p, and k.
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2.5.2 The Population Distribution of Mobile Agents

The Population Distribution of Mobile Agents for MWRC

First, we consider the situation that the agents run in the network with infinite life-span.
Assume that at time t − 1, there are pi(t − 1) agents in the i-th node, these agents
search for the destination locally, and the expected number of agents that cannot find
the destination is equal to

(
1− 1

n

)
pi(t − 1), and the expected number of mobile agents

that move from the i-th node to the j-th node is equal to
(
1− 1

n

)
1−p
ci

pi(t− 1). The total

number of agents that move to the j-th node at time t is
∑

i∈NB(j)

(
1− 1

n

)
1−p
ci

pi(t − 1),

where NB(j) denotes the set of the neighboring nodes of the j-th node. Consider the
new generated agents in the j-th node at time t, we have the following equation:

pj(t) = km− Ωj(t) +
∑

i∈NB(j)

(
1− 1

n

)
1− p

ci
pi(t− 1),

where m is the average number of requests initiated at time t at a node, k is the number
of agents generated per request, and Ωj(t) indicates the number of mobile agents on the
j-th node at time t that are generated at time t − d. We eliminate the number of these
agents from pj(t) because these agents will die at time t.

Let A = (1 − p)(1 − 1
n
)(Φ − I)C−1 = (a1, a2, · · · , an) be an n × n matrix, where aj

is the j-th column vector of A. Obviously, we have ‖aj‖1 = (1 − p)(1 − 1
n
)

cj−1

cj
. Let

−→p (t) = (p1(t), p2(t), · · · , pn(t))T , and −→e = (1, · · · , 1)T . At any time, the distribution of
newly generated mobile agents is km−→e based on the assumption that the average number
of requests received by a node is m. After searching d nodes, the distribution of survival

agents among these agents is Adkm−→e . Therefore, we have
−→
Ω(t) = (Ω1(t), · · · , Ωn(t))T =

Adkm−→e . Thus, the population distribution of mobile agents can be expressed in vector-
matrix format as follows:

−→p (t) = A−→p (t− 1) + km−→e − Adkm−→e (2.32)

.
Regarding to the population distribution of mobile agents with limited life-span, we

have the following theorem based on the above analysis.

Theorem 14 The distribution of mobile agents can be expressed as follows:

−→p (t) =





0 t = 0;
t−1∑
i=0

Ai−1km−→e 0 < t ≤ d;

d−1∑
i=0

Ai−1km−→e t > d.

(2.33)

Proof If the distribution of mobile agents generated at time 0 is −→p (0), then after time
t, the distribution of the agents is Ad−→p (0). Thus, according to the assumption that an
agent will die if it cannot find the destination in d steps, we have
(1) When t ≤ d,

−→p (t) = km−→e + A−→p (t− 1) = km−→e + A [km−→e + A−→p (t− 2)]

= (I + A)km−→e + A2−→p (t− 2) = · · · =
t−1∑
i=0

Aikm−→e + At−→p (0).
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Since the initial population of mobile agents −→p (0) = 0, the result for t ≤ d is proven.
(2) When t > d, then at time t, all the survival agents generated at time t− d will die, so
the distribution of agents under this case can be illustrated as

−→p (t) = km−→e + A−→p (t− 1)− Adkm−→e =
t−d−1∑

i=0

Aikm−→e + At−d−→p (d)− Ad ·
t−d−1∑

i=0

Aikm−→e

=
t−d−1∑

i=0

Aikm−→e + At−d ·
[

d−1∑
i=0

km−→e + Ad−→p (0)

]
− Ad ·

t−d−1∑
i=0

Aikm−→e =
d−1∑
i=0

Aikm−→e .

Hence the theorem is proven. ¤
From the theorem above, we can easily see that the distribution of mobile agents will

not exceed (I + A + · · ·+ Ad−1)km−→e , that is, the number of mobile agents in our model
will not increase infinitely.

Since mobile agents are generated frequently and dispatched to the network, it is
important to estimate the maximum number of mobile agents running in the network and
in each node. When there are too many agents in the network, they will introduce too
much computational overhead to node machines, which will eventually become very busy
and indirectly block the network traffic.

Regarding to the number of agents running in the network, we have the following
theorem.

Theorem 15 The number of agents running in the network can be estimated as follows:

n∑
j=1

pj(t) ≤ n2σ1km

n + σ1 − 1
. (2.34)

Proof By the definition of matrix 1−norm,we have

n∑
j=1

pj(t) = ‖−→p (t)‖1 ≤ ‖km−→e ‖1 · ‖
d−1∑
i=0

Ai‖1 ≤ nkm ·
d−1∑
i=0

(‖A‖1)
i ≤ nkm

1− ‖A‖1

.

Due to ‖A‖1 = (1− p)
(
1− 1

n

)
σ1−1

σ1
, it is easy to prove that

‖−→p (t)‖1 ≤ nkm

1− (1− p)
(
1− 1

n

) (
1− 1

σ1

) =
n2σ1km

pnσ1 + (1− p)(n + σ1 − 1)
.

Since nσ1 ≥ n + σ1 − 1, the theorem is proven. ¤
Regarding to the number of agents running in a node, we have the following theorem.

Theorem 16 The number of agents running in the j-th node can be estimated as follows:

pj(t) ≤ km +
ncjkm

(np + 1− p)σn

(1− αt) ≤ km +
ncjkm

(np + 1− p)σn

,

where α = (1− 1
n
)(1− p).
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Proof The theorem can be proved by induction. First, for t = 0, it is easy to see that
the theorem is hold. Assume that for any t, the theorem is hold, that is,

pj(t) ≤ km +
ncjkm

(np + 1− p)σn

(1− αt) = km +
cjkm

σn

km

t−1∑

l=1

αl,

then for t + 1, we have

pj(t + 1) = km +
∑

i∈NB(j)

(
1− 1

n

)
1− p

ci

pi(t− 1) = km + α
∑

i∈NB(j)

pi(t− 1)

ci

≤ km + α ·
∑

i∈NB(j)

(
km

ci

+
km

σn

t−1∑

l=1

αl

)
≤ km +

cjkm

σn

t∑

l=1

αl

≤ km +
ncjkm

(np + 1− p)σn

(1− αt+1) ≤ km +
ncjkm

(np + 1− p)σn

.

Hence, the theorem is proven. ¤
From the above analytical results, we can claim that both the number of mobile agents

in the network and the number of mobile agents on each node will not increase infinitely
over time t. The upper bound of these two numbers can be controlled by tuning the
number of mobile agents generated per request.

The Population Distribution of Mobile Agents for MSRC

For MSRC, a mobile agent will not die when it moves to a failing node. It will return
back to the previous node and reselect another neighboring node to move. Thus, similar
to the analysis for MWRC, the population distribution of mobile agents can be expressed
as follows.

−→p (t) =





0 t = 0;
km−→e t = 1;

A−→p (t− 1) + p · −→p (t− 2) + km−→e 2 ≤ t ≤ d;
A−→p (t− 1) + p · −→p (t− 2) + km−→e − Adkm−→e t ≥ d.

(2.35)

From Eq. (2.35), we can estimate the number of mobile agents running in the network
as follows:

Theorem 17 The total number of mobile agents running in the network is no more than
n2σ1km

(n+σ1−1)(1−p)
.

Proof By the definition of vector norm, the total number of mobile agents running in
the network can be expressed as

∑n
j=1 pj(t) = ‖−→p (t)‖1. Therefore, from Eq. (2.35), it is

easy to see that

‖−→p (t)‖1 ≤ ‖A‖1‖−→p (t− 1)‖1 + p‖−→p (t− 2)‖1 + ‖km−→e ‖1,

since all the parameters aji, k, m are positive. For t = 0 and t = 1, we have

‖−→p (0)‖1 = 0
‖−→p (1)‖1 = nkm

}
≤ n2σ1km

(n + σ1 − 1)(1− p)
.
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If the theorem is hold for t− 1 and t− 2, then for t, we have

‖−→p (t)‖1 ≤
[
(1− p)

(
1− 1

n

)(
1− 1

σ1

)
+ p

]
· n2σ1km

(n + σ1 − 1)(1− p)
+ nkm =

n2σ1km

(n + σ1 − 1)(1− p)
,

where ‖A‖1 = (1− p)
(
1− 1

n

)
σ1−1

σ1
. Hence, the theorem is proven. ¤

Regarding to the maximum number of mobile agents running on a node, we have the
following theorem.

Theorem 18 The number of mobile agents running on a node is no more than
ncjkm

(1−p)σn
.

Proof From Eq. 2.35, we know that when t ≤ d,

pj(t) = km + p · pj(t− 2) +
∑

i∈NB(j)

(
1− 1

n

)
1− p

ci

pi(t− 1).

Define fj(t) = (1− 1
n
)1−p

cj
pj(t) and substitute it in the above function, we have

fj(t) =

(
1− 1

n

)
1− p

cj

km + p · fj(t− 2) +

(
1− 1

n

)
1− p

cj

∑

i∈NB(j)

fi(t− 1).

By induction, we can prove that

fj(t) ≤ n− 1

σn

km.

Therefore, it can be easily prove that for all 0 ≤ t ≤ d,

pj ≤
n−1
σn

km(
1− 1

n

)
1−p
cj

=
ncjkm

σn(1− p)
.

When t ≥ d, since

−→p (t) = A−→p (t− 1) + p · −→p (t− 2) + km−→e − Adkm−→e ,

we have

pj(t) ≤ km + p · pj(t− 2) +
∑

i∈NB(j)

(
1− 1

n

)
1− p

ci

pi(t− 1).

Similar to the analysis for 0 ≤ t ≤ d, the upper bound pj(t) ≤ ncjkm

σn(1−p)
is also hold. Hence,

the theorem is proven. ¤
It is easy to see that both the total number of mobile agents running in the network

and the number of mobile agents running on a node are greater than that for MWRC.
The reason is because mobile agents in MWRC case have a higher death rate than in
MSRC case. It also can be seen that the number of mobile agents can be justified by
tuning the number of mobile agents generated per request.
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2.5.3 Concluding Remarks

In this section, we addressed the problem of network routing and management by de-
ploying mobile agents. We analyzed the probability of success and the population growth
of mobile agents under our agent-based routing model. For mobile agents with weak
reaction capability (MWRC), we obtained the following analytical results: (1) The prob-
ability of success, P ∗(n, d, p, k), that at least one agent among k agents can find the

destination in d jumps equals to 1 − [1 − a(1−cd)
1−c

]k, where a = (1 − p)/n, b = E[1/ci],
c = (1 − a)(1 − b), d is the maximum number of jumps an agent can make, k is the
number of agents generated per request, p is the probability that a node may fail, n is the
number of nodes in the network, and ci is the connectivity of the i-th node. (2) The total

number of agents running in the network is less than n2σ1km
n+σ1−1

, where σ1 = max1≤j≤n cj,
and m is the average number of requests keyed in one node once. (3) The number of

mobile agents running in each node, pj(t), is less then km+
ncjkm

(np+1−p)σn
. For mobile agents

with strong reaction capability (MSRC), we obtained the following analytical results: (1)
P ∗(n, d, p, k) = 1 − (1 − E(r)/n)k, where E(r) = bd/[2E(vi − 1)]c, and vi is the number

of neighboring nodes of the i-th node an agent selected. (2)
∑n

j=1 pj(t) ≤ n2σ1km
(n+σ1−1)(1−p)

,

where σ1 = max1≤j≤n cj. (3) pj(t) ≤ ncjkm

(1−p)σn
, where σn = min1≤j≤n cj.

We can see that the probability of success P ∗(n, d, p, k) is a monotonically increasing
function on k, d, and a monotonically decreasing function on p, n; while the number of
agents is a monotonically increasing function on k, n, d and a monotonically decreasing
function on p. For the same p, routing in a smaller network may get a greater probability
of success. For a network with a lot of nodes, this probability can be enlarged by increasing
k and/or d. We can also see that for the same k and p, both the probability of success and
the number of agents for MWRC are less than those for MSRC. Based on these results, we
can dispatch a small number of mobile agents and achieve a good probability of success
by selecting an optimal number of mobile agents generated per request and giving them
an optimal life-span limit.
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Chapter 3

Mobile Agent-Based Fault-Tolerant
Execution

In the context of the mobile agent-based technology, fault tolerant is an important is-
sue to guarantee mobile agents’ consistent execution. In this chapter, we propose a new
fault-tolerant execution model of mobile agents, which effectively combines the replica-
tion approach and the checkpointing approach. Failures are classified into two classes
based on their intrinsic different effects on mobile agents. For each kind of failures, a
specified exceptional-event handling method is adopted. The introduction of exceptional-
event handling allows performance improvements during mobile agents’ execution. The
behaviors of mobile agents are statistically analyzed through several key parameters, in-
cluding the migration time from node to node, the life expectancy of mobile agents, and
the population distribution of mobile agents, to evaluate the performance of our model.

3.1 Introduction

As we know, any component (node, link, or agent) in a network may fail, thus preventing
agents from proceeding with their executions. To integrate agent-driven systems into
today’s e-society, issues such as reliability, i.e., the ability of an agent to consistently
perform a required function under stated conditions for a specified period of time, are
of paramount importance [116]. Fault tolerance is one of the most important issues on
reliability, to guarantee consistent execution even if an agent is subjected to a system
failure.

Existing mobile agent-based execution mechanisms can be broadly categorized into
two kinds: replication versus checkpointing. Replication approach [75] uses replicated
servers to mask the failures. When one server is down, the computation still continues by
using the results from other servers. However, this approach requires multiple servers at
each stage, even when no failure occur; these redundant servers add an overhead to the
communication between servers to guarantee the consistent execution, especially when
they are widely separated. Checkpointing [89], on the other hand, saves the intermediate
states of an agent into a stable storage so that the agent’s execution can be resumed
in case of a failure. Although the communication cost for replication is avoided, the
agents may be blocked even by a single failure. Besides, the occupied storage spaces are
locked until the agent entirely completes execution at its destination. Unlocking storages
requires additional messages sent to all nodes of the itinerary. Furthermore, there is a
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lack of theoretical analysis on assessing the effectiveness of using mobile agents for both
approaches.

In this chapter, we propose a new fault-tolerant mobile agent execution model based
on a combination of the replication approach and the checkpointing approach. In our
model, the total overhead can be greatly reduced by eliminating redundant communication
between nodes where there is no failure occurred. Theoretical analysis of mobile agent’s
migration time which is the time period that a mobile agent migrates from one node to
another, life expectancy which is the average life-span of mobile agents, and population
distribution which is the number of mobile agents running in the network are given for
our model. Our approach exploits a new way to design cost-effective fault-tolerant agent-
driven systems. Our analysis reveals new theoretical insights into the statistical behaviors
of mobile agents and provides useful tools for effectively estimating the performance of
agent-driven systems.

The main contributions of this chapter are summarized as follows:

• We proposed a new fault-tolerant execution model which effectively combines avail-
able techniques. In our model, failures are classified into two classes based on their
intrinsic different effects on mobile agents. For each kind of failure, an exceptional-
event handling method is adopted. Our model greatly decreases network resources
consumption and improves the overall network performance. It achieves better cost-
effectiveness than existing models.

• We applied stochastic process to analyze the behaviors of mobile agents in fault-
tolerant execution, which exploits a new approach to assessing the performance of
agent-based systems. For the first time, to the best of our knowledge, the behaviors
of mobile agents in networks that may contain faults are statistically analyzed in a
quantitative way.

• We analyzed several key parameters which dominate the behaviors of mobile agents,
including the migration time, the life expectancy, and the population distribution,
in great theoretical depth. Our analysis provides a useful way for controlling mo-
bile agents’ behaviors by tuning relevant parameters according to various system
characteristics.

The remainder of this chapter is structured as follows. Section 2 reviews fault-tolerant
approaches that utilize either replication or checkpointing. Section 3 presents our model.
Section 4 analyzes the migration time, the life expectancy, and the population distribution.
presents some discussion on the case that the network is reliable. Finally, Section 5
presents our experimental results and Section 6 gives our conclusion remarks.

3.2 Related Work

Mobile agents’ ability to react dynamically to unfavorable situations and events makes
it easier to build robust and fault-tolerant distributed systems [66]. The characters of
mobile agents make agent-driven system different from those traditional systems. Many
mobile agent-based fault-tolerant approaches have been proposed so far. These existing
approaches can be mainly divided into two classes: replication or checkpointing.
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In a replication scheme, an agent is replicated and migrated to several sites. The
replicas must agree on one execution site for each stage and the redundant execution
of other sites must be undone. For the agreement procedure, a distributed migration
proposed in [130] injects an agent replica into stable storage upon arriving at an agent
server. However, if an agent server crashes, the replica remains unavailable for an unknown
time period. In [57, 101, 116], a protocol was presented that provides the exactly-once
property in the migration of mobile agents. Every time an agent wants to migrate, it is
replicated to a set of nodes. In every group of replicas there is one worker node, which is
responsible for the execution of the agent. The other replica nodes receive a copy of the
agent and act as observers of the worker node. When the worker node fails, the observers
will detect it and elect a new worker by running an election protocol. The elected worker
will try to provide the same service or, if that is not possible, execute an exception handling
mechanism. In [112] a protocol was proposed which can be seen as a variation of that
proposed in [101]. This scheme includes the distributed storage of recovery information
and it used a three-phase commit protocol. However, the execution of a 3PC protocol
is more expensive and introduces a higher latency. In [96, 97], the consensus protocol is
used; among the replicas, one, called primary, is initially responsible for the execution.
The priorities of the replicas are predetermined, hence, a replica takes over the execution,
only when all of the higher priority replicas fail. To detect a possible failure, the time-
out is used in [87]. When a primary does not respond within a certain time-out period,
the first replica broadcasts the failure of the primary and starts up the agent execution.
However, it is possible that the primary was too slow to respond within the time-out
period, in which case, two agents may have performed the same execution stage. In [98],
a replication model is modelled as a sequence of agreement problems. This model ensures
both nonblocking and exactly-once properties, but it generates multiple replica agents
and introduces a large amount of communication for each hop in the network, which will
certainly consume a certain amount of network resources.

In the checkpointing scheme, the intermediate states of an agent are saved into a
stable storage periodically, so that the agent can resume the execution from the most
recent saved state after a crash [35, 83]. In [132], checkpointing is provided to deal with
node failures, but a mobile agent in this system cannot proceed with its computation until
the failed node recovers and restores the state of the mobile agent from persistent storage.
In [28], a checkpoint manager monitors all the agents inside a cluster of machines and
responds to restart the agents when there is a node failure. In addition to communication
cost, the checkpoint manager can also be a point of failure. In [57], a rear-guard agent is
associated with each agent, to respond by lunching a new agent when a failure causes the
first agent to vanish. Again, along with the communication cost, the checkpoint manager
is also a potential point of failure. In addition, when the rear agent loses track of the
work agent, in an asynchronous system it can not correctly determine whether the work
agent has failed or is just obstructed by the network latency. In the approach proposed
by [91], the server that generates the agent has to track is during the whole execution
process, which results in high communication costs. In [92], a replica is generated at
each server the agent visits and responds by generating a new agent in case of a failure;
this approach has the same problems as in [57]. In [3], periodic checkpointing prevents
applications from loosing all computation data in case of a failure. However, there is
a trade-off. Excessive checkpointing results in performance degradation, while deficient
checkpointing still incurs an expensive recovery overhead.
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Although mobile agent technology has been promoted as an emerging technology that
makes it much easier to design, implement and maintain distributed system, especially in
low-bandwidth, low reliability networks, the theoretical analysis of mobile agent’s behavior
is in its infancy. In [99, 100, 118], mathematic models for mobile agent-based network
routing were established and stochastic analysis on the behavior of mobile agents were
provided. In [118], the population growth of mobile agents was analyzed. In [99, 100],
analysis of both the population growth and the probability of success were provided.
In [31,139], a newly proposed method, the cross-entropy method, was applied to guiding
the behavior of mobile agents. However, all the existing works focused on networks that
did not contain faults.

3.3 The Execution Model of Mobile Agents

The ability of fault tolerance in a mobile agent system depends strongly on the way that
failures occur, on the effects to agents, and on the resources consumed by the approach
which prevents agents from being blocked by a system failure. As we have mentioned,
both the checkpointing approach and the replication approach have their own strong
points and deficiencies. Based on an analysis of the available literature, we propose a new
execution model which is robust and cost-efficient.

Suppose that in an agent-driven system (as we have described in chapter 2), once an
agent reaches a node, it leaves a checkpoint in a temporary storage area and executes
locally. After finishing its execution, the checkpoint is updated by a replica. The agent
moves to a neighboring node. When it reaches the neighboring node, it also leaves a
checkpoint in the temporary storage and executes there. During the agent’s execution,
communication is maintained between the previous node and the current one. Both the
previous node, say hi−1, and the current node work as surveillances, monitoring the states
of each other and the agent. If the agent completes its execution on the current node,
the current node is renamed as hi. The previous node retires from the surveillance and
deletes the replica on it. The checkpoint on hi is updated by a replica of the agent. If
a system failure takes place on the current host, the agent’s execution will be influenced
and the surveillant hi−1 will detect the situation. On the other side, if hi−1 fails during
the agent’s execution, the current host can also detect it.

If a failure takes place on the selected route of an agent, the agent is blocked. Different
kind of failures will cause different effects on mobile agents and different reactions of mobile
agents. Based on the analysis of the available literature, we mainly divided system failures
into two classes, on-site and frontal, according to their effects on mobile agents:

• An on-site failure is a node’s failure during an agent’s execution within it. It may
block the agent and alter the agent’s state.

• A frontal failure is a node’s failure before an agent’s entrance to it which blocked
the agent’s entry, but did not alter the agent’s state.

The following lists several failure scenarios that agent may encounter.

• A link breaks off. All agents running through it are crashed.

• A link is blocked or closed down. All agents wishing to pass through it have to
select other paths.
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• A node is out of condition because of a failure. All agents on it are lost or executing
abnormally.

• A node is down, all agents moving to it are blocked. They must go back to the
previous node and select another neighboring node to continue their operation.

• The agent fails. It ceases its execution or executes in a wrong way.

Obviously, the first and third scenarios are on-site failures, while the second and fourth
scenarios are within the range of frontal failures.

When an on-site failure befalls the selected node during an agent’s execution, it may
influence the executing agent. As a result, the agent’s state becomes unreliable even if
the agent survives in the failure. Suppose that NB(i− 1) is the set of neighboring nodes
of node hi−1 and hj

i is the j-th node selected by the agent in NB(i − 1). After finishing
its execution in node hi−1, the agent selects one node in NB(i− 1), named h1

i , and moves
to it. If the agent dies or works in an abnormal way (due to a system fault) on h1

i , the
surveillant node hi−1 will detect it. A replica agent is generated on hi−1 by the copy of the
previous agent, takes over the execution, selects another node in NB(i − 1), named h2

i ,
and moves to it. This course will continue until the agent finally completes its execution
in one of the neighboring node of hi−1. A timer may be used to prevent the agent from
executing for too long. An agent will die whenever its allowed execution time expires.

When a frontal failure occurs, the agent can not enter the selected node. Then, it can
return to the node it just left. Since a frontal failure will not change the agent’s state, the
agent is reliable and reusable. So, if the agent can not enter h1

i due to a frontal failure, it
should go back to hi−1, select another node in NB(i− 1), named h2

i , and move to it.

Figure 3.1: An Example of Agent’s Execution

Figure 3.3 shows an example of an agent’s execution. The neighboring node of hi−1

on which the agent finishes its execution is called hi. In the worst case, a mobile agent
will be blocked in set NB(i− 1) if all the neighboring nodes of node hi−1 are down, or if
node hi−1 is suddenly down after the agent moves to a neighboring node which has failed.

3.4 Analysis

Most Internet users want the network to have a high fault-tolerant capability and high
work efficiency. That is, the assigned task should be finished correctly and promptly,
with an acceptable computational resource consumption. In this section, we analyze
some important parameters that describe the statistic behavior of mobile agents and
the performance of our model, including migration time, life expectation, and popula-
tion distribution. Since mobile agents react in different way to different kind of failures,
which results in different network performance, we will analyze for each kind of failure,
respectively.
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3.4.1 Migration Time

In an asynchronous distributed system, e.g., the Internet, there are no bounds on migra-
tion delays of messages and no relative process speeds. Therefore, when a mobile agent
is blocked because of a failure in an asynchronous distributed system, the agent’s owner
cannot correctly determine whether the agent has failed or is merely running slowly [38].

On-Site Failures

In fact, it is a family of agents, including the agent dispatched by the server and its replicas,
that completes a specified task. In this context, each replica is also called “the agent” since
an agent and its replicas will not execute synchronously. As shown in Figure 3.2, after

Figure 3.2: Agent’s Execution Model for On-Site Failures

finishing execution in node hi−1, “the agent” travels to the firstly selected neighboring
node h1

i and executes on it. If the agent’s execution on h1
i fails due to a failure, “the

agent” travels to the secondly selected neighboring node h2
i and executes on it. This

process will proceed repeatedly until the agent finally completes its execution. Thus, the
migrating activity between two nodes on the agent’s itinerary can be decomposed into
two components: travelling and executing. Therefore the migration time between two
neighboring set can also be decomposed into travel time and execution time. When the
probability distributions of travel time and execution time are known, the probability
distributions of migration times is calculable. The migration time of an agent between
node hi−1 and the node hj

i , denoted by `j
i , is defined as `j

i = rj
i + ej

i where rj
i indicates

the travel time from node hi−1 to node hj
i and ej

i is the execution time on the node hj
i .

Suppose that the migration time probability density function (pdf) is given by `(t), the
travel time pdf is given by r(t), and the execution time pdf is given by e(t). Since rj

i

and ej
i are two independent random variables, the pdf of `j

i , `(t), can be expressed as the
convolution of r(t) and e(t), i.e., `(t) = r(t) ∗ e(t). Taking Laplace transform on both
side, we have

L∗(s) = R∗(s) · E∗(s). (3.1)

Here,

L∗ = E
(
e−s`j

i

)
=

∫ ∞

0

l(t)e−stdt, (3.2)

R∗ = E
(
e−srj

i

)
=

∫ ∞

0

r(t)e−stdt, (3.3)

E∗ = E
(
e−sej

i

)
=

∫ ∞

0

e(t)e−stdt. (3.4)
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As shown in Figure 3.2, the migration time of the agent between two neighboring sets,
i.e., the migration time for moving from hi−1 to hi, denoted by `i, can be expressed as
`i =

∑vi

j=1 `j
i where vi is the number of nodes selected by the agent in NB(i − 1). It is

easy to see that hvi
i = hi. Let f(t) be the pdf of the migration time `i and F ∗(s) be the

Laplace transform of f(t), the distribution of the migration time `i satisfies

F ∗(s) = E
(
e−s`i

)
=

∫ ∞

0

f(t)e−stdt

=

di∑

l=1

E
(
e−s`i

∣∣ vi = l
)
P (vi = l) =

di∑

l=1

E
[
e(−s·Pvi

j=1 `j
i)

∣∣∣ vi = l
]
P (vi = l)

=

di∑

l=1

[
E

(
e−s`j

i

)]`

P (vi = l) =

di∑

l=1

[L∗(s)]l P (vi = l) ,

(3.5)

where di denotes the number of nodes in NB(i− 1).
Let Xj

i be a 0 or 1 valued random variable, with probability ρo = P (Xj
i = 1) for

i = 1, 2, · · · , j = 1, 2, · · · , d. The event {Xj
i = 1} indicates that the agent can not

complete its execution at the j-th selected node in NB(i − 1). Then the parameter ρo

measures the incidence of on-site failure in the network. Based on the fact that {vi = l}
is equivalent to {X l

i = 0, X l−1
i = · · · = X1

i = 1}, we have P{vi = l} = (1 − ρo)ρ
l−1
o for

1 ≤ l ≤ di, which is a geometric distribution. Therefore, we have

F ∗(s) =

di∑

l=1

[L∗(s)]l (1− ρo)ρ
l−1
o =

(1− ρo)L
∗(s)

1− ρo · L∗(s)
[
1− (ρo · L∗(s))di

]
. (3.6)

Thus, the probability distribution of migration time can be easily gained by a reverse
Laplace transform. Due to the fact that

dF ∗(s)
ds

∣∣∣∣
s=0

=
d

[∫∞
0

f(t)e−stdt
]

ds

∣∣∣∣∣
s=0

= −
∫ ∞

0

t · f(t)dt = −E(`i), (3.7)

d2F ∗(s)
ds2

∣∣∣∣
s=0

=

∫ ∞

0

t2 · f(t)dt = E(`2
i ), (3.8)

the mean and the variance of migration time are given as follows:

E(`i) = − dF ∗(s)
ds

∣∣∣∣
s=0

, (3.9)

D(`i) = E(`2
i )− [E(`i)]

2 =
d2F ∗(s)

ds2

∣∣∣∣
s=0

−
[

dF ∗(s)
ds

∣∣∣∣
s=0

]2

, (3.10)

where D(`i) is the variance of `i.
In case that the explicit distribution of execution time and travel time are unknown,

we still can estimate the mean of migration time if the means of execution time and travel
time are available. Since `j

i = rj
i + ej

i is independent of vi for 1 ≤ j ≤ vi, the average
migration time of the agent in the neighboring set NB(i − 1) of node hi−1 satisfies the
following equation

E(`i) = E[E(`i|vi)] = E

[
E

(
vi∑

j=1

`j
i

∣∣∣∣∣ vi

)]
= E(vi)E(`j

i ) = E(vi)(r + e). (3.11)
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Here r = E(rj
i ) and e = E(ej

i ). Denoting the average connectivity of the network by d,
we have

E(vi) =
d∑

j=1

j · P (vi = j) =
1− ρd

o

1− ρo

− dρd
o. (3.12)

Thus, the average migration time of an agent satisfies:

E(`i) = (r + e)

[
1− ρd

o

1− ρo

− dρd
o

]
. (3.13)

Frontal Failures

Figure 3.3: Agent’s Execution Model for Frontal Failures

In the on-site failure case, the agent can enter any selected neighboring node and
execute on it (either fails or successes). On the contrary, the agent can not enter any
selected neighboring node but the last one in the case of frontal failures. As a result,
the distribution of travel time from failed neighboring node to the previous node must be
taken into consideration. As shown in Figure 3.3, the migration time of a mobile agent
from node hi−1 to node hj

i , denoted by `j
i , is defined as:

`j
i =

{
rj
i + ej

i when j = vi;

rj
i + r̄j

i otherwise,
(3.14)

where r̄j
i is the travel time from node hj

i back to node hi−1 with pdf r̄(t). For j =
1, · · · , vi − 1, the migration time pdf, `(t), is `(t) = r(t) ∗ r̄(t) and the Laplace transform
of `(t) is L∗(s) = R∗(s) ·R̄∗(s); while for j = vi, `(t) = r(t)∗e(t) and L∗(s) = R∗(s) ·E∗(s).
Here, R̄∗(s) =

∫∞
0

r̄(t)e−stdt. Again, let F ∗(s) be the Laplace transform of the migration
time f(t), we have

F ∗(s) =

di∑

l=1

E
[
e−s`i

∣∣ vi = l
]
P (vi = l) =

di∑

l=1

[R∗(s) · R̄∗(s)]l−1 · [R∗(s) · E∗(s)]P (vi = l).(3.15)

ej
i is the execution time at node hj

i , and vi is the number of nodes selected by the
agent in NB(i − 1). Then, the migration time of an agent in NB(i − 1), denoted by ti,
can be expressed as tk =

∑vi

j=1 tji =
∑vi

j=1 rj
i +

∑vi−1

j=1 r−j
i + evi

i . Therefore, similar to that
in Section 4.1.2, we have

E(ti) = E(vi)E(rj
i ) + [E(vi)− 1]E(r−j

i ) + E(evi
i )
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For descriptive clarity, two scenarios are considered in the following analysis, namely
optimistic and pessimistic. We call a system optimistic if node hi−1 will not crash before
the agent enters node hi for i = 1, 2, · · · . Otherwise, it is called pessimistic.

• Optimistic Case
In this case, node hi−1 will not crash before the agent enters node hi. Let Y j

i be
a sequence of 0 or 1 valued random variables, with probability ρf = P (Y j

i = 1) for
i = 1, 2, · · · , m and j = 1, 2, · · · , di. Let the event {Y j

i = 1} indicate that the j-th node
is down, then the parameter ρf measures the incidence of frontal failure in the network.
The probability P{vi = l}, that the agent enters the j-th selected node in NB(i− 1), is
P (vi = l) = P{Y l

i = 0, Y l−1
i = · · · = Y 1

i = 1} = (1 − ρf )ρ
l−1
f for 1 ≤ l ≤ di. and the

probability that the agent can not enter any neighboring node is qd. Therefore, E(vi), the
average number of nodes selected by the agent in NB(i− 1), can be evaluated as follows:

E(vi) =
d∑

j=1

j · P{vi = j} =
1− qd

1− q
− dqd

Hence, we have

E(ti) =

(
1− qd

1− q
− dqd

)
[E(rj

i ) + E(r−j
i )]

−E(r−j
i ) + E(evi

i )

= 2r

(
1− qd

1− q
− dqd

)
− r + e

It is easy to see that the average migration time in the optimistic case is decided by the
system’s connectivity and the error rate. Therefore, we have

F ∗(s) =

di∑

l=1

[R∗(s)]l · [R̄∗(s)]l−1 · E∗(s)(1− ρf )ρ
l−1
f

=
(1− ρf )R

∗(s) · E∗(s)
1− [ρf ·R∗(s) · R̄∗(s)]

·
[
1− (

ρf ·R∗(s) · R̄∗(s)
)di

]
.

(3.16)

The mean and the variance of migration time can be calculated similarly to (3.9) and
(3.10). Similar to (3.11), when only the means of the travel time and the execution time are
known, the average migration time satisfies E(`i) = E(vi)E(rj

i )+[E(vi)−1]E(r̄j
i )+E(evi

i )
due to the fact that `k =

∑vi

j=1 `j
i =

∑vi

j=1 rj
i +

∑vi−1

j=1 r̄j
i + evi

i . Here, we assume that r̄j
i

satisfies the same distribution with rj
i and therefore the mean is same. Since P (vi =

j) = (1 − ρf )ρ
j−1
f , if the average connectivity of the network, d, is available, we have

E(vi) =
∑d

j=1 j · P (vi = j) =
1−ρd

f

1−ρf
− dρd

f . Thus, we have

E(`i) =

(
1− ρd

f

1− ρf

− dρd
f

)
[E(rj

i ) + E(r̄j
i )]− E(r̄j

i ) + E(evi
i )

= (r + r̄)

(
1− ρd

f

1− ρf

− dρd
f

)
− r̄ + e,

(3.17)

where r̄ = E(r̄j
i ).
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• Pessimistic Case
In the pessimistic case, node hi−1 may fail before the agent come back from a failed

neighboring node. Let the event {Y 0
i = 1} indicate that node hi−1 is down, the event

{vi = l} is equivalent to {Y 1
i = 1, Y 0

i = 0, Y 2
i = 1, · · · , Y l−1

i = 1, Y 0
i = 0, Y l

i = 0}. Thus,
the probability P{vi = l} equals P{vi = j} = [ρf (1− ρf )]

j−1(1− ρf ). Therefore, we have

F ∗(s) =

di∑

l=1

[R∗(s)]l · [R̄∗(s)]l−1 · E∗(s)] · (1− ρf )[ρf (1− ρf )]
l−1

=
(1− ρf )R

∗(s) · E∗(s)
1− ρf (1− ρf ) ·R∗(s) · R̄∗(s)

·
[
1− (

ρf (1− ρf ) ·R∗(s) · R̄∗(s)
)di

]
.

(3.18)

If the means of the travel time and the execution time, r, r̄, and e, are available, we
have

E(vi) =
d∑

j=1

j · P (vi = j) =
d∑

j=1

j · xj−1(1− ρf )

=
1− ρf

(1− x)2

[
(1− xd − (1− x)dxd)

] (3.19)

where x = ρf (1− ρf ) and

E(`i) =
(r + r̄)(1− ρf )

1− x

(
1− xd

1− x
− dxd

)
− r̄ + e. (3.20)

For j = 1, · · · , d − 1, the probability that the agent will enter the j-th selected node
is [q(1 − q)]j−1(1 − q) and the probability that the agent will then die is [q(1 − q)]j−1q2

since both the j-th selected node and node hi are down. Thus, the total probability that
an agent will select exactly j nodes in the set NB(i) is [q(1− q)]j−1[1− q(1− q)], the sum
of these two probabilities. When j = d, the probability that the agent will enter the last
selected node is [q(1− q)]d−1(1− q). If the agent can not enter the d-th selected node, it
will die whether the node hi is up or down, i.e., the corresponding probability that the
agent will die is [q(1− q)]j−1q. Similarly, the probability that an agent will select all the
d nodes in set NB(i) equals to [q(1− q)]d−1. Therefore, the average number of nodes the
agent will selected can be expressed as

E[vi] =
d−1∑
j=1

j(1− x)xj−1

=
1− xd − dxd−1(1− x)

1− x

=
1− xd

1− x
− dix

d−1

where x = q(1− q). Thus, the average migration time in the pessimistic case satisfies

E(ti) = 2r
1− xd

1− x
− r + e− 2rdxd−1

It is easy to see that the average migration time in the pessimistic case is also decided by
the system’s connectivity and the error rate.
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3.4.2 Life Expectancy

An agent’s life expectancy is another important factor for estimating work efficiency. It
is also important for defining the maximum number of hops a mobile agent can make in
order to keep the agents population in the network within the system’s limit. As shown

Figure 3.4: Life Expectancy of a Mobile Agent

in Figure 3.4, the life expectancy of a mobile agent, T , is defined as T =
∑N

i=1 `i where
N ≥ 1 is the total number of neighboring sets visited by the mobile agent and `i indicates
the migration time in NB(i−1). In order to obtain the distribution of the life expectancy
T , taking Laplace transform on T , we have

G∗(s) = E[e−sT ] = E[e−s(`1+···+`N )]

=
∞∑

l=1

E[e−sT |N = l]P (N = l) =
∞∑

l=1

[F ∗(s)]l · P (N = l).
(3.21)

Suppose the success probability that the agent reaches its destination node equals u, i.e.,

P (agent reaches its destination) = u, (3.22)

then the probability P (N = l) equals (1 − u)n−1u. Therefore, the Laplace transform of
the life expectancy is

G∗(s) =
∞∑

l=1

[F ∗(s)]l · (1− u)l−1u =
u · F ∗(s)

1− (1− u)F ∗(s)
. (3.23)

Similar to the derivation of (3.9) and (3.10), the mean and variance of life expectancy
satisfies

E(T ) = − dG∗(s)
ds

∣∣∣∣
s=0

, (3.24)

D(T ) =
d2G∗(s)

ds2

∣∣∣∣
s=0

−
[

dG∗(s)
ds

∣∣∣∣
s=0

]2

. (3.25)

Thus, we can calculate the probability distribution, its mean and variance for both on-
site failure and frontal failure by substituting the value of F ∗ for each case in the upper
formulas, respectively.

In case that we do not know the probability distribution of travel time and execution
time, but only know their means, we can calculate the mean of life expectancy as fol-
lows. Since N and `i are independent of each other and `i satisfies the same probability
distribution for any i, we have

E(T ) = E[E(T |N)] = E

[
E

(
N∑

i=1

`i

∣∣∣∣∣N

)]
= E(N) · E(`i). (3.26)
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When the average connectivity of the network, d, is available, E(N) can be evaluated as
follows. First, we define a binary random variable si as follows:

si =

{
1 agent completes its execution in N(i− 1),
0 otherwise.

(3.27)

Then the probability that an agent can complete its execution in set NB(i− 1) is P{si =
1} =

∑d
j=1 P{vi = j}. Since {N = l} indicates {sl = 0, sl−1 = · · · = s1 = 1} and si are

independent of each other, the probability that the agent will visit exactly l sets satisfies

P{N = l} = P{sl = 0} ·
l−1∏

k=1

P{sk = l}. (3.28)

Thus, from the value of P (vi = j), the value of E(N) can be evaluated from E(N) =∑∞
l=1 l · P{N = l} and the value of E(T ) can be evaluated from E(T ) = E(N)E(`i).

On-Site Failures

Since P{vi = j} = (1− ρo)ρ
j−1
o , the probability that an agent can complete its execution

in set NB(i− 1) is equal to P{si = 1} =
∑d

j=1 P{vi = j} = 1− ρd
o and P{si = 0} = ρd

o.

Therefore, we have P{N = l} = ρd
o ·

(
1− ρd

o

)l−1
and E(N) = ρ−d

o . Thus, the average life
expectancy of a mobile agent equals

E[T ] = (r + e)

[
1− ρd

o

(1− ρo)ρd
o

− d

]
. (3.29)

Frontal Failures

• Optimistic Case: Since P (vi = l) = (1− pf ) pl−1
f , we have P{si = 1} = 1 − ρd

f .

Therefore, P{N = l} = ρd
f

(
1− ρd

f

)l−1
and E(N) = ρ−d

f . The average life expectancy in
the optimistic case satisfies

E(T ) = (r + r̄)

[
1− ρd

f

(1− ρf )ρd
f

− d

]
− (r̄ − e)ρ−d

f . (3.30)

•Pessimistic Case:
By the result that P{vi = j} = (1 − ρf )[ρf (1 − ρf )]

j−1 = (1 − ρf )x
j−1, we have

P{si = 1} = (1 − ρf )
1−xd

1−x
= y, P{N = l} = (1 − y)yl−1, and E(N) = 1/(1 − y).

Therefore, we have

E[T ] =
(r + r̄)(1− ρf )

(1− x)(1− y)

[
1− xd

1− x
− dxd

]
− r̄ − e

1− y
. (3.31)

3.4.3 Population Distribution

In an agent-driven system, agents must be generated and dispatched frequently. Thus,
they will hold a certain amount of resources. This section analyzes the population distri-
bution of mobile agents, which reflects the occupation status of computational resources.
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On-Site Failures

Mark the nodes in the system by i = 1, 2, · · · and define rj(t) as the number of requests
received by the j-th node at time t. If an agent on the i-th node has finished its execution
at time t, it will select a neighboring node (say, the j-th node) and move to it. At time
t + r, it reaches the j-th node; at time t + r + e, it will either finish its execution in the
j-th node, or fail. If the agent fails in the j-th node, the i-th node will detect it and
generate a new agent immediately (at time t + r + e). Therefore, the agents in a node
can be distinguished into three kinds: new generated by requests, old came from other
nodes, or new generated for failed agents. Denote the number of agents initially in the
j-th node by pj(0), the number of agents in the j-th node at time t, denoted by pj(t), can
be formulized as follows:

pj(t) =





rj(t) 0 ≤ t ≤ r;

rj(t) +
∑

i∈NB(j)

pi(t−r)∑

k=1

δkij(t− r) r ≤ t ≤ r + e;

rj(t) +

pj(t−r−e)∑

l=1

θjl(t− r − e) +
∑

i∈NB(j)

pi(t−r)∑

k=1

δkij(t− r) t ≥ r + e,

(3.32)

where rj(t) is the number of requests received by the j-th node at time t, θjl(t) is a binary
random variable of the l-th agent in the j-th node at time t:

θjl(t) =

{
1 if the agent fails at time t + r + e;
0 otherwise.

(3.33)

and δkij(t) is a binary random variable of the k-th agent in node i:

δkij(t) =

{
1 if the agent enters the j-th nodeat time t + r;
0 otherwise.

(3.34)

The sum
∑pj(t−r−e)

l=1 θjl(t − r − e) is the number of agents generated in the j-th node at
time t for those agents which moved out from the j-th node at time t− r− e and reached

failed nodes at time t. The sum
∑pi−1(t−1)

k=1 δkij(t − 1) is the number of agents in the
j-th node that came from the i-th node. Since whether a node’s failure in the network
is independent of other nodes and a probability ρo, the probability P{θjl(t) = 1} = ρo.
Furthermore, the probability P{δkij(t) = 1} = (1 − ρo)/di due to the fact that an agent
can enter its selected node with probability 1 − ρo and all the neighboring nodes of the
i-th node have the same probability of being selected by all the agents in the i-th node
as a whole. Taking expectations on both sides of (3.32), the average number of agents in
the j-th node at time t can be expressed as:

p̂j(t) =





r̂j(t) 0 ≤ t ≤ r;

r̂j(t) +
∑

i∈NB(j)

1− ρo

di

p̂i(t− r) r ≤ t ≤ r + e;

r̂j(t) + ρo · p̂j(t− r − e) +
∑

i∈NB(j)

1− ρo

di

p̂i(t− r) t ≥ r + e.

(3.35)
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where p̂j(t) and p̂j(t) (j = 1, 2, · · · ) are the average number of pj(t) and rj(t) respectively.
The above equation can be expressed in matrix format as follows:

−→p (t) =





−→r (t) 0 ≤ t ≤ r;−→r (t) + A−→p (t− r) r ≤ t ≤ r + e;−→r (t) + ρo · −→p (t− r − e) + A−→p (t− r) t ≥ r + e,
(3.36)

where−→p (t) and−→r (t) are column vectors defined as (p̂1(t), p̂2(t), · · · )T and (r̂1(t), r̂2(t), · · · )T ,
respectively. A is a coefficient matrix with elements

aji =

{
(1− ρo)/di if j ∈ NB(i) and j 6= i,

0 otherwise.
(3.37)

Frontal Failures

Let pj(t) be the number of agents running in the j-th node at time t, the number of agents
running in the i-th node can be given by the following equation:

pi(t) =

di∑

k=0

pi(t)∑

l=1

δilk(t), (3.38)

where δilk indicates the situation of the l-th agent running on the i-th at time t, i.e.,

δilk(t) =

{
1 if it is the k-th time that the l-th agentreturns back to the i-th node;
0 otherwise.

(3.39)

It is easy to see that
∑di−1

k=0 δilk(t) = 1 and
∑pi(t)

l=1 δilk is equal to the total number of agents
running on the i-th node that come back at the k-th time. Especially, δil0 = 1 implies
that the l-th agent never moves out from the i-th node. These agents can be further
subdivided into two kinds: newly generated in the i-th node or came from neighboring
nodes. Let gi(t) be the number of agents newly generated in the i-th node at time t and
pij(t) be the number of agents running on the i-th node which come from the j-th node
at time t. Then, the dynamical change of the agents in the network can be given by the
following stochastic equation:

pi(t) =

pi(t)∑

l=1

δil0(t) +

di∑

k=1

pi(t)∑

l=1

δilk(t) = gi(t) +
∑

j∈NB(i)

pij(t) +

di∑

k=1

pi(t)∑

l=1

δilk(t)

= Ai(t) + Bi(t) + Ci(t).

(3.40)

Suppose that ri(t−1) is the number of requests received by the j-th node at time t−1, we
have gi(t) = ri(t− 1), since an agent will be generated for each request. As the error rate
of each neighboring node is same, all the nodes in set NB(i) have the same probability
to be selected. Therefore, the average number of pij(t) equals (1− ρf )pj(t− r)/dj. Since
each time an agent returns to the previous node cost 2r time, δilk(t) = 1 indicates that the
l-th agent running on the i-th node at time t must come from other nodes or be generated
in the i-th node at time t − 2kr. Therefore, the average number of

∑pi(t)
l=1 δilk(t) equals

[Ai(t) + Bi(t)]P{δilk(t) = 1}. Taking expectations on both sides of (3.40), we have

E[pj(t)] = E[Ai(t)] + E[Bi(t)] + E[Ci(t)], (3.41)
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where

E[Ai(t)] = E[ri(t− 1)]; (3.42)

E[Bi(t)] =
∑

j∈NB(i)

1− ρf

dj

E[pj(t− r)]; (3.43)

E[Ci(t)] =

di∑

k=1

E[Ai(t)]P{δilk(t) = 1}+

dj−1∑

k=1

E[Bi(t)]P{δilk(t) = 1}. (3.44)

In compact form, it can be rewritten as follows

−→p (t) = −→r (t− 1) + A−→p (t− r) +

dj∑

k=1

−→r (t− 2kr − 1)P{δilk(t) = 1}

+

dj−1∑

k=1

A−→p (t− 2kr − 1)P{δilk(t) = 1},
(3.45)

where−→p (t) = (E[p1(t)], · · · , E[pn(t)])T ,−→r (t) = (E[r1(t)], · · · , E[rn(t)])T , and A = (aij)n×n

is an n by n matrix with elements

aij =

{
(1− ρf )/dj if j ∈ NB(i);

0 otherwise.
(3.46)

• Optimistic Case
In this case, the event {δjlk(t) = 1} is equivalent to {X1

j = 1, · · · , Xk
j = 1}. Therefore,

P{δjlk(t) = 1} = ρk
f . Thus, the dynamic change on the number of agents running in the

network can be expressed as follows

−→p (t) = −→r (t− 1) + A−→p (t− r) +

dj∑

k=1

ρk
f
−→r (t− 2kr − 1) +

dj−1∑

k=1

ρk
fA
−→p (t− 2kr − 1)

=

dj∑

k=0

ρk
f
−→r (t− 2kr − 1) +

dj−1∑

k=0

ρk
fA
−→p (t− 2kr − 1).

(3.47)

• Pessimistic Case
Similar to that of optimistic scenario, since the probability P{δjlk(t) = 1} = P{X1

j =
1, X0

j = 0, · · · , Xk
j = 1, X0

j = 0, } = [(1 − ρf )ρf ]
k = xk, the dynamic change on the

number of agents satisfies

−→p (t) =

dj∑

k=0

xk−→r (t− 2kr − 1) +

dj−1∑

k=0

xkA−→p (t− 2kr − 1). (3.48)

3.4.4 Analysis for Non-Failure Case

Consider the situation in which there is no system failure during the agents’ execution.
Our model can be redescribed as follows. Once a request is received from a server, an agent
is generated and dispatched into the network. Once the agent reaches a node, it executes
locally. If the current node is its destination, the agent’s trip is finished. Otherwise, after
its execution, it selects a neighboring node and moves to it. Since no system failure occurs
during its route, the analytical result of migration time, life expectancy, and population
distribution will be different from the above analysis.
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Migration Time and Life Expectancy

In the non-failure case, an agent will never select a failing node or a node about to fail.
In other words, an agent will not die until it finds its destination. This means that the
migration time of an agent equals to r + e and the life expectancy of an agent will be
infinitely long until it completes all its tasks.

Population Distribution

Under the assumption that nodes will not fail, the analysis of population distribution
becomes greatly simplified. Define a binary random variable of the l-th agent in the i-th
node as follows:

ηkij(t) =

{
1 if the k-th agent in the i-th nodeselects the j-th node to go;
0 otherwise.

(3.49)

The dynamic change on the number of agents in the network satisfies

pj(t) =





rj(t) 0 ≤ t ≤ r;

rj(t) +
∑

i∈NB(j)

pi(t−r)∑

k=1

ηkij(t− r) t ≥ r.
(3.50)

Suppose that an agent will randomly select a neighboring node with probability P (ηkij(t) =
1) = P (j|i) = P (i → j) = 1

di
and taking expectations on both side of the upper equation,

we have

p̂j(t) =





rj(t) 0 ≤ t ≤ r;

rj(t) +
∑

i∈NB(j)

pi(t− r)

di

t ≥ r, (3.51)

or in matrix-vector form

−̂→p (t) =

{ −→r (t) 0 ≤ t ≤ r;−→r (t) + A−→p (t− r) t ≥ r,
(3.52)

where

−→p (t) =




p1(t)
· · ·
pn(t)


 , −→r (t) =




r1(t)
· · ·
rn(t)




and −̂→p (t) = E[−→p (t)|−→r (t),−→p (t− r)]. A = (aji)n×n is an coefficient matrix with element

aji =

{
1/di if j ∈ NB(i), j 6= i;
0 otherwise.

(3.53)

By defining −̂→p (t) = E[−→p (t)|−̂→r (t), −̂→p (t−r)], the dynamic change on the expected number
of agents in the network satisfies

−̂→p (t) =

{ −̂→r (t) 0 ≤ t ≤ r;
−̂→r (t) + A−̂→p (t− r) t ≥ r.

(3.54)
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3.5 Experimental Results

Our mobile agent system consisting of n nodes. Once a request is received in the system,
a mobile agent is generated. The average number of requests is assumed to be m. The
average execution time and the average migration time on each node are assumed to
be e and r, respectively. The target node for the next hop is selected randomly from
neighboring nodes. The average connectivity of the system is d. Both the probability of
on-site failure and the probability of frontal failure are ρ. When a node fails, all of the
agents running on the node fail as well

To measure the influence of system parameters on the network performance, the mi-
gration time and the life expectancy are obtained for four cases respectively.
Basic Case: The system environment with the following parameter values is simulated:
n = 40, m = 10,r = 1, e=2, d = 3, and ρ = 0.01.
Case 1: The value of d changes to 5.
Case 2: The value of d changes to 8.
Case 3: The value of d changes to 12.
Cases 1-3 differs only one system parameter value compared to the Basic Case.

Figure 3.5 shows the experimental results. We can see that both the migration time
and the life expectancy are very sensitive to the changes of the network connectivity and
the probability of failure. The figures in the first column show the results of migration
time. Note that there is an inflexion in the figure. The migration time before the inflexion
increase when the probability of failure increase, which means that agents need more time
to enter the next node when the probability of failure is larger. The migration time after
the inflexion is a decreasing function on the probability of failure, which coincides our
intuition that if the probability of failure is too large, the agent may fail at the earlier
migration. It also can be observed that the migration time is a monotonic increase function
on the connectivity. A larger connectivity will result in a longer migration time. The
figures in the second column show the results of life expectancy. It is easy to see that the
migration time is a monotonic increasing function on the connectivity and a monotonic
decreasing function on the probability of failure. The figures in the first row analyze the
influence of the connectivity for the on-site failure case, the figures in the second row
analyze the influence of the connectivity for the optimistic frontal failure case, and the
figures in the third row analyze the influence of the connectivity for the pessimistic frontal
failure case. Comparing those figures, we can see that figures for on-site failure case and
optimistic frontal failure case are very similar. The difference is determined by the value
of e and r. For the pessimistic frontal failure case, the inflexion of the curve for migration
time comes earlier. Both the migration time and the life expectancy are greatly smaller
than that for the on-site failure case and the optimistic frontal failure case.

3.6 Comparison

Our model effectively combines available techniques and achieves better cost-effectiveness
than existing models by eliminating redundant consumption of computational resources.
Table 3.1 shows the comparison among checkpointing approach, replication approach,
and our model, where storage consumption indicates the rolled storage during an agent’s
execution, L is the total nodes from the source to the destination, K is the period to store
a checkpoint, m is the number of replication servers per step, communication cost refers to
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Figure 3.5: Results for Migration Time and Life Expectancy

72



the number of communicating nodes for one step, and the failure free degree expresses the
ability of each approach that how many failures they can tolerate. The checkpoints in the

Checkpointing Replication Our Algorithm
Storage Consumption [L/K] + 1 m 2

Communication 2 m 3
Failure Free Degree 1 m− 1 3

Table 3.1: The comparison among checkpointing, replication, and our algorithm.

checkpointing approach are stored periodically to resume the execution of mobile agents
after crash. Even if no failure occurs, multi-node communication must be kept until the
agent reaches its destination. This will generate a considerable overhead. Furthermore,
unlocking the communication generates additional overhead. On the contrary, our model
stores a checkpoint in each node where the agent stays. Once the agent completes its
execution at the node, the checkpoint is deleted. During the agent’s trip, only 2-node
communication is needed. Thus, the overhead in our model is greatly reduced. Moreover,
when the executing agent is crashed due to a system failure, our model can resume the
agent’s execution from the previous step, whereas in the checkpointing approach, the
agent will resume its execution from the most recent saved checkpoint. This makes the
agent’s migration time in our model less than that in the checkpointing approach. In the
replication approach, agent replicas are sent to a set of nodes at the same time and keep
communications among them. Execution on all nodes will bring more overhead. Even if
only one node works at a given time, the multi-node communication overhead occurs at
each execution, regardless of the occurrence of failures. In our model, only one replica is
stored in the previous node and 2-node communication is maintained during the whole
process. Besides, the number of agent/replicas is greatly reduced. These result in a less
overhead in our model than in the replication approach.

3.7 Concluding Remarks

The reliable execution of mobile agents is an important design issue for building a mo-
bile agent system and many fault-tolerant execution schemes have been proposed along
roughly two approaches: replication and checkpointing. In this chapter, we proposed a
new fault-tolerant execution model and analyzed its statistical properties. Our model ef-
fectively combines available techniques and achieves better cost-effectiveness than existing
models by eliminating redundant consumption of computational resources.

In our model, failures are classified into two classes: on-site failure and frontal failure.
This classification captures the intrinsic difference between these two classes of failures
which causes different effects on mobile agents’ behaviors. An on-site failure is a node’s
failure during an agent’s execution within it. It may block the agent and alter the agent’s
state. On the other hand, a frontal failure is a node’s failure before an agent’s entrance
to it which blocked the agent’s entry, but did not alter the agent’s state. For each
kind of failures, an exceptional-event handling method is adopted. It can greatly decrease
network resources consumption and improve the overall performance during mobile agent’s
execution.

73



For the first time, the behaviors of mobile agents in networks that may contain faults
are statistically analyzed in a quantitative way, which exploits a new approach to assess-
ing the performance of agent-based systems. Several important parameters on system
performance, including migration time, life expectancy, and population distribution of
mobile agents, are analyzed. We also considered the performance of our model in reli-
able networks. The analytical results reveal the theoretical insights into the fault-tolerant
execution of mobile agents and show that our model can outperform the existing fault-
tolerant models. The analytic method proposed in this chapter may also be applied for
performance analysis in other complex systems. Our model is reliable and cost-efficient,
which offers us a promising way for designing reliable mobile agent system.
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Chapter 4

An Execution Prototype of Mobile
Agent-Based Peer-to-Peer Networks

4.1 Introduction

Peer-to-peer networks are one of the trends in the field of internetworking. In p2p-
networks, the hosts, or peers, act as client and server. Milojicic et al. [80] lists some
characteristics of p2p-system. They are: decentralization; scalability; anonymity; self-
organization; cost of ownership; ad-hoc connectivity; performance; security; transparency
and usability; fault resilience; and interoperability.

Probably the most significant of these are Decentralization, Scalability and Ad-Hoc
connectivity. As the clients act as servers in p2p-systems, there is no need for central
management, which in traditional client-server model is done by servers. Scalability is
achieved, as hosts can join or leave the network easily without having to register into
a database. As hosts can also be up or down at every instant, ad-hoc connectivity is
achieved.

Peer-to-peer networks can be divided into pure p2p-networks and hybrid networks.
In pure p2p-networks, there is no kind of central servers as in hybrid model where some
servers are offered for e.g. locating the resources.

The most known p2p-systems are probably file-sharing networks, such as Napster,
kazaa, DC++, Gnutella and Bittorrent. But p2p is also used in e-commerce, distributed
computing and in instant messaging (such as MSN Messenger).

It can be seen that in a large communication network such as Internet, agents have to
be generated frequently and dispatched to the network. Thus, they will certainly consume
a certain amount of bandwidth of each link in the network. If there are too many agents
migrating through one or several links at the same time, they will introduce too much
transferring overhead to the links. Eventually, these links will be busy and indirectly
block the network traffic. Therefore, there is a need of developing routing algorithms that
consider about the traffic load. Since the state of different links may change dynamically
over time, the agents have to dynamically adapt themselves to the environment, which
increases the difficulty for both algorithm design and theoretical analysis. In [19], the
network state is monitored by launching an agent at regular intervals from a source to
a certain destination. In [22], the agent was enabled to estimate queuing delay without
waiting inside data packet queues. In [71], the authors showed that the information
needed in [19, 22] for each destination is difficult to obtain in real networks. In [9],
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a mechanism of handling routing table entries at the neighbors of crashed routers was
proposed which significantly improved the algorithm proposed in [19, 22]. In [16], the
authors formulated a method of mobile agent planning, which is analogous to the travelling
salesman problem [39] to decide the sequence of nodes to be visited by minimizing the
total execution time until the desired information is found.

In this chapter, we propose an agent-based routing algorithm in which the traffic cost
for each link is considered. To balance the traffic load on each link, we introduce the max-
imum entropy theory into our algorithm to find an optimal probability distribution that
makes inference on the known traffic information and balances the traffic load. Theoretical
analysis shows that our derived probability distribution that an agent on an intermediate
node may select a neighboring node and move to satisfies these two requirements. The
remainder of this chapter is structured as follows. Section 4.2 introduce 4 most popular
P2P systems. Section 4.3 presents the motivation of our research, i.e., why use mobile
agents in peer-to-peer networks. Section 4.4 presents our algorithm. Section 4.5 intro-
duces the maximum entropy theory. Section 4.6 provides theoretical analysis, Section 4.7
shows some simulation results, and Section 4.8 gives our conclusions.

4.2 P2P Systems

A variety of different P2P systems has been developed. Below we will take a brief look at
the 4 most famous/popular systems.

4.2.1 Napster

Napster was perhaps the first P2P network to gain widespread recognition and use. It
gained support due to its ease of use, its accuracy, and of course the large demand that
had developed for MP3 music files. Napster itself is a closed application, but there is an
open protocol known as OpenNap that is based on Napster [86]. We will refer to both of
these collective as Napster.

The architecture of Napster is that it maintains a central database on a server with
details of available MP3 music files and their locations [108]. When a user withes to
download a file the database is queried. If a match is found the client is given the details
of where the file, and downloads it. After a successful download the central database is
updated with the client address where a new copy of the file is now located.

So Napster is extremely fast and accurate for locating the correct files due to the
central database it maintains. However it is this centrally located database that has led
to Napster’s legal problems [37], and the rapid loss of users [127]. It is unlikely that any
future P2P system would use a similar architecture that leaves it open to similar legal
actions.

4.2.2 Gnutella

Gnutella is an open, text based protocol that is designed to allow for the sharing of all
file types over the Internet [41]. A computer participating in Gnutella network is acting
as both client and server, and hence is called a servent. There are many different client
applications that support the Gnutella protocol such as BearShare [10] and Limewire [72].
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A computer wishing to participate in a Gnutella network does so by contacting another
Gnutella servent [25]. The acquisition of this other servent’s address is not actually part of
the Gnutella protocol. Once connected, servents seek out other servents by sending Pings,
which may be responded to with a Pong. When a servent receives a Ping it forwards it
to all the servents that it knows of , and sends the resulting Pongs back to the servent
that initiated the ping. To search for a file a Query is sent to all known servents. If the
servent has a matching file it responds with a Hit, otherwise it forwards the query on to
all the servents that it knows of. Once the file has been found it is downloaded outside
of the Gnutella network using the Hyper Text Transfer Protocol.

Perhaps the biggest problem with Gnutella is that each servent uses so much band-
width for sending and receiving Ping/Pong and Query/Hit messages that are not related
to it. This is critical considering that these messages grow exponentially. It is also believed
that most users on the Gnutella network are not making any files available for sharing,
thus making the network very inefficient [2]. Another problem is that each servent only
ever sees a relatively small portion of the entire network.

To address some of these problems Clip2 developed a Reflector system [26]. The
Reflector is a super peer located between a group of end servents and the rest of the
Gnutella network. When servents connect to the reflector an index is created on teh
reflector with all the details of shared files on the servent. The reflector thus is able to
shield the connected end servents from all Ping/Pong and Query/Hit messages while also
providing servents with greater network coverage.

4.2.3 Morpheus/KaZaA

Morpheus and KaZaA [63] are two new file sharing application being developed by Fast-
Track [36] and based on the same closed protocol. Both are currently attracting quite
an amount of interest. They appear to operate in a similar way to a Gnutella network
with Reflectors. Peers are self-organizing, meaning that when they detect that they have
enough bandwidth, they can take on the responsibilities of acting in a way similar to the
Reflectors.

4.2.4 Project Juxtaposition (JXTA)

Sun [120] has entered the Peer-to-Peer market with the recent launch of Project JXTA, an
open community layered set of protocols [61]. JXTA differs from other P2P projects for
a number of resons [42]. The JXTA protocols are completely hardware and language in-
dependent. Therefore two JXTA peers may communicate with each other over Bluetooth
without ever needing TCP/IP, unlike any of the previously mentioned systems.

It is envisaged that many peers will not be PC based, but that they will be either
enterprize systems or consumer-orientated small, systems such as PDAs. For this reason
the protocols have been kept as thin as possible. Also, each peer need not implement
every protocol. Project JXTA provides a layer on top of which P2P applications and
services can be built, just like TCP/IP does. Finally, all the protocols defined within
JXTA are extensible, allowing application builders to use their own implementations. For
example some application builders may require weak security, while others may use their
own strong security. A complete description of JXTA can be found in [121].
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JXTA consists of six protocols and uses a small subset of XML [142]. However, peers
need not be aware of this. Indeed, they can use predefined XML messages alone.

As of now JXTA is still being developed, and there are no applications based on it in
widespread use yet. Project JXTA seems to be very well designed, but only time will tell
how well it will succeed.

4.3 Motivation

Mobile agents reduce the need for bandwidth. Very often peers using a distributed pro-
tocol establish a communication channel between themselves, and then perform multiple
interactions over this channel. Each of these interactions generates network traffic. Mo-
bile agents allow these interactions to be packaged together, and sent as a discrete piece of
network traffic. This then allows all the interactions to take place locally. Mobile agents
also encapsulate all the required data within themselves. Therefore when a mobile agent
arrives on a computer it has all its data with it, and does not need to communicate with
any other computers. In a conventional search protocol all the raw data travels over the
network to be processed, even though only a subset of this data may be needed. In this
scenario, mobile agents reduce the network traffic by moving the processing to the raw
data, instead of moving the raw data to the processing. Finally, mobile agents can be
very small in size, but can grow dynamically as they need to accommodate more data.

Mobile agents are asynchronous. Therefore when a mobile agent is dispatched there
is no need to wait for it to return. Indeed the original peer does not even need to remain
connected to the network while the mobile agents are out. The mobile agents can wait
until the original peer is back on the network before attempting to return to it.

Mobile agents are autonomous. This particularly suits peer-to-peer networks, because
the mobile agent is learning about the network as it progresses through it. The mobile
agent will visit peers that were unknown when it was originally dispatched. At each peer
it can make decisions based on its history of visited peers and the current peer.

Information is being disseminated at every peer that the mobile agent visits. Every
peer benefits from accepting a visiting mobile agent, because the mobile agent will have
either new or more recent information about resources. Also, every mobile agent benefits
from visiting a peer because it will learn of either new or updated resources . If the mobile
agents do not contain any new information they may be destroyed. Accepting and hosting
mobile agents requires the use of physical resources, such as memory and computer cycles.
Should thee become critically limited, it is easy for the peer to refuse further requests to
accept mobile agents until more physical resources become available.

Mobile agents may easily be cloned and dispatched in different directions. This allows
them to function in parallel. Although this causes more mobile agents to be active on
the network, it does ensure that the network resource discovery is completed sooner, and
therefore the mobile agents spend less time on the network.

A mobile agent based solution is very fault tolerant. Even if some of the mobile agents
are destroyed, all surviving ones will have a positive impact. Indeed, the destroyed mobile
agents will have benefited every peer up to the point where they were destroyed.

Finally, a mobile agent based solution can be combined with successful features from
other P2P based systems to provide an improved final solution.
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4.4 Algorithm

Large scale distributed system consists of many different virtual organizations and pri-
vate networks which often shows social or organizational structure. Therefore they do
not naturally support a centralized point of control, which results in that the resource
descriptors can’t be stored at a single node in the system. Because of this peer-to-peer
computing is well suited for this kind of systems. Agent-based computing is used because
it offers the desired characteristics to implement a peer-to-peer system.

In this section, we will briefly describe the organizational principles of our model.
Our algorithm focuses on how the mobile agents will behave while they roam around the
network and can be sketched as follows:

1. The network is organized into peer groups. Note that a peer in a peer group is only
only a peer, but also a node in the network. For a specified peer (also called a node),
peers in the same peer group consists of its neighborhood and called neighbor nodes
of the peer. When a node does not belongs to any peer group, we say the peer group
consists of only one node.

2. There are three kinds of agents employed in our algorithm, namely inner agents,
outer agents, and worker agents. Inner agents are periodically generated by a
peer/node. They roam inside the peer group, collect and disseminate information.
Outer agents are generated for when a user’s request cannot be completed in the
current peer group. They are dispatched into the network, roam among peer groups
and search for destination peer group for executing the request. Worker agents are
generated after the outer agents find the destination. They carry the requests to
be completed to the destination peer group, follow a desired route that the outer
agents have explored, and send the results to the users. A peer is known as the
“creator peer” for the mobile agents and all future clones of these mobile agents.

3. Each peer periodically sends an inner agent, by broadcasting replicas of it to each
neighbor node. For a inner agent, a journey-time is set in terms of the maximum
number of peers that may be visited before it must return to its creator peer. Also
a branching factor is set, that is used to determine how many times the inner agent
may be cloned at any one peer. These two parameters control the depth and breadth
of the search, and therefor the maximum number of peers that may be visited.

4. Initially the inner agent is given the addresses of some other peers participating
in the network. Typically the number of addresses provided should be small, and
should be less than the branching factor. For best results these addresses should
come from different sources. This increases the chances that these peers are oper-
ating in separate sub networks that are as yet unaware of each other.

5. After arriving at each peer the inner agent decrements its journey-time, and updates
the peer with information about its creator peer, and other peers encountered along
the route so far. The inner agent also updates itself with information on the current
peer. If two inner agents from the same creator peer arrive at the current peer
within a preset time period, then the second mobile agent destroys itself. This may
lead to to less information being acquired about the network. However, it keeps the
information up to date, and yet prevents peers that form cycles from having to deal
repeatedly with inner agents from the same creator peer.
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6. If the inner agent’s journey-time has expired, then it returns to its creator peer, and
updates its creator peer with all the information it has collected on its journeys.
Otherwise the inner agent clones itself enough times to allow a clone of itself to be
sent to each peer that was known to the current peer before the inner agent arrived.
By excluding previously known peers, the incidence of revisits is reduced.

7. When a peer as a node in the network receives a request, it firstly check whether
the request can be fulfilled inside its peer group. If so, it generates a worker agent
and forward it to the suitable site to execute the request. Otherwise, a number of
outer agents are generated and launched to nodes outside its neighborhood. For a
outer agent, a journey-time is also set in terms of the maximum number of nodes
that may be visited before it must return to its creator peer.

8. Each outer agent while travelling, collects and carries path information, and that it
leaves, at each node visited, the trip time estimate for reaching its creator node from
this node over the incoming link. Once an outer agent reaches a node, the node
tells it whether the request can be fulfilled in its peer group. If so, the outer agent
goes back to the creator peer along the same route it has explored, updates the
routing table along its route, and submits its report of its journey. Thus each node
in the network maintains current routing information for reaching nodes outside
its neighborhood. This mechanism enables a node to route a data packet (whose
destination is beyond the neighborhood of the creator node) along a path toward
the destination node.

9. After a certain number of outer agents has come back, the creator peer selects a
desirable route based on some rules, generates a worker agent and forward it to the
destination together with the request. The worker agent executes the request on
the destination node and returns back to the creator peer with the result. Finally,
the creator peer submits the result to the user.

Inner agents and outer agents make routing decisions using the specialized routing
strategy by selecting the next target to visit in their exploration. The routing strategy is
based on the consideration of traffic balance of the network, that is, the next hop for an
agent is selected in a probabilistic manner according to the quality measure of the traffic
situation. We will introduce our adopted probabilistic in detail in the following.

Let G = {V, E} be a graph corresponding to a fixed network, where V = {ν1, ν2, · · · }
is the set of vertices (hosts) and E is the set of edges. We assume that the topology
of a network is a connected graph in order to ensure that communication are able to
be made between any two host machines. For an inner agent, NB(i) is the set of peers
in the peer group of the creator peer νi and |NB(i)| is the number of peers in NB(i).
For an outer agent, NB(i) is the set of neighboring nodes outside the peer group of the
creator peer νi and |NB(i)| is the number of nodes in NB(i). Originally, each peer has no
information about the traffic situation of its peer group and the network. Therefore, each
vertex in set NB(i) has the same probability to be selected by the inner agent as a target
to move to, i.e., 1/|NB(i)|. This uniform probability distribution of agents’ neighboring
node-selection will be updated with time going. The new probability distribution should
satisfies two constrains:

1. It makes inference on all the known traffic information.
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2. It is unbiased. That is, the probability should mostly balance the traffic cost on
each link.

To find a probability distribution that both makes inference on the known information
and approximates to the unbiased (uniform) distribution, We mathematically model the
constrains as follows. The effect of the known traffic information on the agent’s migrating
decision making can be expressed by a min-max problem as follows:

min
x∈Rn

f (j)
max(x), (4.1)

where x is a random variable with n entries, which denotes n items to be considered to
the cost of a link. The objective function f

(j)
max(x) is the traffic cost function defined as

follows:
f (j)

max(x) ≡ max
i∈NB(j)

{fji(x)}. (4.2)

Here, fji(x) is the traffic cost function from node νj to νi. Without losing generalization,
we assume that functions fji(i ∈ NB(j)) are differentiable. Obviously, the maximum

value function f
(j)
max(x) is an undifferentiable function.

At the same time, the unbiased requirement is expressed by the maximum entropy
function (as shown in the next section). Solving the combinatorial optimization problem
results in a probability distribution that can be expressed as follows:

pji =
exp{θfji(x)}∑

l∈NB(j) exp{θfjl(x)} , j = 1, 2, · · · ; i ∈ NB(j), (4.3)

where pji is the probability that an agent on node νj migrates to node νi, θ ≥ 0 is a weight
coefficient defined according to the effect of the known traffic state of the network.

In Section 4.5, we will detail the reduction and show the rationality of this probability
distribution.

4.5 Maximum Entropy Theory

In [110], Shannon first introduced the concept of entropy into informatics as a measure-
ment of uncertainty. Suppose that there are a set of possible events whose probabilities
of occurrence are λ1, λ2, · · · , λn. These probabilities are known but that is all we know
concerning which event will occur. Can we find a measure of how much “choice” is in-
volved in the selection of the event or of how uncertain we are of the outcome? Shannon
pointed that if there is such a measure, say H(λ1, λ2, · · · , λn), it should have the following
properties:

1. H should be continuous on λi.

2. If all λi are equal, i.e., λi = 1/n, then H should be a monotonically increasing
function of n.

3. If a choice is broken down into two successive choices, the original H should be the
weighted sum of the individual values of H.
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In [110], it is proved that the entropy function H = −k
∑n

i=1 λi ln λi is the only
function that can satisfies all the requirements, where k is a positive constant decided by
measurement units. Usually, k is set to be 1. The Shannon entropy has the following
properties:

1. Hn(λ1, λ2, · · · , λn) ≥ 0;

2. If λk = 1 and λi = 0 (i = 1, 2, · · · , n; i 6= k), then Hn(λ1, λ2, · · · , λn) = 0;

3. Hn+1(λ1, λ2, · · · , λn, λn+1 = 0) = Hn(λ1, λ2, · · · , λn);

4. Hn(λ1, λ2, · · · , λn) ≤ Hn(1/n, 1/n, · · · , 1/n) = ln n;

5. Hn(λ1, λ2, · · · , λn) is a symmetrical concave function on all variables.

where H = −∑n
i=1 λi ln λi.

E. T. Jaynes found that in many probabilistic executions, the resulting probability dis-
tribution cannot foreknown; thus, the entropy cannot be calculated. But he also claimed
that the probability distribution could be induced by the accumulated test data such as
the mean and the variance. In [59], E.T.Jaynes proposed the maximum entropy theory:
“in making inference on the basis of partial information we must use that probability
distribution which has maximum entropy subject to whatever is known. This is the only
unbiased assignment we can make; to use any other would amount to arbitrary assumption
of information which by hypothesis we do not have”. Notice that “entropy” is a mea-
surement of the degree of uncertainty and the great the entropy’s value, the less known
information, the maximum entropy theory can be mathematically expressed as follows:





max H = −
N∑

i=1

λi ln λi

s.t.

N∑
i=1

λi = 1;

N∑
i=1

λigj(xi) = E [gj] , j = 1, 2, · · · ,m;

λi ≥ 0, i = 1, 2, · · · , N,

(4.4)

where λ = (λ1, λ2, · · · , λn), gj(j = 1, 2, · · · ,m) is some predefined constrained function,
and E[·] is the mean of these constrained function.

Templeman et al. [123] first applied maximum entropy theory to solve optimization
problems in which the objective function is unanimously approximated by a smooth one.
By solving the resulting problem, an approximate solution of the original problem can be
obtained. The purpose of deploying maximum entropy theory in agents’ searching process
is to find a probability distribution that both satisfies the known routing information and
mostly approximate to the unbiased (uniform) distribution.

4.6 Properties of Approximating Function

Let’s look at the following Lagrange function:

`j(x, pj) =
∑

i∈NB(j)

pjifji(x) ∀x ∈ Rn, pj ∈ ∆j, (4.5)
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where pj = (pj1, pj2, · · · , pj,|NB(j)|)T is the vector of Lagrange multiplier, ∆j is a simplex
set defined as follows:

∆j ≡


pj ∈ R|NB(j)|

∣∣∣∣∣∣
∑

i∈NB(j)

pji = 1, pji ≥ 0



 . (4.6)

It is easy to see that no matter which value the multiplier vector pj is chosen, the value
of the Lagrange function `j(x, pj) is less than or equal to the maximum value function

f
(j)
max(x), i.e.,

`j(x, pj) ≤ f (j)
max(x). (4.7)

From the definition of Lagrange function `j(x, pj), we have the following lemma:

Lemma 7 The maximum value function f
(j)
max(x), defined in (4.2), can be expressed as

follows:
f (j)

max(x) = sup
pj∈∆j

`j(x, pj) = max
pj∈∆j

`j(x, pj). (4.8)

Proof For ∀x ∈ Rn and ∀pj ∈ ∆j, it is easy to see that

∑

i∈NB(j)

pjifji(x) ≤ f (j)
max(x). (4.9)

Therefore,
sup

pj∈∆j

`j(x, pj) ≤ f (j)
max(x). (4.10)

Let I
(j)
max(x) be the indicator set of element functions fji(x)(i ∈ NB(j)) that equal to

the maximum value function f
(j)
max at point x, i.e.,

I(j)
max(x) := {k|fjk(x) = f (j)

max(x)}. (4.11)

If k ∈ I
(j)
max(x), then for arbitrary x ∈ Rn and pj ∈ ∆j, we have

sup
pj∈∆j

`j(x, pj) ≥
∑

i∈NB(j)

p̄jifji(x) = f (j)
max(x)b (4.12)

where

p̄ji =

{
1, i = k;
0, i 6= k.

(4.13)

From (4.10) and (4.12), the first equality in (4.8) is hold. Consider that ∆j is a tight set
and `j(x, pj) is a continuous function on pj, the second equality in (4.8) is also hold. ¤

From Lemma 7, it can be seen that since the Lagrange function `j(x, pj) is a linear

function on variable pj, (4.8) has multi-solutions. Therefore, function f
(j)
max(x) defined in

(4.2) is an undifferentiable function.
From Lemma 7, it can also be seen see that since the multiplier vector pj is limited

inside the simplex ∆j, the Lagrange function `j(x, pj) can be interpreted as a convex
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combination of all element functions fji(x) (i ∈ NB(j)) and multipliers pji are the com-
bination coefficients. Therefore, Problem (4.1) can be solved by solving an equivalent
problem of finding a set of value of pji, (i ∈ NB(j)) such that the Lagrange function
`j(x, pj) approximates to the maximum value function, i.e., to find the optimal combina-
tion p̂j from all combinations that satisfies (4.6) such that (4.7) becomes the following
equality:

`j(x, p̂j) =
∑

i∈NB(j)

p̂jifji(x) = f (j)
max(x). (4.14)

On the other hand, if the Lagrange multipliers pji (i ∈ NB(j)), also called the combi-
nation coefficients, is endued with a probability sense, i.e., describing them as the corre-
sponding probabilities such that the element function fji(x) becomes the maximum value

function f
(j)
max(x), then from the concept of probability, Problem (4.1) can be transferred

into a maximized problem of finding the optimal probability distribution that satisfies:



max
pj∈R|NB(j)|

`j(x, pj)

s.t.
∑

i∈NB(j)

pji = 1;

pji ≥ 0, i ∈ NB(j).

(4.15)

Now, we begin to find a smooth function to approximate to the maximum value
function. According to the analysis above, there are two object functions to be maximized:

1. To maximize the Lagrange function through selecting the optimal multiplier vector;

2. To maximize the entropy function by finding an unbiased probability distribution.

Consider the maximum entropy theory that introduced in the previous section, the
optimal probability distribution should also satisfies:




max
pj∈R|NB(j)|

H(pj) = −
∑

i∈NB(j)

pji ln pji

s.t.
∑

i∈NB(j)

pji = 1;

pji ≥ 0, i ∈ NB(j).

(4.16)

Therefore, the problem to be solved is a multi-objective problem as follows:



max
pj∈R|NB(j)|

{`j(x, pj), H(pj)}
s.t.

∑

i∈NB(j)

pji = 1;

pji ≥ 0, i ∈ NB(j).

(4.17)

By the weighting coefficient method, the multi-object problem (4.17) can be trans-
formed into a single-object problem as follows:




max
pj

L
(j)
θ (x, pj) =

∑

i∈NB(j)

pjifji(x)

−1

θ

∑

i∈NB(j)

pji ln pji;

s.t.
∑

i∈NB(j)

pji = 1;

pji ≥ 0, i ∈ NB(j),

(4.18)
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where θ ≥ 0 is a weighting coefficient. Obviously, when θ is small, the second item of the
object function L

(j)
θ (x, pj) is dominative. Then the gained probability distribution mainly

reflects the requirement of unbiased distribution. With the increase of θ’s value, the effect
of the first item increases; thus, the object of maximizing the Lagrange function becomes
dominative.

To solve Problem (4.18), we first consider the following problem:

sup
pj∈∆j



L

(j)
θ (x, pj) := `j(x, pj)− θ−1

∑

i∈NB(j)

pji ln pji



 . (4.19)

Based on the knowledge of convex analysis and the property of entropy function, we can
prove that the function defined by (4.19) has the following property:

Theorem 19 The function F
(j)
θ (x) defined by (4.19) is differentiable and uniformly ap-

proximate to function f
(j)
max(x) on the whole space Rn.

Proof From the definition of indicator function, Problem (4.19) can be reduced as

sup
pj∈R|NB(j)|





∑

i∈NB(j)

pjifji(x)

−θ−1
∑

i∈NB(j)

pji ln pji − δ(pj|∆j)



 ,

(4.20)

where δ(pj|∆j) is an indicator function on the closed convex set ∆j. From the strictly con-
vex property of entropy function

∑
i∈NB(j) pji ln pji, it can be seen that for arbitrary fixed

x ∈ Rn, the object function of the maximum problem (4.20) is a closed normal strictly
concave function on variable pj and the effective region is the tight set ∆j. Therefore,
from the Weiertrass theory, the maximum problem exists an unique solution p∗j(x, θ) and
reaches its finite optimal value on the unique solution. That is, Problem (4.19) defines a
real value function on Rn as follows:

F
(j)
θ (x) :=

∑
pj∈∆j

L
(j)
θ (x, pj) = L

(j)
θ

[
x, p∗j(x, θ)

]
. (4.21)

Consider that function −∑
i∈NB(j) pji ln pji is unnegative on the bounded closed convex

set ∆j and has an upper bound (ln m)/θ, that is

1 ≤ −
∑

i∈NB(j)

pji ln pji ≤ ln m

θ
,∀pj ∈ ∆j, (4.22)

we have

sup
pj∈∆j

`j(x, pj) ≤ sup
pj∈∆j

L
(j)
θ (x, pj)

≤ sup
pj∈∆j

`j(x, pj) +
ln m

θ
.

(4.23)
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Thus, from (4.8) and (4.21), we have

f (j)
max(x) ≤ F

(j)
θ (x) ≤ f (j)

max(x) +
ln m

θ
. (4.24)

This indicates that the function F
(j)
θ (x), defined by the maximum problem (4.19), is

uniformly approximate to f
(j)
max(x) on the whole space Rn.

At the same time, if function K(pj) is defined as follows:

K(pj) :=





∑

i∈NB(j)

pji ln pji pji ≥ 0;

+∞ pji < 0,

(4.25)

then it is a closed normal strictly convex function on R|NB(j)| and ri(domK)∩ ri(∆j) 6= φ.
Therefore, from (4.20) and the definition of convex conjugate function, we have

F
(j)
θ (x) = θ−1 · (K + δ)∗(θFj(x))

= θ−1 · (K∗ ¦ δ∗)(θFj(x))),
(4.26)

where Fj(x) := (fji(x))T
i∈NB(j) is a vector function and K∗ is the convex conjugate

function of K. Since K ∈ Leg(Rm
+ ), i.e., K(pj) is a Legendre convex function, K∗ ∈

Leg(int(domK∗)) and (K∗ ¦ δ∗)(·) is essentially smooth. Thus, from (4.26) and the prop-

erty that F
(j)
θ (x) is a real value function on Rn, we have dom(K∗ ¦ δ∗) = R|NB(j)|. Due to

the continuous differentiable property of Fj(x), F
(j)
θ (x) is a smooth function.

Combine the above two aspects, the theorem is proven. ¤
In the following, we will prove some properties of function F

(j)
θ (x).

Theorem 20 For ∀x ∈ Rn, function F
(j)
θ (x) has the following properties:

1. f
(j)
max(x) ≤ F

(j)
θ (x) ≤ f

(j)
max(x) + (ln m)/θ.

2. limθ→∞ F
(j)
θ (x) = f

(j)
max(x).

3. If all the functions fji (i = 1, 2, · · · ,m) in the original problem (4.1) are convex,

F
(j)
θ (x) is a convex function too.

4. ∇xF
(j)
θ (x) =

∑
i∈NB(j) p̂ji(x)∇xfji(x).

5. −(ln m)/θ2 ≤ ∂F
(j)
θ (x)/∂θ ≤ 0.

6. F
(j)
θ (x) ≤ F

(j)
ϑ (x), ∀θ ≤ ϑ.

Proof 1. Here, we provide a different proof from Theorem 19. From the expression of
F

(j)
θ (x) in (4.39), we have

F
(j)
θ (x) = f (j)

max(x)

+
1

θ
ln





∑

i∈NB(j)

exp
[
θ
(
fji(x)− f (j)

max(x)
)]



 .

(4.27)
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From the definition of maximum value function f
(j)
max(x) in (4.2), we have

1 ≤
∑

i∈NB(j)

exp
[
θ
(
fji(x)− f (j)

max(x)
)] ≤ m. (4.28)

Substitute this inequality into (4.27), we have

f (j)
max(x) +

1

θ
ln 1 ≤ F

(j)
θ (x) ≤ f (j)

max(x) +
1

θ
ln m. (4.29)

2. Take limitation on both side of (4.29), this property is proven.
3. For any x, y ∈ Rn and α ∈ (0, 1), since all the functions fji (i ∈ NB(j)) are convex,
we have

F
(j)
θ (αx + (1− α)y)

=
1

θ
ln





∑

i∈NB(j)

exp [θfji (αx + (1− α)y)]





≤ 1

θ
ln





∑

i∈NB(j)

exp [θ (αfji(x) + (1− α)fji(y))]





=
1

θ
ln





∑

i∈NB(j)

(exp [θfji(x)])α (exp [θfji(y)])1−α



 .

Applying to the Hölder inequality, we have∑

i∈NB(j)

(exp [θfji(x)])α (exp [θfji(y)])1−α

≤




∑

i∈NB(j)

exp [θfji(x)]





α

·




∑

i∈NB(j)

exp [θfji(y)]





1−α

.

Combined the above two relationships, we have

F
(j)
θ (αx + (1− α)y)

≤ α

θ
ln





∑

i∈NB(j)

exp [θfji(x)]





+
1− α

θ
ln





∑

i∈NB(i)

exp [θfji(y)]





= αF
(j)
θ (x) + (1− α)F

(j)
θ (y).

(4.30)

Hence, function F
(j)
θ (x) is a convex function.

4. Take derivation about x on both side of (4.27), we have

∇xF
(j)
θ (x) = ∇xf

(j)
max(x)

+
1

θ
∇x ln





∑

i∈NB(j)

exp
[
θ
(
fji(x)− f (j)

max(x)
)]



 .

(4.31)
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Since

∇x ln





∑

i∈NB(j)

exp
[
θ
(
fji(x)− f (j)

max(x)
)]





=

∑
i∈NB(j)∇x exp

[
θ
(
fji(x)− f

(j)
max(x)

)]

∑
i∈NB(j) exp

[
θ
(
fji(x)− f

(j)
max(x)

)]

=
∑

i∈NB(j)

exp
[
θ
(
fji(x)− f

(j)
max(x)

)]

∑
i∈NB(j) exp

[
θ
(
fji(x)− f

(j)
max(x)

)]

·∇x

[
θ
(
fji(x)− f (j)

max(x)
)]

= θ
∑

i∈NB(j)

p̂ji(x)∇xfji(x)−∇xf
(j)
max(x),

(4.32)

where p̂jix is defined as (4.38). Substitute this results into (4.31), this property is proven.

5. From the expression of function F
(j)
θ (x) in (4.39) and the definition of p̂ji(x) in (4.38),

we have

∂F
(j)
θ (x)

∂θ

= −F
(j)
θ (x)

θ
+

∑
i∈NB(j) exp (θfji(x)) fji(x)

θ
∑

i∈NB(j) exp [θfji(x)]

= θ−1


 ∑

i∈NB(j)

p̂ji(x)fji(x)− F
(j)
θ (x)


 .

(4.33)

According to (4.18) and (4.39), we have

F
(j)
θ (x) =

∑

i∈NB(j)

pji(x)fji(x)

−θ−1
∑

i∈NB(j)

pji(x) ln [pji(x)] .
(4.34)

Therefore,

∂F
(j)
θ (x)/∂θ = θ−2

∑

i∈NB(j)

pji(x) ln [pji(x)] . (4.35)

Thus, from the following inequality:

− ln m

θ
≤ θ−2

m∑
i=1

pji(x) ln [pji(x)] ≤ 0, ∀x ∈ Rn, (4.36)

this property is proven.
6. From property 5, we can see that function F

(j)
θ (x) is a decreasing function on θ, thus,

this property is straight forward for property 5. ¤
Item 1 in Theorem 20 provides error bounds of function F

(j)
θ (x), and item 2 shows that

function F
(j)
θ (x) uniformly approximates to function f

(j)
max(x). Item 3 shows the convex
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property of function F
(j)
θ (x), and item 4 is for the continuity and the differentiability of

function F
(j)
θ (x). Item 5 provides both upper bound and lower bound of the derivation of

function F
(j)
θ (x) on p, and item 6 shows that function F

(j)
θ (x) is a monotonously decrease

function on θ.
Since function F

(j)
θ (x) uniformly converges to the objective function f

(j)
max(x), solving

the original problem (4.1) is equivalent to solving the following problem:

min
x∈Rn

F
(j)
θ (x). (4.37)

As function F
(j)
θ (x) is differentiable, the optimal solution, p̂j(x), of Ea. (4.18) can be

easily derived from applying the K − T condition as follows:

p̂ji(x) =
exp{θfji(x)}∑

l∈NB(j) exp{θfjl(x)} , i ∈ NB(j). (4.38)

Substitute the analytical solution p̂j(x) of the multiplier pj in the objective function of
(4.18), we have

F
(j)
θ (x) = L

(j)
θ (x, p̂j(x))

=
1

θ
ln





∑

i∈NB(j)

exp [θfji(x)]



 .

(4.39)

4.7 Simulation Results

In this section, we present some simulation results from OMNet++ simulator [128]. We
use the Japanese Internet Backbone (NTTNET) as the simulation framework (see Figure
4.1). It is a 57 node, 162 bidirectional links network. The link bandwidth is 6 Mbits/sec

Figure 4.1: The Japanese Backbone (NTTNET)

and the propagation delay is from 2 to 5 milliseconds. The size of data packet is 512
bytes and the size of an agent is 48 bytes. Traffic is defined in terms of open sessions. A
session is defined between two nodes and it remains active until a certain amount of data
are transferred at a given rate. Each session is characterized completely by session size,
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the generation rate of sessions (GRS), and the sending rate of the packets (SRP). In the
simulation, session size is set to be 2 Mbits.

We implemented our algorithm (OA) together with OSPF [29] and AntNet [20] to
evaluate and compare the efficience of these three algorithms. OSPF is a routing protocol
used in Internet. It is based on the shortest path routing by using the Dijkstra algorithm.
It uses only the best path towards the destination to forward the data packets and this
best path is computed with the costs of edges, normally the distances of links. As OSPF
ignores the queuing delays, it cannot work well during heavy traffic loads. AntNet is
a dynamic routing algorithm proposed by Di Caro and Dorigo [20]. It is inspired from
the foraging activity of real ants. In contrast with OSPF, AntNet measures the queuing
delay and tries to find a globally optimal solution that satisfies the dynamic constraints.
However, AntNet has to store all possible solutions for its statistical method. Because
the heuristic measuring has a relation with a percentage of the data flow, the correctness
of heuristic measuring would be worse under the condition of a low load on the network.
In addition, when the queuing delay is low, a stochastic process is no more sensible. Our
algorithm utilizes inner agents to disseminate the state of the network to the routers in
real-time. It does not need any global information such as the structure of the topology
and cost of links among routers, which not only balances the local traffic flow but also
enhances fault tolerance. Compared to AntNet, this enhancement in performance is
achieved with a little more routing overhead which is defined as the ratio between the
bandwidth occupied by the routing packets and the total network bandwidth, but this
overhead remains constant for a given topology.

Two parameters are introduced for our comparison, throughput and packet delay. The
throughput is defined as the correctly delivered bits per second, which shows the ability
of the algorithms for transmitting data streams. The packet delay is defined as the time
interval from the creation of a data packet to its arrival at the destination, which is only
calculated for the correctly received data packets. It indicates the quality of paths chosen
by a data packet. Figure 4.2 and Figure 4.3 show the comparison results of the average
throughput and the average packet delay between OSPF, AntNet, and our algorithm.
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Figure 4.2: The average throughput when all nodes sent data to node 4 from 500 seconds
to 1000 seconds

Originally, there is a normal load of GRS=2.7 seconds and SRP=0.3 second. From 500
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Figure 4.3: The average packet delay when all nodes sent data to node 4 from 500 seconds
to 1000 seconds

seconds to 1000 seconds, all nodes sent data to node 4 with SRP=0.05 seconds. It can be
seen that both our algorithm and AntNet are able to cope with the transient overload.
OSPF shows the poorest performance. It can also be seen that the average packet delay
for our algorithm is less than 0.1 second as compared to 0.5 second for AntNet. Again,
OSPF shows the poorest performance.

We also compared the deliver rate among these three algorithms which states the
proportion of packets correctly delivered. Table 4.1 shows the results of the deliver rate
which is defined as the quotient of the amount of received packets to the amount of sent
packets. From the simulation results, we can see that our algorithm achieves a similar

Parameters (Sec) Deliver Rate (%)
GRS(Sec) SRP(Sec) OSPF AntNet Our Algorithm

4.5 0.5 83.21 96.85 99.99
2.5 0.5 82.46 97.31 99.99
1.5 0.5 80.13 97.24 99.99
2.5 0.05 83.94 95.94 99.68

Table 4.1: The Comparison of Deliver Rate

performance to AntNet, which is much better than OSPF.
Figure 4.4 shows the results of the comparison between our algorithm and AntNet in

which node 21 crashed at 300 seconds, node 40 crashed at 500 seconds, and both of them
were repaired at 800 seconds. Here, GRS=4.7 seconds and SRP=0.05. The purpose of
this experiment was to analyze the fault tolerant behavior of our algorithm. The GRS
and SRP is selected to ensure that no packets are dropped because of the congestion.
Based on our experimental results, our algorithm is able to deliver 97% of deliverable
packets as compared to 89% by AntNet. From the figure we can see that our algorithm
has a superior throughput and lesser packet delay. But once node 40 crashes, the packet
delay of our algorithm increases because of higher load at node 43. From Figure 4.1 it is
obvious that the only path to the upper part of the network is via node 43 once node 40
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Figure 4.4: Node 21 is down at 300 and node 40 is down at 500 and both repaired at 800

crashed. Since our algorithm is able to deliver more packets the queue length at node 43
increased and this led to relatively poorer packet delay as compared to AntNet. On the
contrary, although node 21 is critical, but in case of its crash still multiple paths exist to
the middle and upper part of the topology.

4.8 Conclusion

In this chapter, we proposed a mobile agent-based execution model for use in peer-to-peer
networks in which the traffic congestion is considered. We defined a traffic cost function
for each link based on known traffic information of the network and found a probability
distribution that mobile agents may select a neighboring node and move to. We prove
that the probability distribution both makes inference on the known traffic information
and approximates to a unbiased distribution. Theoretical analysis provided some proper-
ties of the approximating function (including the convergence property) and showed the
rationality of our probability distribution. We also provide simulation results to evaluate
our algorithm in comparison with AntNet and OSPF. Through extensive simulations we
have demonstrated that our algorithm achieves a better or similar performance as com-
pared to AntNet. In the near future we will have implemented our algorithm inside the
network stack of the Linux kernel in order to then test the algorithm on real network
topologies.
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Chapter 5

Conclusions

5.1 Summarization

In this dissertation, we studied the behaviors of mobile agents in some application areas,
including network routing, fault tolerance, and peer-to-peer networks. The main contents
of this dissertation are generalized as follows:

• Routing is a key factor for network performance. In Chapter 2, we addressed the
problem of network routing and management by deploying mobile agents. Sev-
eral agent-based routing algorithms have been considered and analyzed, including
the classical ant-like algorithm, settleable-agent algorithm, and nonsettleable-agent
algorithm. For each case, we analyzed both the probability of success and the pop-
ulation distribution of mobile agents to evaluate the performance of these proposed
algorithms. We further proposed an agent-based routing model in faulty networks
and analyzed these two parameters. Experiments to validate the theoretical results
were also provided. Both the theoretical and experimental results showed that the
behaviors of mobile agents could be characterized by the population of mobile agents
and the probability of success, and both two parameters can be controlled by tuning
the number of agents generated per request and the number of jumps each mobile
agent can make.

• The reliable execution of mobile agents is an important design issue for building
a mobile agent system. In Chapter 3, we proposed a new fault-tolerant execution
model by effectively combines available techniques. In our model, failures were clas-
sified into two classes: on-site failure and frontal failure. For each kind of failures, an
exceptional-event handling method was adopted. For the first time, the behaviors
of mobile agents in networks that may contain faults were statistically analyzed in
a quantitative way, which exploits a new approach to assessing the performance of
agent-based systems. Several important parameters on system performance, includ-
ing migration time, life expectancy, and population distribution of mobile agents,
were analyzed. The analytic method proposed in this chapter may also be applied
for performance analysis in other complex systems. Our model is reliable and cost-
efficient, which offers us a promising way for designing reliable mobile agent system.

• Peer-to-peer computing is one of the trends in the field of internetworking and
also an important application area for mobile agents technology. In Chapter 4, we
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proposed a mobile agent-based execution model for use in peer-to-peer networks in
which the traffic congestion was considered. To balance the traffic load on each link,
we introduced the maximum entropy theory into our algorithm. We defined a traffic
cost function for each link based on known traffic information of the network and
found a probability distribution that mobile agents may select a neighboring node
and move to. We proved that the probability distribution both made inference on
the known traffic information and approximated to a unbiased distribution. We also
theoretically analyzed some properties of the approximating function (including the
convergence property) and showed the rationality of our probability distribution.

5.2 Future Work

The following issues can be considered for future research.

• Peer-to-peer computing. Based on our previous results, we will further develop new
methods and algorithms for monitoring and analyzing mobile agents in peer-to-peer
networks, and build a prototype of mobile agent-based peer-to-peer system.

• Ubiquitous computing. Many ubiquitous computing applications need a constant
flow of information about their environment to be able to adapt to their changing
context. Mobile agents technology is expected as an applied means for collecting,
aggregating, and disseminating context information.

• Grid computing. Grid computing was proposed in mid 1990s thanks to the increas-
ing demand of large-scale scientific computation in the fields of life sciences, biology,
physics, and astronomy. Since a grid connects numerous geographically distributed
computers, and tasks are submitted to grid nodes in a distributed fashion, an impor-
tant issue is how to evenly distribute submitted tasks to nodes. Mobile agents can
be used in grid computing applications for task scheduling and resource allocation.

• Wireless sensor networks. A sensor network is usually built with a large number of
small devices, each of which has limited battery energy, memory, computation, and
communication capacities. Furthermore, these small devices are statically config-
ured and cannot easily adapt to a changing context or be upgraded, which prevents
the network from running other applications. Mobile agent-based sensor network
can be used to undertake multiple tasks simultaneously and maintain maximum net-
work flexibility in terms of its ability to be reprogrammed and its ability to execute
multiple applications at a time.
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