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Abstract— This paper proposes a technique to compress the
data with equal length code words. A novel source coding
technique, multiple label mapping (MLM), is introduced. With
MLM it is possible to produce a source code which uses equal
length code words. Moreover, it is shown that with the MLM
technique, it is possible to achieve near limit compression without
using variable length coding (VLC). However this requires that
the source probability grouping is performed so that after
MLM each code word has almost equal appearance probability,
and that full a priori feedback is available. Numerical results
demonstrate proper operability of the proposed system.

I. INTRODUCTION

Lossless source codes, e.g., Huffman codes or arithmetic
codes can compress data very efficiently and reach very close
to the theoretical limit of the compression rate, i.e., the entropy
rate of the source. Both Huffman codes and arithmetic codes
are forms of variable length entropy encoding. However, the
main drawback of variable length coding (VLC) is that because
of boundary problems, it is very sensitive to errors, which
result in many cases in long burst errors.

Shannon’s source-channel separation theorem states that as
long as the entropy of the source is less than the channel
capacity, there exists a separable source and channel coding
(SCC) scheme which allows transmission over the channel
with an arbitrarily low probability of error. However, this
theorem assumes that the source can be treated as a stationary
stochastic process which satisfies the asymptotic equipartition
property (AEP). Moreover, Shannon’s source compression
limit requires infinitely long sequences.

The mobile access of multimedia data is one of the key
applications in the current and future generation wireless
services. In such applications, source compression is usually
performed using standardized techniques, which, in order to
achieve high compression gains, often employ VLC. In Delay-
and/or complexity-constrained transmission scenarios, joint
optimization of SCC techniques are often more advantageous
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which was funded by the Finnish Funding Agency for Technology and
Innovation (TEKES). This work was also in part supported by the Japanese
government funding program, Grant-in-Aid for Scientific Research (B), No.
20360168. This research has also been supported by the Nokia Foundation.

than the classical separation of source and channel encoding.
Hence, joint SCC schemes has been in focus during this
decade [1], [2].

In many approaches to joint SCC scheme, the implicit resid-
ual source redundancy after source encoding is additionally
used for error protection in the decoder. This is useful in order
to reduce the allocated bandwidth or latency for the overall
transmission system because excessively powerful forward
error correction coding (FEC) is not necessary [3]. Hagenauer
[1] proposes joint SCC by combining the trellis diagrams of
the source model and the channel code for Viterbi decoding. In
[4], [5], residual redundancy of the source is used in joint SCC
by exploiting the memory structure of hidden Markov models
(HMMs). Correspondingly, source memory is also exploited
in [6] by using the Burrows Wheeler transform. Fingscheidt
et al. [7] use softbit speech decoding as an approach to
error concealment. Moreover, softbit source decoders are also
investigated in [8], [9]. Recently, a technique called over-
complete source-mapping is proposed for joint optimization
of iterative source and channel decoding (SCD) in [10]. VLC
is employed on joint SCC in [3], [11]. Joint SCC and SCD
for multiple correlated sources is investigated in [12]–[14].

In this paper, we propose a method to remove the error
propagation problem in source coding without imposing in-
formation loss. A new source compression technique, MLM,
is presented. Usually, entropy achieving source codes employ
VLC, but in contrast to previous work, MLM uses equal length
code words. The MLM and its inverse operation, referred to
as DeMLM algorithm, are based on the extended mapping
presented in [15]. The convergence analysis of the system is
made by using EXIT charts. It is shown that that the proposed
technique can achieve optimal performance, if the source
probability grouping is performed so that after compression
each code word has almost equal appearance probability, and
if full a priori feedback is available.

II. SYSTEM MODEL

Fig. 1 presents a block diagram of the transmitter side of
the system model. At the very beginning of the model in the
transmitter side is the Markov source. In this paper, the source
is the transition emitting model (TEM) source shown in Fig.
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Fig. 1. Transmitter side of the system.

Fig. 2. Transition emitting Markov model. For the transition Si → Sj , ij
is transmitted, i, j ∈ {0, 1}.

2. After the interleaver Π1, source bits u2,1, u2,2, . . . , u2,ni

is compressed by using MLM, which is described in Section
III, resulting in compressed sequence c2,1, c2,2, . . . , c2,nc

. The
compressed sequence is permutated with interleaver Π2 and
coded by using a systematic repeat accumulate (RA) code [16],
resulting in the sequence c3,1, c3,2, . . . , c3,Rcnc

. Finally, bits
are sent through an Additive White Gaussian Noise (AWGN)
channel. The receiver receives the noisy bit sequence yj =
xj + nj , j = 1, 2, . . . , Rcnc, where xj ∈ {−1, 1} is the
transmitted sequence and nj ∈ R is zero mean white Gaussian
noise with variance σ2

n.

III. MLM AND DEMLM TECHNIQUES

A. Design of Mapping Parameters

The MLM follows the idea of extended mapping [15], for bit
interleaved coded modulation with iterative detection (BICM-
ID). The basic idea of extended mapping is to increase the
length of labeling of the bit patterns for a given constellation
diagram. For example, in the standard QPSK case, the labeling
length is lmap = log2(4) = 2, but in extended mapping,
the labeling length is lmap = log2(4) + r, where r is the
number of extended bits. The idea of MLM is to compress
the data using equal length code words. For example assume
3-bit segmentation where the MLM compressor allocates each
possible 3-bit pattern to 2-bit code words. This allocation is
shown in Fig. 3, where code symbol A corresponds to the
source words 000 and 101, code symbol B corresponds to the
source words 010 and 111, etc. In the extended mapping, the
optimal mapping rule with full a priori information available
is obtained so that the Hamming distance of source words
is as large as possible when the Euclidean distance between
the code symbols is small. In the MLM the Euclidean dis-
tance between the code symbols can be considered as the
Hamming distance between the code symbols. For example,
in Fig. 3 the Hamming distances between the source words
that are allocated to the code symbols A and C are all 2.
After the allocation, code symbols are sent to the channel
encoder so that each code symbol corresponds to two bits:
{A,B,C,D} = {00, 01, 10, 11}.

Fig. 3. QPSK lmap = 3 extended mapping scheme.

The ultimate data compression rate is the entropy rate of
the source. The compression rate can be expressed as

Rs =
nc

ni
, ni, nc ∈ Z+, (1)

where ni is the number of information bits and nc is the
number of compressed bits. The compression rate has to be
chosen so that the entropy of the source is smaller than or equal
to the compression rate, i.e., niH(C1) ≤ nc, C1 ∈ {0, 1}. In
the MLM case, the entropy after the source compression is
maximized if the probabilities of the symbols A, B, C and D
are equal. The expected length L(C) of a source code C(c2)
for a random variable C2 with probability mass function p(c2)
is given by [2]

L(C) =
∑

c2∈C2

p(c2)l(c2), (2)

where l(c2) is the length of the code word for a source
symbol c2. With MLM, this property leads to the requirement
L(C) = 1

n

∑
c2∈C2

l(c2) = 1
nnnc = nc, which can be chosen

so that nc ≈ niH(C1), C1 ∈ {0, 1}. It is possible to make
p(c2) uniform if the symbol allocation is performed so that the
sum of the probabilities of the words that are allocated to each
symbol is approximately 1/lmap. The mapping scheme must be
reconfigured to make it optimal, for which, for example, the
binary switching algorithm (BSA) [15] can be used. Other
algorithms to determine an optimal mapping rule are reactive
tabu search [17] and quadratic integer programming [18].
In this paper, optimal mapping schemes that are optimal for
equiprobable source words are considered. In order to achieve
near limit compression, the appearance probabilities of the
source code words after compression should be equal. Note
that to satisfy this requirement, the number of the segment
patterns allocated to one code word should not necessarily
be equal 1. The MLM algorithm is shown in Algorithm 1.
Assume that the length of the binary input is long enough to

1The forthcoming equations (11), (12) still holds, when the number of the
source words included by one code symbol, is different. Only difference is
the function f which is the mapping rule.



track the correlation model of the source. The entropy rate of
the source model in Fig. 2 can be calculated as

H(C1) = −
∑
ij

p(Si)Pij log Pij , (3)

where p(Si) is the steady state probability of state Si and Pij

is the probability of transition from state i to state j. By using
simple mathematics, it can be seen that when the algorithm
has been performed, the compression rate is

Rs =
nc

ni
=

�k�
ni

=
�k� − k + k

ni
≤ ε + k

ni
=

ε + niH(C1)
ni

=
ε

ni
+ H(C1), (4)

where �k� means the nearest integer from k towards infinity,
and ε = �k� − k. It can be concluded that the compression
rate approaches to the entropy of the source when the ε value
approaches to zero and, consequently, the number of loops in
step 5) in Algorithm 1 approaches infinity. [2], [15], [19]

Algorithm 1 The Multiple Label Mapping Algorithm
1) Input 0’s and 1’s.
2) Calculate the entropy of the source H(C1)
3) Choose ε ∈ [0, 1]
4) Set q = 1
5) 1: repeat

2: k := qH(C1)
3: q := q + 1
4: until �k� − k ≤ ε

6) nc = �k�, ni = q − 1
7) Probability grouping (BSA)

B. Soft Decompression

Next we will derive how the decoding of MLM compressed
data is performed. Consider the function node depicted in
Fig. 4. For notational simplicity, in the following formula-
tion, the DeMLM box is marked as f (function node). The
edges for a priori information A(c2) and extrinsic infor-
mation E(c2 is marked as C2,1, C2,2, . . . , C2,nc

. The edges
for extrinsic information E(u2) and a priori information
A(u2) is marked as U2,1, U2,2, . . . , U2,ni

. Another incoming
messages LC2,k→f (c2,k) are the log-domain a priori messages
from the previous decoder. Incoming messages LU2,k→f (u2,k)
are the log-domain a priori messages from the next de-
coder. The outgoing log-domain messages Lf→U2,k

(u2,k) and
Lf→C2,k

(c2,k) can be calculated as follows: in the probability
domain, the sum-product (SP) algorithm [20] is now

μf→U2,k
(u2,k) =

∑
∼u2,k

f(u2,1, . . . , u2,ni , c2,1, . . . , c2,nc)

∏
l �=k

μU2,l→f (u2,l)
∏
w

μC2,w→f (c2,w), (5)

where w = {1, 2, . . . , nc} and
f(u2,1, . . . , u2,ni , c2,1, . . . , c2,nc) equals one, when
c2,1, . . . , c2,nc is the code word for u2,1, . . . , u2,ni , and

Fig. 4. Function node.

zero otherwise. The notation ∼ {u2,k} refers to all the
variables except u2,k. We will use following definition for
the Jacobian logarithm:

Definition 1: (Jacobian logarithm [20]). For any M ∈ Z+,
the Jacobian logarithm is a function Υ : R

M → R defined
according to the following recursive rule:

Υ(L1, . . . , LM ) = Υ(L1,Υ(L2, . . . , LM )), (6)

where

Υ(L1, L2) = max(L1, L2) + log
(
1 + e−|L1−L2|

)
(7)

and
Υ(L1) = L1. (8)

The Jacobian logarithm has the following important property
[20]:

Υ(L1, . . . , LM ) = log
( M∑

m=1

eLm

)
. (9)

Similarly to the summation operator
∑

, abbreviation
Υ(L1, . . . , LM ) = ΥM

i=1(Li) is used.
The log-domain messages from function node f to an edge
U2,k is

Lf→U2,k
(u2,k) = ln

( ∑
∼u2,k

f(u2,1, . . . , u2,ni
, c2,1, . . . , c2,nc

)

∏
l �=k

μU2,l→f (u2,l)
∏
w

μC2,w→f (c2,w)
)
.

(10)

With the help of (9) it is possible to rewrite previous equation
as

Lf→U2,k
(u2,k) =Υ

∼{u2,k}
(

ln f(u2,1, . . . , u2,ni
, c2,1, . . . , c2,nc

)

+
∑
l �=k

LU2,l→f (u2,l) +
∑
w

LC2,w→f (c2,w)
)
.

(11)

By utilizing the SP algorithm, outgoing messages from func-
tion node f to an edge C2,k is given by

Lf→C2,k
(c2,k) =Υ

∼{c2,k}
(

ln f(u2,1, . . . , u2,ni
, c2,1, . . . , c2,nc

)

+
∑

l

LU2,l→f (u2,l) +
∑
w �=k

LC2,w→f (c2,w)
)
.

(12)



IV. NUMERICAL RESULTS

In this section, results of the EXIT chart analysis performed
for the three-stage system of Fig. 5 is presented. The BCJR
decoder [21] in Fig. 5 is used for decoding the TEM Markov
source, where the value p = 0.17 is used in the simulations.
Similarly to the two-stage system [22], the signal to noise
ratio (SNR) threshold value of the three-stage system can be
determined. In EXIT simulations the length of the bit sequence
transmitted trough the channel is 6000 and the process is
repeated 200 times, excluding 3 dimensional DeMLM surface,
which is repeated only 20 times due to the long simulation
time. In BER simulations the length of the bit sequence
transmitted trough the channel is 240000 and it is repeated 42
times. The code rate of the systematic RA code is Rc = 1/3
where the variable node degree dv = 2 and the check node
degree dc = 1 [16]. 6 iterations are performed inside the RA
decoder.

In a system with 3 serially concatenated codes, there
are four extrinsic values, E(u3), E(c2), E(u2) and E(c1),
connecting the three decoders and therefore extrinsic mutual
information (MI) at the four points have to be evaluated.
Hence, for a fixed SNR, the EXIT chart for three serially
concatenated code is four-dimensional, and hence visualization
of the convergence property using the EXIT chart is not so
straightforward.

As shown in Fig. 5, DeMLM exploits two a priori inputs,
namely, A(c2) and A(u2). At the same time, it generates two
extrinsic outputs, i.e., E(c2) and E(u2). Hence, in order to
describe the EXIT characteristics of DeMLM, following two
3D EXIT functions are needed [23]–[25]:

IE(u2) = Tu2(IA(u2), IA(c2)), (13)

IE(c2) = Tc2(IA(u2), IA(c2)). (14)

For the BCJR decoder and RA decoder only one a priori input
is available; let their corresponding EXIT functions be denoted
as

IE(u3) = Tu3(IA(u3), Eb/N0) (15)

for the RA decoder and

IE(c1) = Tc1(IA(c1)) (16)

for the BCJR decoder. In (15) the second parameter, Eb/N0,
indicates that the extrinsic information also depends on the
channel SNR. Equations (14) and (15) are plotted in Fig.
6(a), and equations (13) and (16) are plotted in Fig. 6(b).
The entropy rate of the source is H(C1) ≈ 0.6577. The
compression is performed in a way described in Section III.
First, the entropy of the one-bit segments is calculated and
that is, as mentioned above, 0.6577. The entropy of two-bit
segments is 2 · 0.6577 = 1.3154. The entropy of three-bit
segments is 3 · 0.6577 = 1.9731, which is close enough to an
integer, so the code word length nc = 2 is chosen and the
compression rate is Rs = 2/3.

First consider the extrinsic information exchange between
the RA decoder and the DeMLM. Because the mutual infor-
mation does not change after interleaving or deinterleaving,

Fig. 5. System diagram for joint source and channel coding using multiple
label mapping.
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Fig. 6. 3D EXIT charts for the proposed system with Eb/N0 = −4.6dB;
Rs = 2/3, p = 0.17. (a) RA code and DeMLM. (b) DeMLM and BCJR.

the following equivalence holds

I
(l)
A (c2) = I

(l−1)
E (u3) (17)

I
(l)
A (u3) = I

(l−1)
E (c2), (18)

where l is the time index. For a given a priori information
IA(u2), the a priori information for DeMLM writes as

I
(l)
A (c2) = Tu3(Tc2(I

(l−2)
A (u2), I

(l−2)
A (c2)), Eb/N0), (19)



with I
(0)
A (c2) = 0 and

I
(l)
E (u2) = Tu2(I

(l)
A (u2), I

(l)
A (c2)). (20)

I
(l)
A (c2) and I

(l)
E (u2) converge to a value between 0 and 1 after

iterations. That value depends on the channel SNR and on the
a priori input IA(u2). Mathematically this is

IA(c2) = lim
l→∞

I
(l)
A (c2), (21)

and

IE(u2) = lim
l→∞

Tu2(I
(l)
A (u2), I

(l)
A (c2)). (22)

Hence, the overall EXIT function of the combined module of
the RA decoder and the DeMLM is a function of IA(u2) and
Eb/N0. This can be expressed as

IE(u2) = T ′
u2

(IA(u2), Eb/N0), (23)

which can be plotted in a 2-dimensional chart when Eb/N0 is
constant.

The extreme values of IA(c2) in (21), which corresponds to
different IA(u2) values, can be visualized as the intersection of
the two EXIT surfaces seen in Fig. 6(a). In Fig. 6(b) it can be
seen that in order to reach the convergence point, i.e., (1,1,1)
point, in DeMLM output IE(u2), both of the inputs IA(u2)
and IA(c2) have to reach the convergence point. That is also
an essential condition to reach the convergence point in BCJR
decoder output. Hence, in Fig. 6(a) there has to be an open tun-
nel to the convergence point between the two EXIT surfaces.
Let the axis in Fig. 6(a) be denoted as IA(u2), IE(c1):=x,
IE(c2), IA(u3) :=y and IA(c2), IE(u3) :=z. The inner code
inputs are on the x and y axes, and the output is on the z axis.
The outer code inputs are on the x and z axes, and the output is
on the y axis. When the 3D EXIT chart is plotted in this way,
it can be concluded that the convergence gets stuck when the
outer code surface is completely above the inner code surface.
Finally, the EXIT function of (23) plotted for the combined
module of RA and DeMLM is shown in a 2D EXIT chart in
Fig. 7(a). The Eb/N0 value is −4.6dB and the tunnel is open
and the trajectory reaches the convergence point. In order to
maximize the bit rate, the convergence with lower SNR can be
checked, which has been demonstrated in Fig. 7(b). It can be
seen that the convergence gets stuck in a Eb/N0 value −4.7dB.
This observation suggests that the convergence threshold is
somewhere between −4.6dB and −4.7dB.

The BER performance is shown in Fig. 8. It can be seen
that there exist a BER floor below BER=10−5, even in the
SNR value range where the tunnel in the EXIT chart is open.
This is due to the fact that the gap between the EXIT curves
is extremely narrow near to the convergence point. In many
cases, the BER floor can be reduced by increasing the length
of the interleaver. However. BER=10−5 can already be thought
as arbitrarily small. The theoretical Eb/N0 limit for reliable
communication in Fig. 8 is -5.9dB, which is 1.5dB away from
the BER=10−5 of the proposed system. This loss is caused by
RA code which is not optimized.
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Fig. 7. 2D EXIT chart for BCJR decoder for the transition emitting Markov
source and the combined module of the RA and the DeMLM. Rs = 2/3,
p = 0.17, dv = 2 and dc = 1. (a) Eb/N0 = −4.6 dB (b) Eb/N0 = −4.7
dB

By investigating the densities of the LLRs yields that the
consistency and symmetry condition does not hold for IA(u2).
That is why IA(u2) is produced as shown in Fig. 9. At first,
the source bits c1 are sent through the side channel, which is
also called an extrinsic channel. After the BCJR decoder and
the interleaver Π1 these noisy symbols become the a priori
value IA(u2), which depends on the variance σ2

e . The value
IA(u2) is saved and the two decoders, RA and BCJR, are
activated as long as IE(u2) converges with a certain accuracy,
which in this paper is set to 0.01. This method to produce
the asymmetric inconsistent a priori information can be ap-
plied in other decoders too. The a priori information can be
produced by sending a consistent Gaussian distributed random
variable through the decoder, which yields the asymmetry and
inconsistency. However, there is no proof that it can track the
distribution perfectly in any situation.
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Fig. 9. System diagram for the EXIT chart projection.

V. CONCLUSIONS

In this paper we have examined the possibility that source
and channel coding schemes are jointly designed and jointly
decoded by using the turbo concept. A new compression
technique, the MLM technique, has been proposed which
produces equal length code words. This prevents efficiently
the error propagation which may occur due to code word syn-
chronization error. The convergence analysis of the receiver,
the chain RA-DeMLM-BCJR, has been performed by using
EXIT chart analysis.

The MLM can achieve the entropy of the source, if proba-
bility grouping is performed so that the appearance probability
of each code word after MLM is almost equal, and if full a
priori feedback is available. The most crucial process of MLM
is to find the best probability grouping of the probabilities of
the source alphabet given the entropy of the source. This is
left as future research work.
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