JAIST Repository

https://dspace.jaist.ac.jp/

Title Efficiency of the Symmetry Bias in
Aqui sition

Author(s) Mat oba, Ryuichi; Nakamur a Makot o;

Citation I nformation and Computatipn, 209(3):

Issue Date 2010

Type Journal Article

Text version aut hor

URL http://hdl . handle.net/ 101119/ 9823
NOTI CE: This is the authof's versi ol
accepted for publication py EIl sevi el

Rights Mat oba, Makot o Nakamur a, Satoshi Toj
I nformation and Computatipn, 209(3),
547, http://dx.doi.org/ 10} 1016/ ] .1ic.
Speci al l ssue: 3rd Internptional Co

Description Language and Automata Thepry and Ap]
(LATA 20009)

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Efficiency of the Symmetry Bias
in Grammar Acquisition

Ryuichi Matoba?®, Makoto Nakamura®, Satoshi Tojo”

@ Department of Electronics and Computer Engineering,
Toyama National College of Technology,
1-2, Neriya, Ebie, Imizu, Toyama, 935-0293, Japan
b School of Information Science,
Japan Advanced Institute of Science and Technology,
1-1, Asahidai, Nomi, Ishikawa, 923-1292, Japan

Abstract

It is well known that the symmetry bias greatly accelerates vocabulary learn-
ing. In particular, the bias helps infants to connect objects with their names
easily. However, grammar learning is another important aspect of language
acquisition. In this study, we propose that the symmetry bias also helps to
acquire grammar rules faster. We employ the Iterated Learning Model, and
revise it to include the symmetry bias. The result of the simulations shows
that infants could abduce the meanings from unrecognized utterances us-
ing the symmetry bias, and acquire compositional grammar from a reduced
amount of learning data.

Keywords: symmetry bias, abduction, iterated learning model,
compositionality, grammar acquisition

1. Introduction

Infants have an amazing capacity to learn their vocabularies. In fact,
infants can acquire new words very rapidly, e.g., 7 to 15 words a day over
the age of 18 months, and can also learn a word’s meaning after just a
single exposure, through fast mapping [1, 2, 3, 4, 5|. The difficulty in lexical
acquisition includes mapping between a word and a meaning from an infinite
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range of possible meanings, as is well known as ‘gavagai problem’ [6]. Some
cognitive biases are working for lexical acquisition. Infants overcome the
difficult mapping through fast mapping and slow mapping. The process of
fast mapping forms an approximate representation of a word’s meaning after
just a single exposure on the basis of heuristics [7], or cognitive biases such
as whole object bias, mutual exclusivity bias, and symmetry bias. Carey
[1] explained that the approximate word meanings were first established by
fast mapping, and then were embodied as actual words in infants’” memory
through slow mapping. Therefore, infants under 17 months old only learn
lexical items slowly, but this knowledge is fragile and those lexical items are
prone to being forgotten. On the other hand, infants over 18 months old
come to acquire new words firmly, and lexical misapplication subsides [§].

Among these various biases, the symmetry bias is said to be saliently
effective for lexical learning [9, 10, 11, 12, 13, 14]. The bias says, if infants
are taught that an object P has a lexical label Q, then they apply the la-
bel Q to the object P. For example, an infant who has learned the name
of an object, which is called apple, can not only answer the name of the
object indicated correctly, but can also pick out an apple from a basket filled
with other fruits. The latter action is considered as a human-specific skill,
and many experiments have shown that other animals cannot map an object
to its label [15, 16, 17]. Although the relation between symmetry bias and
lexical acquisition has been reported so far, its relation to grammatical con-
struction has not been mentioned yet. In this paper, we verify the efficacy
of the symmetry bias not only in lexical acquisition, but also in grammar
acquisition.

Our study is based on the Iterated Learning Model (ILM, hereafter) by
Kirby [18]; in each generation, an infant can acquire grammar in his mind
given sample sentences from his mother, and a grown infant becomes the
next mother to speak to a new-born baby with his/her grammar. As a
result, infants can develop more compositional grammar through the gener-
ations. Note that the model focuses on the grammar change over multiple
generations, not on that in one generation. In ILM’s setting, a sentence is
considered to be uttered in an actual situation; thus, an infant can guess what
a sentence implies. Therefore, a mother’s utterance is always paired with its
meaning. Here, the utterance is regarded as an instance of E-language, while
the infant guesses its grammar structure, that is, I-language [19, 20, 21, 22].
Our objective in this paper is to embed the symmetry bias into this combi-
nation of utterance and meaning, to show its efficacy.



This paper is organized as follows: in Section 2 we explain Kirby’s ILM [18],
and in Section 3 we revise it to include the symmetry bias. Section 4 presents
the details of our experimental model, and gives specific experiment designs.
We analyze our experimental results in Section 5, and conclude and discuss
our results in Section 6.

2. Iterated Learning Model

ILM is a framework for investigating the cultural evolution of linguistic
structure. In the experiment by Kirby [18], a parent is a speaker agent and
her infant is a learner agent. The key issue of this model is the learning
bottleneck, that is, the infant acquires sufficiently versatile grammar in spite
of the limited amount of sentence examples from the parent; in other words,
this bottleneck is the very cause of grammar generalization. The infant
tries to guess sentence structure, as utterances are always paired with their
meanings, which are intrinsically compositional. This process is iterated
generation by generation, and finally in a certain generation an agent would
acquire a compact, limited set of grammar rules.

2.1. Utterance Rule of Kirby’s Model
According to Kirby’s model, we present a signal-meaning pair as follows.

S/hit(john,ball) — hjsbs (1)

where the meaning, that is the speaker’s intention, is represented by a Predicate—
Argument Structure (PAS, hereafter) hit(john, ball) and the signal is the
utterance hjsbs; the symbol ‘S’ stands for the category Sentence. The fol-
lowing rules can also generate the same utterance.

S/hit(x,ball) — h N/xsbs (2)

N/john — ] (3)

The variable z in (2) can be substituted for an arbitrary element of category
N. A rule without variables, i.e., the whole signal indicates the whole mean-
ing of a sentence as in Formula (1) is called a holistic rule (Fig. 1), while a
rule with variables as in Formula (2) is called a compositional rule (Fig. 2).
Also, a rule which corresponds to a word, as in Formula (3) is called a lezical
rule. Here, we review the definitions of these rules.
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Figure 1: Holistic rule Figure 2: Compositional rule

Definition 1 (Compositional rule, Holistic rule, and Lexical rule).

Compositional rule: a grammar rule including non-terminal symbols for cat-
egories.

Holistic rule: a grammar rule consisting of terminal constants.

Lexical rule: a rule consisting of a monadic terminal constant.

In addition, we define the variable level.

Definition 2 (Variable level). Variable level is the number of variables
included in a grammar rule.

For example, the level of Formula (1) is 0, while that of Formula (2) is 1.

2.2. Rule Subsumption

The learner agent has the ability to change his knowledge with learning.
The learning algorithm consists of the following three operations; chunk,
merge, and replace [18].

2.2.1. Chunk

This operation takes pairs of rules and looks for the most—specific gener-
alization. For example,

S /read(x, book) — ivaN /x
= N /john — re

{ S /read(john, book) — ivnre
N /mary — ho

S /read(mary, book) — ivnho



2.2.2. Merge
If two rules have the same meanings and strings, replace their nonterminal
symbols with one common symbol.

S/T-'ead(x, book) — ivnd/x S /read(z, book) — ivnA/x
Afjohn — re A/john - re
A/mary — ho N A mar N

Yy — ho
S/egt(x, apple) — aprB /v S/eat(x, apple) — aprA/z
B/john — re A/pete — wqi
B/pete — wqi

\

2.2.3. Replace

If a rule can be embedded in another rule, replace the terminal substrings
with a compositional rule.

S /read(pete, book) — ivnwqi S /read(z, book) — ivnB/x
. = .
B/pete — wqi B/pete — wqi

3. Symmetry Bias Model

In this section, we introduce our modified Kirby model, including the sym-
metry bias as a kind of abductive reasoning, which is the reversely-directed
implication. Especially, we reinterpret the notion of the symmetry bias to be
built into the meaning—signal model.

3.1. Reverse Reasoning

If a learner is given an utterance always paired with its meaning (PAS),
the learner can understand the speaker’s intention correctly at all times.
However in actual situations, this seldom occurs. In our model, we loosen this
assumption and regard that some utterances lack meanings, corresponding
to the following situations.

e A learner cannot understand the intention of a speaker’s utterance.

e The learner fails to communicate with the speaker because of a lack of
other modalities, like finger pointing.

Even in such cases, the learner attempts to complement the speaker’s inten-
tion by using his own previously-acquired knowledge. We define this notion



as the symmetry bias. For example, if the learner cannot get the meaning of
the left-hand side of ‘—’ in

S/p(a,b) — fjaljla,
the learner guesses its meaning backward, namely:
777 «— fjaljla.

This backward directional guess is regarded as the effect of the symmetry
bias, and we build this process into our model. In ordinary circumstances,
this reverse reasoning can lead to a mistake, though there is also the possi-
bility to accelerate language acquisition.

3.2. ILM with the Symmetry Bias

Here we include the symmetry bias into ILM. The symmetry bias suppos-
edly works well when the meaning and the signal are mapped one-to—one.
It has been suggested that the Contrast Principle [23] favors one-to—one
mappings between meanings and words in language acquisition. Otherwise,
linguistic communicability would deteriorate and an infant could hardly ac-
quire language, as was mentioned with a computer simulation by Smith [24].

Now we summarize our settings.

1. In the actual world, a learner cannot always understand a speaker’s
intention from an utterance.

2. However, the learner accepts this utterance as a reasonable linguistic
representation, and he has an ability to understand it using his own
knowledge.

3. An utterance is composed by the speaker’s intention, and the utterance
reflects the speaker’s intention.

4. The process inferring the meaning from an utterance has the reverse
direction of the utterance generation.

5. We regard this inference to be caused by the symmetry bias in language
acquisition.

6. Because most meaning/utterance pairs correspond one-to-one, the sym-
metry bias works effectively.

For verifying the above intuitions, we have the following conjectures.



Conjecture 1 If a learner receives only an utterance, he looks for similar
utterances that he has once received. If the utterance is new, he has
to generate an appropriate meaning. In terms of computer simulation,
this may increase computational time due to the addition of a learning
process, compared with Kirby’s model.

Conjecture 2 Despite the disadvantage of Conjecture 1, if the learner’s
partial grammatical/lexical knowledge is sufficient, he may be able to
guess meanings of unrecognized utterances. Thus, the learning process
saves memory space.

In the next section, we show the adequacy of these conjectures by computer
simulation.

4. Experiments in Symmetry Bias Model

In this section, we show the procedure and the result of our experiment.
The purpose of the experiment is to demonstrate acquisition of compositional
grammar, even in a case that a learner agent may not always understand the
meaning of an utterance. In order to examine the efficacy of our model, we
compare our symmetry bias model to the original model.

First of all, we reiterate the experiment by Kirby [18] as a pilot one, to
grasp the features of the original model; how many generations are needed to
organize a compositional grammar, when does an agent acquire a grammar
that can represent the whole meaning space, how many grammar rules does
the agent acquire, and so on.

After the pilot experiment, we examine the following three strategies when
a learner cannot understand the meaning of an utterance.

(I) The learner ignores such utterances, and does not use them in his
learning.
(II) The learner complements meanings of such utterances, randomly as-
signing his previously learned meanings.
(III) The learner applies the symmetry bias to such utterances to comple-
ment their meanings, and uses them in his learning.

The purpose of experiment (I) is to observe differences in acquired grammar,
dependent on the amount of data for learning, by comparison with the pilot
experiment. Also, we compare experiment (I) to experiment (III) to observe



the effect of complementary process. Next, we compare experiment (II) to
experiment (III) to observe the superiority of the symmetry bias to use of
simple meaning complementation.

4.1. Ezperimentation Environment

In our model, we have employed the following five predicates and five
object words, which are the same in Kirby’s experiment [18].

predicates: admire, detest, hate, like, love
objects: gavin, heather, john, mary, pete

Preserving Kirby’s settings, we prohibit two identical arguments in a predi-
cate like love(pete, pete). This implies that there are 100 distinct meanings (5
predicates x 5 possible first arguments x 4 possible second arguments). Al-
gorithm 1 is the procedure of the simulation. Algorithm 2, appearing in
Algorithm 1, will be explained in Section 4.4.

Since the number of utterances is limited to 50, the learner cannot learn
the whole meaning space, the size of which is 100; thus, the learner comes
across Kirby’s bottleneck. To obtain the whole meaning space, the learner
has to generalize his own knowledge by self-learning.

To evaluate the accomplishment of the learning, we investigate expressiv-
ity in the following definition, as well as the number of grammar rules.

Definition 3 (Expressivity). Ezpressivity is the ratio of the utterable mean-
ings to the whole meaning space.

We regard that grammar has converged under the following condition.

Definition 4 (Grammar convergence). We regard that the grammar has
converged when the average expressivity of 100 trials attains to 95%.

The generation when the grammar converges is called the convergence gen-
eration.

We have carried out each experiment until the 200th generation. However,
the tendency of expressivity and the number of rules fixes by the 100th
generation, and thus we discuss the results by the 100th generation hereafter.

Prior to our experiments, we have simulated Kirby’s experiment. In the
early stages, the language has low expressivity and a large number of gram-
mar rules; however, through generations, the language overall acquires higher
expressivity and the number of grammar rules decreases. First, the increase
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generation := 0;
repeat
a speaker := a parent;
a learner := an infant;
for 1 to 50 do
the speaker chooses a meaning (PAS) from the whole meaning
space;
the speaker generates an utterance by her own grammar rules;
if the speaker could not generate one then
attach random string to the meaning (PAS);
put the rule into her grammar set;
end
if the learner receives an utterance without its meaning then
switch Fzperiment do
case Ezperiment (1)
| the learner does not accept the utterance;

end
case Ezperiment (11)

the learner chooses a meaning arbitrarily, and

accepts the signal-chosen meaning pair holistically;
nd
ase Experiment (111)

the learner follows Algorithm 2 to guess the meaning

, and accepts the signal-meaning pair holistically;
end

o O

end
else
| the learner accepts the signal-meaning pair holistically;
end
the learner executes learning process, i.e., chunk, merge,
replace;
end
discard the speaker, together with her grammar;
a parent := the learner; /*the infant becomes a new parent™®/
an infant is created;
generation ++4;
until 200-th generation ;

Algorithm 1: The simulation algorithm
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Figure 3: The trends of the number of rules and expressivity per generation: experiment (I)

of holistic rules leads to the growth of expressivity. Then, the grammar be-
comes compositional in the later stages. We can observe that the more the
grammar becomes compositional the smaller the number of rules while ex-
pressivity persists or improves. In fact, we have found a grammar with 100 %
expressivity consisting of 11 rules, among which are ten lexical rules and one
variable level-3 compositional rule (see Definition 2).

4.2. Ezxperiment (1): learner ignores unrecognized utterances

In this experiment, the learner ignores unrecognized utterances and misses
that amount of data for learning, i.e., the setting is the same as the pilot
experiment, except that the number of meaningful utterances is reduced.

Fig. 3 shows the average tendency of the number of rules and expressivity
per each generation, after 100 trials. Multiple lines denote the difference of
the ratio of unrecognized utterances; we set the rate 0%, 20%, and 40 %
of the 50 received utterances. Actually, we have experimented with unrec-
ognized rates beyond 40 %, but grammar never converged, staying near to
the initial expressivity. Therefore, we will not mention those futile results
hereafter.

At 0% unrecognized rate, the grammar converges, i.e., the expressivity
goes beyond 95% (Definition 4) at the 32nd generation with 23.14 rules,
and at the 100th generation the expressivity is 98.79 % with 18.76 rules on
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an average. As the unrecognized rate increases, the convergence generation
is retarded; at 20 % the grammar converges at the 98th generation and at
40 % the expressivity remains 37.44 % even at the 100th generation. On
the contrary, the higher the recognized rate is, the earlier the convergence
generation becomes.

4.8. Ezperiment (I1): learner arbitrarily interprets unrecognized utterances

In this experiment, when the learner cannot recognize the meaning of an
utterance, he chooses a meaning (PAS) from the meaning space arbitrarily
and combines it to the utterance.

A certain rate of unrecognizable utterances are received by the learner
agent after recognizable ones; e.g., 10 meaningless sentences are heard after
40 meaningful utterances in case of 20 % rate. That is, the learner first
learns firm knowledge of the utterances with meanings, and after then guesses
meanings for missing ones.

Similarly to experiment (I), Fig. 4 shows the average tendency of the num-
ber of rules and expressivity per each generation after 100 trials, and each
line corresponds to the ratio of unrecognized utterances among the whole
input as 0%, 20 %, and 40 %.

Note that there is no difference between experiments (I) and (IT) at 0%
rate. In experiment (IT), at 20 %, the grammar converges at the 29th gen-
eration, and at the 100th generation the expressivity is 98.94 % with 34.49
rules. At 40 %, the grammar converges at the 72nd generation, and at the
100th, 96.24 % expressivity with 40.47 rules.

We can observe that the grammar converges faster at 0% (experiment
(I)) while the expressivity is rather higher in the early generations at 20 %.
As learners complement the missed meanings and augment the grammar
knowledge in experiment (II), the expressivity tentatively increases; but in
the later generation these arbitrary knowledge seems to hinder the grammar
convergence.

4.4. Experiment (I11): learner applies the symmetry bias to interpret unrec-
ognized utterances

In this strategy, the learner agent follows Algorithm 2. First, he searches
grammar rules which exactly match the utterance, and if he can find one he
can interpret it. Or else, i.e., when the utterance is unrecognized, he tries
to compose the utterance from those rules of variable level one or more in
his knowledge; if it is successful, he attaches the composed meaning to the
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if there is a string among variable level 0 (holistic) rules which exactly
match the utterance then

| apply the meaning of this rule;
else
if the learner can derive the same string as the utterance using
rules whose variable levels are greater than or equal to 1 then

| apply the meaning derived from these rules;
else
Decompose the string to substrings;
Search lexical rules which match the longest substrings of the
utterance;
if there exist such lexical rules then
The learner chooses utterances which include any one of
such words;
From the chosen utterances, the learner picks out as
candidates those which are uttered most frequently;
if the candidate is only one then
apply the meaning of this candidate to the unrecognized
utterance;
else
Among the other substrings, search lexical rules which
correspond to one of the longest substrings;
Choose the most frequent candidates;
if such candidate is only one then

apply the meaning of this candidate to the
unrecognized utterance;

else

| Choose one from the candidates;
end

end

else

Choose a meaning from the meaning space randomly, and
apply it to the recognized utterance.

end

end

end

Algorithm 2: The bias algorithm

12
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Figure 4: The trends of the number of rules and expressivity per generation: experi-
ment (IT)

utterance. If it still fails, he decomposes the utterance to substrings and
looks for a longest matching rule; when multiple rules hit at the same length,
he applies the one which has been most frequently evoked. When all the
above trials fail, he randomly assigns a meaning (PAS).

Similarly to the previous experiments, the ratios of unrecognized utter-
ances are set to 0%, 20 %, and 40 % as in Fig.5. Also, unrecognizable sen-
tences are given at the tail part of the 50 utterances.

In experiment (IIT), at 20 %, the grammar converges at the 17th genera-
tion with 22.59 rules, and at the 100th generation the expressivity is 98.74 %
with 21.42 rules. At 40 %, the grammar converges at the 27th generation
and at the 100th generation the expressivity is 95.68 % with 23.32 rules.

There appeared insignificant difference between 0% and 20 %, both in
expressivity and the number of rules after convergence generation. However,
in early stages, 20 % earns larger expressivity; the learner supposedly acquires
compositional grammar beyond the limited mother grammar.

By the way, we considered the case that unrecognizable sentences are dis-
seminated randomly among recognizable ones. At 20 %, the grammar con-
verges at the 28th generation with 30.02 rules, and at the 100th generation
the expressivity is 97.92 % with 30.91 rules. At 40 %, the grammar did not
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Figure 5: The trends of the number of rules and expressivity per generation: experi-
ment (I1T)

converge even at the 100th when 79.82 % expressivity. That is, this random-
ization deteriorates grammar convergence, as was expected. The tendency is
shown in Fig. 6.

5. Efficacy of the Symmetry Bias

5.1. Comparison of Fxperimental Results

In this section, we compare the result of experiment (I) to that of exper-
iment (III), and the result of experiment (II) to that of experiment (III).

Firstly, we compare experiment (I) to experiment (III). The learner in
experiment (I) can acquire rather smaller amount of learning data as unrec-
ognized utterances are only discarded. On the contrary, as the learner agent
in experiment (III) tries to guess missing meanings by the symmetry bias,
the learning data are complemented. Therefore, we can expect that the ex-
pressivity of experiment (IIT) converges earlier than experiment (I). However,
those guessed rules are not necessarily correct; namely, the learner agent may
acquire rules which were originally not included in the speaker’s grammar.
In the later generation, these inadequate rules, which are rather holistic than
compositional, tend to remain; this is why Table 1 shows that the number of
rules in experiment (I) is larger than that in experiment (III).
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Figure 6: Random unrecognized utterances in experiment (IIT)

Next, we compare experiment (II) to experiment (III). Experiment (III)
surpasses (I) and (II) both in expressivity and convergence generation as is
shown in Fig. 7 at 40 % ratio of unrecognized utterances where the difference
is prominent as in Table 1. Thus, we can find that the symmetry bias works
saliently.

Table 1: Average number of rules at the 100th generation

‘ | experiment (I) | experiment (IT) | experiment (I1I) |

0% 18.76
20 % 37.90 34.49 21.42
40 % 54.35 40.47 23.32

5.2. Ezample of Efficacy of the Symmetry Bias

Here, we show how the symmetry bias works to construct compositional
grammars, using a concrete example from experiment (IIT) where the ratio
of unrecognized utterances is 20 %.

Now, let us look into the learner’s grammatical knowledge in the 3rd gen-
eration, to trace how the learner infers meanings of unrecognized utterances.

15
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Table 2 shows the grammar of the learner in the 3rd generation after the 47th
utterance.

The speaker utters admire(mary, heather) — 1jd as the 48th utterance,
and the learner receives this utterance without meaning, i.e., only 1jd. At
this stage shown in Table 2, the learner does not have a holistic rule for 1jd,
nor substrings corresponding to 1j, jd, while he does have rules for j, such
as T3z and r43. According to Algorithm 2, the learner applies a lexical rule in
this case, so 143 is employed:

C/admire — j.
Therefore, the learner infers as follows:
admire(?77,777) «— 1jd.

Looking up words which co-occur most often with the word admire from
the speaker’s utterances up to this time, the learner finds (john, pete) has
occurred twice, while (john, gavin), (pete, john), (gavin, pete), (john, mary),
(mary, gavin) have each occurred once. Thus, the learner chooses (john, pete),
and adds the following rule to his knowledge:

admire(john, pete) — 1jd.

16



Table 2: Learner’s acquired knowledge after 47th input(Generation 3)

Generation 3 Speaker‘s 48th utterance: admire(mary, heather)— 1jd

ric: S/admire(gavin, john) —  mm rog :  S/hate(pete, gavin) — W

ro S/admire(gavin, pete) — ot roa :  S/like(gavin, heather) — nc
r3: S/admire(john, gavin) — d ros @ S/like(gavin, john) —  bf

r4 S/admire(john, mary) — v rog 1 S/like(heather,y) — qB/y
r5 S/admire(john, pete) — n ro7 . S/like(john, mary) —  nts
re S/admire(mary, gavin) —  mkh rog 1 S/like(mary, gavin) —  dwa
7 S/admire(pete, john) —  fgf rog :  S/like(pete, gavin) — cgb
rg: S/detest(heather, gavin) —  fl r3o: S/like(pete, heather) —  gem
T9 S/detest(heather, john) — o r31:  S/like(pete, john) —  ze
rio: S/detest(heather,pete) —  diiw r3z:  S/love(mary, heather) —  j
ri1: S/detest(john, pete) —  nj raz: S/love(pete, heather) — u

ri2 . S/detest(mary, john) —  eru r3a: S/love(x, gavin) —  Ajzd
ri3: S/detest(mary, john) —  ziz r3s :  S/p(john, mary) — imC/p
ria:  S/detest(pete, mary) —  kr r3e : S/p(john,pete) —  C/pi
ri5: S/hate(gavin, heather) —  bd ra7 . S/p(john, pete) —  gC/pc
ri6: S/hate(gavin, mary) —  cmf rsg : S/p(pete, john) —  CJ/p
ri7:  S/hate(gavin, mary) —  tru r3g: A/john —  zc
rig : S/hate(gavin, pete) —  ftc rao: A/mary —  ngb
rig . S/hate(heather, gavin) — iri ra1: B/gavin — zh
roo 1 S/hate(john, gavin) — k ra2: B/john — ot
ro1 ¢ S/hate(john, heather) — g r43 . C/admire - ]

roo :  S/hate(john, mary) — do rag . C/detest —

After finishing the complementary process with the symmetry bias, the learner
agent executes learning process. Adding a new rule enables the learner to
generalize his grammar by operation replace. As a result, the learner acquires
a new compositional rule, changing his grammar as follows:

C'/admire — j
S/p(john, pete) — 1 C'/pd.

In general, the higher the variable level of added rules is, the higher ex-
pressivity the language has. Therefore, comparing experiment (I) to experi-
ment (III), the expressivity of the latter converges in a shorter period.

Table 3 shows the result of the guessing of meanings of unrecognized ut-
terances by inference in the 3rd generation. Each item shows the number of
each utterance, utterance itself, the meaning and the way the learner guessed
the meaning. From Table 3, out of ten unrecognized utterances, meanings of
four utterances are guessed by the inference, and the rest of them are guessed
randomly because of failure of inference.

Fig. 8 shows the number of rules which are derived from inference with
the symmetry bias, and from random application over generations. We set
the ratio of unrecognized meanings to 20%. In the early stages, because
of failures of inference, the learner has applied meanings to unrecognized
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Table 3: Result of learner‘s inference by symmetry bias (Generation 3)

Num | Speaker’s Utterance Meaning (by Learner’s guess) | Application
41 hate(john, pete) — gjc admire(john, pete) inference
42 detest(gavin, pete) — nts like(john, mary) random
43 detest(mary, heather) — eru detest(mary, john) random
44 detest(mary, gavin) — mm admire(gavin, john) random
45 hate(heather, john) — £1 detest(heather, gavin) random
46 like(gavin, heather) — w hate(pete, gavin) random
47 detest(john, heather) — do hate(john, mary) inference
48 admire(mary, heather) — 1jd | admire(john, pete) inference
49 like(john, mary) — ru love(gavin, mary) random
50 hate(heather, mary) — js admire(john, pete) inference

10

Derived from inference

Number of rules

Generated from random application

0 20 40 60 80 100
Generation

Figure 8: The number of rules which are derived from inference vs. random application

utterances randomly. In later generations, the learner comes to be able to
apply meanings by inference. From Fig.8, we can observe that the more
generations go by, the more the number of rules with random application
decreases. Also, from Fig.5, we can see that expressivity and the number
of rules converge around the 20th generation. Thus, we can observe that
inference failures had steadily decreased in the agents of later generations,
the learner having acquired a certain level of grammar knowledge.

If some rules are added to grammar knowledge by the symmetry bias,
compositional rules are inevitably generated. However, in the case of random
meaning application, it is not always true that learning produces composi-
tional rules.
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6. Conclusion

In this paper, we verified the efficacy of the symmetry bias not only in
lexical acquisition, but also in grammar acquisition. For this purpose, we
have modified Kirby’s model [18], and have built the symmetry bias into our
grammar conversion model. In the simulation, the learner received utterances
without the speaker’s intention at a certain rate, and the learner interpreted
such unrecognized utterances by three kinds of strategies such as (I) ignoring,
(IT) attaching meanings randomly, and (IIT) attaching meanings using the
symmetry bias. For each of the strategies, we have observed expressivity,
number of rules, and variable level. As a result of the experiments, the
learner who has employed strategy (I11),

e could acquire high expressivity faster than those who used the strat-
egy (I).

e could construct his grammar with a higher variable level, i.e., the num-
ber of rules was smaller than that of the learner who employed strat-

egy (1I).

Our model is designed for language evolution, and we have not proved
the change of learning speed in one generation. However, we may contend
that the learning speed was accelerated somehow by the bias because in-
fants could acquire a certain grammar from 40 utterances while the original
Kirby’s experiment required 50 utterances, when 20 percent utterances lack
for meanings, for example. Namely, infants could learn grammar with the
smaller number of input.

According to the trace of inference process using the symmetry bias, as
has been shown in Section 5.2, we observed that rules added by the symmetry
bias lead to generation of compositional rules inevitably. Therefore, in terms
of variable level, the symmetry bias works effectively.

Our future works are planned as follows. First, we should consider in-
cluding other cognitive biases than the symmetry bias. Second, we should
expand the meaning space and grammars of our model, and restudy its ef-
fectiveness, since the effect of the bias was not so obvious with the current
simple and limited language. Third, we should investigate what happens if
we attach incorrect PASs intentionally. If infants are much more versatile in
learning language, they also may be able to learn a grammar robustly.
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