JAIST Repository

https://dspace.jaist.ac.jp/

Title

iUy UUg o

ood
Author(s) Nguyen, Trwuong Thang
Citation
Issue Date 2005-09
Type Thesis or Dissertation

Text version

aut hor

.net/ 10109/ 984

URL http:/7/7 hdl handl
Rights
Description Supervisor: goooag, ooooooo oo

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Abstract

Object-oriented (OO) software technology is by far the most effective approach for soft-
ware development. Although, it contributes greatly to the advance of software industry,
it still suffers from several drawbacks, especially its well-known fragility for capturing
concerns [37] crosscutting multiple objects. The crosscutting factor is due to the tangled
code implementing the concern among those objects. As a result, the ultimate result is
high cost.

As an extension of the OO technology, aspect-oriented software development (AOSD)
comes to solve this problem. It emerges as a promising future software paradigm with
high reusability, openness among many other advanced characteristics. Throughout this
dissertation, the terms concern [37], aspect [17], feature [28, 29], collaboration [10, 27, 35],
hyperslice [36], component are interchangeably used. Even though these terms address
different levels of concern granularity at various stages in the software lifecycle, they can
be equivalently treated. More specifically, the dissertation inclines toward the standard
definition of hyperslices which are functions or services offered by the system through the
collaboration of several objects.

Feature-oriented software is a special case of AOSD in which a feature corresponds to
a functional requirement of the system. In essence, a system is constructed by composing
several features. Each feature is independently specified, implemented and maintained.
Those features communicate with each other via well-defined interfaces. Based on this
design style, a system can be flexibly built depending on the decision of whether or not
to include a specific feature.

However, to realize such an ideal software paradigm, one of the key issues is to ensure
that those separately specified and implemented features do not conflict to each other
when composed - the feature consistency issue. This dissertation takes a formal approach
toward this problem and its related issues. Basically, the dissertation consists of three
parts.

First, a formal model of feature-oriented software is introduced in which each feature
is separately encapsulated by a state transition model. The formal model of a feature also
provides the interface at which other features are plugged with. With respect to some
rules, interface states among different features are mapped to each other so that member
features can be composed together to form the target composite system.

Second, the core of this dissertation is about the theoretical foundation of consistency
verification among features. A feature is consistent with another if during its execution,
it does not violate the inherent CTL properties of the latter feature. The verification
approach - open incremental model checking (OIMC) - is done via assumption model
checking [6, 20]. The difference of OIMC when compared with the other modular model
checking techniques [13, 18, 20, 31] is in its incremental openness. Under the approach,
systems are considered as ever-evolving. A typical evolution scenario is to incorporate new
modules (extensions) to an existing system (base) consistently. In such a circumstance, the
new method is executed only in the extension. On the contrary, traditional model checking



methods are required to re-run over the whole system, even though possibly in modular
fashion. This is the most prominent feature of this challenging area. A sound theoretical
foundation of OIMC is proposed in the dissertation. Its goal is to provide necessary
conditions under which the extension components do not violate key properties of the
base component. In addition, the soundness and scalability of this incremental verification
approach are also discussed. Except in some extreme cases of feature composition, the
result delivered by OIMC is sound. Moreover, under the consistency condition, OIMC
also preserves its complexity for any subsequent extensions, i.e. scalable.

The final part of the dissertation briefs some possible applications of the proposed
theory such as the component specification and composition. In addition, it shows the
relationship between the formal specification model of feature-oriented software and its
implementation. More specifically, this part shows a basic code-transforming mechanism
from the formal model into a specific programming language, e.g. Java. Because features
are independently specified, their respective codes are independently generated according
to some transformation rules. At the end, the corresponding codes of the features are
composed [36] or woven [38] together in a well-defined manner.

11



