
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
フィーチャー指向ソフトウェアにおける増分的一貫性

検証

Author(s) Nguyen, Truong Thang

Citation

Issue Date 2005-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/984

Rights

Description Supervisor:片山　卓也, 情報科学研究科, 博士



Incremental Verification of Consistency in

Feature-Oriented Software

by

Nguyen Truong Thang

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Takuya Katayama

School of Information Science

Japan Advanced Institute of Science and Technology

September, 2005



Abstract

Object-oriented (OO) software technology is by far the most effective approach for soft-
ware development. Although, it contributes greatly to the advance of software industry,
it still suffers from several drawbacks, especially its well-known fragility for capturing
concerns [37] crosscutting multiple objects. The crosscutting factor is due to the tangled
code implementing the concern among those objects. As a result, the ultimate result is
high cost.

As an extension of the OO technology, aspect-oriented software development (AOSD)
comes to solve this problem. It emerges as a promising future software paradigm with
high reusability, openness among many other advanced characteristics. Throughout this
dissertation, the terms concern [37], aspect [17], feature [28, 29], collaboration [10, 27, 35],
hyperslice [36], component are interchangeably used. Even though these terms address
different levels of concern granularity at various stages in the software lifecycle, they can
be equivalently treated. More specifically, the dissertation inclines toward the standard
definition of hyperslices which are functions or services offered by the system through the
collaboration of several objects.

Feature-oriented software is a special case of AOSD in which a feature corresponds to
a functional requirement of the system. In essence, a system is constructed by composing
several features. Each feature is independently specified, implemented and maintained.
Those features communicate with each other via well-defined interfaces. Based on this
design style, a system can be flexibly built depending on the decision of whether or not
to include a specific feature.

However, to realize such an ideal software paradigm, one of the key issues is to ensure
that those separately specified and implemented features do not conflict to each other
when composed - the feature consistency issue. This dissertation takes a formal approach
toward this problem and its related issues. Basically, the dissertation consists of three
parts.

First, a formal model of feature-oriented software is introduced in which each feature
is separately encapsulated by a state transition model. The formal model of a feature also
provides the interface at which other features are plugged with. With respect to some
rules, interface states among different features are mapped to each other so that member
features can be composed together to form the target composite system.

Second, the core of this dissertation is about the theoretical foundation of consistency
verification among features. A feature is consistent with another if during its execution,
it does not violate the inherent CTL properties of the latter feature. The verification
approach - open incremental model checking (OIMC) - is done via assumption model
checking [6, 20]. The difference of OIMC when compared with the other modular model
checking techniques [13, 18, 20, 31] is in its incremental openness. Under the approach,
systems are considered as ever-evolving. A typical evolution scenario is to incorporate new
modules (extensions) to an existing system (base) consistently. In such a circumstance, the
new method is executed only in the extension. On the contrary, traditional model checking

i



methods are required to re-run over the whole system, even though possibly in modular
fashion. This is the most prominent feature of this challenging area. A sound theoretical
foundation of OIMC is proposed in the dissertation. Its goal is to provide necessary
conditions under which the extension components do not violate key properties of the
base component. In addition, the soundness and scalability of this incremental verification
approach are also discussed. Except in some extreme cases of feature composition, the
result delivered by OIMC is sound. Moreover, under the consistency condition, OIMC
also preserves its complexity for any subsequent extensions, i.e. scalable.

The final part of the dissertation briefs some possible applications of the proposed
theory such as the component specification and composition. In addition, it shows the
relationship between the formal specification model of feature-oriented software and its
implementation. More specifically, this part shows a basic code-transforming mechanism
from the formal model into a specific programming language, e.g. Java. Because features
are independently specified, their respective codes are independently generated according
to some transformation rules. At the end, the corresponding codes of the features are
composed [36] or woven [38] together in a well-defined manner.

ii



Acknowledgments

This thesis has been prepared according to TEX version 3.14 [19] and compiled with
LATEX2e. This software makes the typesetting for scientific report much easier. The
illustrated example is tested with gcc 3.3.2 and Java 2 Standard Edition 1.4.2 on Fedora
Core 1 Linux operating system.

This thesis is a three-year work. It can not be completed without the help and in-
spiration of so many people. First of all, the author wants to thank all colleagues at the
Foundations of Software Lab - JAIST. Without their excellent cooperation and facility
maintenance, this work could have not been completed as it is. In particular, the au-
thor wishes to express his sincere gratitude to his principal adviser - Professor Takuya
Katayama of Japan Advanced Institute of Science and Technology - for his constant en-
couragement and kind guidance. In addition, the LAN and computing facility served
during the thesis compilation are very well managed and constantly upgraded to the
best equipment available by Associate Toshiaki Aoki and many others such as Hayato
Kawashima, Mitsutaka Okazaki just to name a few.

During the PhD course, the author has received much support from several people from
industry especially Tokyo Research Lab. (TRL) of IBM Japan Corp; R&D Center (RDC)
of Toshiba Corp. In particular, his sincere gratitude is sent to Autonomic Computing
group at TRL and Software Engineering Center (SEC) of Toshiba Corp. They are Takeshi
Fukuda, Sei Kato, Ai Takizawa (TRL) and Masayuki Hirayama, Shigeo Baba, Yoshio
Kataoka (RDC and SEC).

Finally, above all, the author’s enthusiasm would not be very high without the faith,
encouragement and support of his family for so long. Neither do his achievements so far.

iii



Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Incremental Changes - The Typical Path of Software Evolution . . . . . . . 1
1.2 Some Fundamental Issues of AOSD . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6
2.1 Feature-Oriented Evolutionary Domains . . . . . . . . . . . . . . . . . . . 6
2.2 Aspect-Oriented Software Development . . . . . . . . . . . . . . . . . . . . 7
2.3 An Initial Attempt on the Formal Model of Feature-Oriented Software . . . 11
2.4 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 OIMC - The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Formal Models of Feature-Oriented Software 14
3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Fundamental Issues of OIMC . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Basic Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Fundamental Theoretical Foundation of OIMC 21
4.1 Properties Preservation at Base States . . . . . . . . . . . . . . . . . . . . 21

4.1.1 A Theorem on Additive-Only Composition . . . . . . . . . . . . . . 21
4.1.2 A Theorem on Limited-Overriding Composition . . . . . . . . . . . 27
4.1.3 The Feature Consistency Issue . . . . . . . . . . . . . . . . . . . . . 31
4.1.4 Open Incremental Model Checking . . . . . . . . . . . . . . . . . . 31

4.2 The Soundness of Incremental Verification . . . . . . . . . . . . . . . . . . 32
4.2.1 Criticality of Transitions . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Dependency Structure Among Base States . . . . . . . . . . . . . . 33
4.2.3 Cyclic Dependency with Base Links Only . . . . . . . . . . . . . . . 36
4.2.4 Cyclic Dependency with Extension Links Only . . . . . . . . . . . . 40
4.2.5 Cyclic Dependency with Both Base and Extension Links . . . . . . 43

4.3 Properties Preservation at Extension States . . . . . . . . . . . . . . . . . 48
4.4 The Scalability of Incremental Verification . . . . . . . . . . . . . . . . . . 50
4.5 An Example about Consistency among Single-Object Features . . . . . . . 52

iv



5 OIMC for Consistency among Multi-Object Features 56
5.1 The Fundamental Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.1 A Formal Model of Features Crosscutting Multiple Objects . . . . . 56
5.1.2 Transforming Multi-Object Models into a Global Model . . . . . . . 57
5.1.3 Incremental Verification Within Global Model . . . . . . . . . . . . 59

5.2 An Example of Consistency among Multi-Object Features . . . . . . . . . 60

6 OIMC Improvements 63
6.1 Relaxing the Conformance Condition . . . . . . . . . . . . . . . . . . . . . 63
6.2 The Soundness Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 The Scalability Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Parallelizing the OIMC Algorithm . . . . . . . . . . . . . . . . . . . . . . . 66

7 Model-Based Feature Implementation and Application 69
7.1 Component Specification and Consistency Verification . . . . . . . . . . . . 69

7.1.1 Interface Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.1.2 Interface Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.1.3 Component Specification and Composition . . . . . . . . . . . . . . 71

7.2 Layered Architecture for Feature-Oriented Software . . . . . . . . . . . . . 77
7.3 Transforming Formal Feature Model to Codes . . . . . . . . . . . . . . . . 78
7.4 Composing/Weaving Features via Hyper/J and AspectJ . . . . . . . . . . 79
7.5 NuSMV2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Related Work and Conclusion 81

Bibliography 84

Publications 87

v



List of Figures

1.1 The coverage description of the dissertation. . . . . . . . . . . . . . . . . . 4

2.1 The evolution of a complex data structure via handling some extra features. 8

3.1 The extension feature (E) and the composition (C) of both base and exten-
sion features in the library system. The base feature (B) is obvious from
the composition model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 An illustration of B and E conformance in case of additive-only composi-
tion. The property p = EG f is preserved at ex and all states in B. . . . . 22

4.2 An illustration of B and E conformance in case of overriding composition.
The property p = EG f is preserved at ex and all states in B. . . . . . . . 27

4.3 An example of B and E composition in which the verification result is
sound. E overrides the transition in B associated with event e. . . . . . . . 35

4.4 Another example of B and E composition in which a sound verification
result can be delivered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 An example of B and E composition in which the incremental verification
may not be sound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 An example of cyclic dependency due to base links only. . . . . . . . . . . 37
4.7 An illustration for composition with base-only cyclic dependency which

still preserves p = A [f U g] at exit states (pp1 and pp2 can not exist at the
same time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.8 An example of cyclic dependency due to extension links only. . . . . . . . . 39
4.9 An illustration for the additive-only composition with extension-only cyclic

dependency which still preserves A [f U g] at exit states (pp1 and pp2 can
not exist at the same time). . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.10 An example of composition failing to preserve p = E [f U g] in case of
extension-only cyclic dependency. . . . . . . . . . . . . . . . . . . . . . . . 43

4.11 An example of cyclic dependency due to both base and extension links. . . 43
4.12 The difference between assumption model checking in E and regular model

checking in C, in terms of the computation tree at ex within E, in the
base-extension circular dependency. . . . . . . . . . . . . . . . . . . . . . . 45

4.13 Strict conformance condition: The need of extra checking for any f ∗ loop
between ex and re at which ¬EG f holds. . . . . . . . . . . . . . . . . . . 46

4.14 Strict conformance condition: The need of extra checking for any (f ∧¬g)∗

loop between ex and re at which A [f U g] holds. . . . . . . . . . . . . . . 47
4.15 An example of failing composition to preserve p = E [f U g] in case of

base-extension cyclic dependency. . . . . . . . . . . . . . . . . . . . . . . . 48
4.16 A base component and its refining components for a user account. . . . . . 53

vi



4.17 The state transition chart of a user account in the library management
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Composing a full extension model with a partial base feature. . . . . . . . 57
5.2 A simple library with two features: book reservation and loss-handling. . . 60
5.3 The global extension model of the library example. . . . . . . . . . . . . . 62

6.1 An illustration of B and E conformance in case of overriding composition.
The truth value with respect to the property p = AG f is preserved at ex
and all states in B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1 The dynamic behavior model of the “black” component. . . . . . . . . . . 72
7.2 Component refinements and component composition via class aggregation. 72

vii



Chapter 1

Introduction

1.1 Incremental Changes - The Typical Path of Soft-

ware Evolution

Changes are essential substance of successful software. A long-lived software system must
continue to evolve and adapt with ever-changing environment. To a large extent of soft-
ware technology, that process is called software evolution. With respect to a broader
context, software evolution involves all periods in the software lifecycle, namely develop-
ment, maintenance and evolution. A desirable software technique should take minimum
costs and efforts during software evolution, even in the dynamic environment. This dis-
sertation focuses on the third period, i.e. evolution. A working system must evolve when
new requirements come in or the operating environment changes. Handling the changes
and integrating them into the existing system consistently with the minimum costs are
the main goal of the dissertation.

Requirement changes are nature of software evolution. Most often are small incremen-
tal changes in comparison with existing systems. In our view, incremental changes are
a major source of evolution in practical systems. For feature-oriented software in which
features are the basic building units, incremental changes could be either a new feature
to be added to many existing features or just simply a more refined version of a current
feature supported by the system. The term feature means an abstract description of a
system function or service. For example, current advanced mobile phones provide the
traditional talking function. This feature enables two persons to communicate with each
other. Besides that base feature, depending on the model, a mobile phone can provide
extra features such as photo-shooting, video conferencing, Internet browsing etc. Even
though incremental changes are small with respect to overall system, they come so fre-
quently that system engineers find them difficult. Particularly, the difficulty is on how to
minimize the effects, possibly errors or bugs, when introducing changes to systems. There-
fore, evolving system in the events of such changes are quite challenging and requires an
effective approach.

There has been a clear shift from traditional, such as object-oriented (OO), software
development paradigms in dealing with incremental changes. In those old days, changes
are captured and immediately integrated to the existing system’s artifacts in early phases
of the development process. After integration, changes are manually or semi-automatically
interleaved with the existing system artifacts during subsequent phases so that their

1



effects to the system are propagated to system-wide level. The system together with
the changes is then certainly very difficult to comprehend and manage. Furthermore, if
changes are integrated so early in the software lifecycle, it is difficult to undo changes
and to backtrack errors discovered in subsequent stages. As a general consensus between
software practitioners, manual changes made to such artifacts are dangerous and likely
introduce errors.

A new approach tries to delay the change-integrating stage as late as possible. As
before, changes are captured in early phases but kept separate from the system until the
very last phases of the software development process. As the software process proceeds, the
corresponding codes for those changes are separately implemented. The final step involves
a composer/weaver which automatically weave the corresponding codes of changes into
the existing system.

The new software paradigm, called aspect-oriented software development (AOSD), re-
lieves people from many hard works in manipulating source codes and checking for pro-
gram correctness manually. This approach is clearly promising to software development
and evolution. However, current practice in AOSD stops short of that target. Currently,
there are some excellent automatic mechanisms for code weaving/composing process in
the implementation phase, notably Hyper/J [36] and AspectJ [38]. In contrast, there is
clearly a lack of AOSD research and respective tool supports in early stages of develop-
ment process such as requirement modeling, analysis and design. From that viewpoint,
this work focuses on the analysis phase. More specifically, aspects can be formally ana-
lyzed for their consistency.

In the analysis phase, system behavior is expressed by state and use case diagrams
in Unified Modeling Language (UML) [33]. Requirements can be modeled by use case
diagrams [1, 32]. So are incremental requirement changes. Refining use case diagrams by
adding new scenarios is a way to make system behavior richer. An incremental change
in a use case (base) is usually an extension to that use case. The extension is quite small
compared with the overall complexity of the base system. This work focuses on this
typical software evolution so that the evolved system is still consistent.

1.2 Some Fundamental Issues of AOSD

Separation of concerns is the core of successful software [17, 37]. This concept is realized in
several different forms within aspect-oriented software community. A promising software
paradigm has emerged from the idea to capture concerns crosscutting multiple objects
in modular fashion. It is AOSD. This paradigm relieves object-oriented software devel-
opment from its most severe weakness of handling multi-object concerns. The two most
prominent forms of concerns are aspects [17] and hyperslices [37] among many others.
Hyperslices [37] in general address crosscutting features at high level of abstraction. On
the other hand, aspects [17] are usually for addressing programming-level concerns. This
work inclines towards hyperslices which are essentially system-wide functional features
presented by the collaboration between several objects in the system. As mentioned, in
this dissertation, a feature means an abstract description of a system function or service.
For example, a modern mobile phone, in addition to its traditional talking function, also
provides several extra advanced features such as photo-shooting, video conferencing, In-
ternet browsing, song downloading etc. These features interleave with each other even at

2



run time. They interacts with each other and may affect working functions of others.
In feature-oriented software - the focus of this thesis, a system is viewed as a structure

of several features it serves the environment. This system view is particularly useful when
designing system architecture as the features can be layered on top of each other [35]. In
terms of design, each feature is implemented by a collaboration of several objects, i.e. the
feature crosscuts those objects. The system is called feature-oriented in specification and
collaboration-based or role-based [10, 27, 35] in design. Henceforth, the terms component,
feature, hyperslice, aspect and collaboration are considered as equivalent as they address
the same thing - the high-level description of multi-object crosscutting concerns.

Features have well-defined interfaces allowing their composition to construct bigger
systems. The advantage of this design style is that by specifying each feature indepen-
dently, a system can be flexibly constructed based on the decision of whether or not to
include a particular feature. On the other hand, they communicate to each other via
interfaces. Therefore, from software verification perspective [6], the compositional rea-
soning for entire system validation can be applied by separately verifying each feature
with respect to the rest of system. That is the motivation of the so-called modular model
checking [13, 18].

Unlike traditional modular model checking approaches which treat systems as static,
a new method of model checking to be presented by this work, called open incremental
model checking (OIMC) in our opinion, is proposed to address the changes to an existing
system as the system continues to evolve [10, 27]. In the typical evolution scenario, a
system enriches its feature set by some extra features. In the basic case, given a base
feature, an extension feature is attached with the base. The most fundamental issue
is on how to verify that the extension does not violate some properties inherent to the
base. The verification approach is required to be open because future extensions are not
known in advance. Further, it should be efficient instead of verifying whole the base plus
the extension together. The proposed approach is quite open since the interface between
features is very flexible for change. The model checking itself is executed in an incremental
manner as it only executes within the extension, i.e. very efficient.

The theoretical foundation of the proposed verification technique is built with respect
to the generalized model of feature-oriented software. Initially, fundamental theorems
about base and extension consistency are presented. Provided some assumptions about
the base at reentry states, the incremental verification is only required to check at all exit
states to confirm the consistency between the base and the extension. Ensuring those
assumptions at reentry states is actually a major part for the soundness of OIMC.

Moreover, as the system continues to evolve, the scalability of OIMC is in fact con-
cerned with not only one-step extension, but also many subsequent extension features.
That is another issue of OIMC to be addressed. By a solid theoretical proof, OIMC
maintains its scalability to ensure the preservation of base property for many subsequent
extensions as long as subsequent extensions conform with their respective bases at all exit
states. Some difficulties in applying OIMC to multi-object features and the solutions are
also addressed.

Finally, some applications of the above theory are briefed. Specifically, the most
challenging issue of component-based software in general, especially AOSD, is about
component specification. Current component technologies such as OMG’s CORBA (Ob-
ject Management Group’s Common Object Request Broker Architecture), Microsoft’s
COM/DCOM (Distributed Component Object Model), Sun’s Java or UML/OCL (Ob-

3



ImplementationAnalysis DesignRequirement

Changes

Reference/
Cross−checking
for consistency

Initial system
development (via
OOSD or AOSD)

Sys. requirement

Handling changes to
the existing system
via AOSD

Sys. requirement Sys. analysis Sys. design Sys. implementation

Handling changes to
the existing system
via OOSD

System plus changesSystem plus changes
analysis

System plus changes
design implementation

Changes requirement

Changes designChanges analysis

Architecture reference Evolved system

(1)

Specification−to−code transformation

Hyperslice merging/composition

(2)

Changes implementation

Figure 1.1: The coverage description of the dissertation.

ject Constraint Language) face the same difficulty in composing components. They only
specify component interface in syntactical terms. Hence, the components can be syntac-
tically plugged. However, as the semantic constraints among components are not detailed
enough, once composed, the components do not play correctly. That is the phenomenon
called plug-but-not-play within component-based software. The above theoretical founda-
tion on feature consistency can solve the problem as it suggests how to explicitly specify
semantic constraints for consistency among components in the interface.

1.3 Scope of the Research

Figure 1.1 shows the coverage of this work in a typical software development process.
Compared with the traditional OO software development (OOSD), there is a significant
difference between OOSD and AOSD. Figure 1.1 depicts the typical evolution scenarios in
both approaches. In the OOSD approach, changes are integrated into the system at the
beginning of the development process. As a result, subsequent stages of the process need to
deal with the whole bulk of changes and existing system artifacts together. Even with the
help of the OO technology, the development cost to handle the changes are high because
the changes are propagated to many system modules, i.e. objects. That is a bad evolution
process. On the contrary, within the AOSD paradigm, changes and system artifacts are
kept separate during the development process. They are only composed together at the
end of the development lifecycle. The separation of existing artifacts and changes is the
core of the successful software evolution in this case. “Separation of concerns” - the key
of successful software - is achieved. It minimizes efforts and costs as the concerns, i.e.
changes and existing artifacts, are separately managed and implemented.

The dissertation can be divided into two major parts numbered accordingly in the
figure. Those are:

1. Capturing incremental changes in the analysis stage and integrating them consis-
tently. In particular, we check for consistency between the changes and the base
system. To deal with this issue, a formal model to express feature-oriented system

4



and changes is introduced. The theoretical foundation for feature consistency is
presented with regards to the formal model.

2. Presenting some typical applications of the theory in Part 1. A notable application
is about component specification and composition in terms of semantic constraints.
Besides, from the formal feature-based model, a formal language to express system
and changes in a modular fashion is suggested. The language is graphical-based like
that in [2]. From the specification written in that language, corresponding codes can
be automatically generated via some context-free transformation rules [8, 39]. After
transforming feature specifications into a specific target programming language, e.g.
Java as of this work due to the available code composing/weaving support tools like
Hyper/J [36] or AspectJ [38], the final step is simple in terms of making the actual
composition by activating those programming tools to obtain the target system in
the evolution process.

In this thesis, the first task in Figure 1.1 is the core, whereas the topics in the second
part are just briefed in principle. The core topic covers Chapters 3-6. It can be divided
into two related sub-parts: a formal model of feature-oriented software (Chapter 3) and
the verification of feature consistency with regards to the model (Chapters 4-6).

In details, the structure of the thesis is presented in the following. Chapter 2 reviews
the basis of Computation Tree Logic (CTL) and incremental model checking. Chapter 3
is concerned with a formal approach to verify CTL properties in incremental manner. In
particular, Chapter 3 initially provides basic definitions to be used for the subsequent dis-
cussion. Chapter 4 details the OIMC with respect to CTL properties. Later, Section 4.2
devotes to the soundness of open incremental verification, i.e. proving the assumption
at the interface instead of assuming them (i) and given the conformance, proving the
preservation of base properties at exit states (ii). Section 4.4 proves the scalability of
OIMC for future extensions. Chapter 5 describes the difficulties and guidelines when
dealing with multi-object features. Sections 4.5 and 5.2 present the application of OIMC
to single-object and multi-object features respectively. Chapter 6 improves the theoreti-
cal foundation a bit by relaxing the conformance condition between base and extension
features. Chapter 7 deals with the 2nd task depicted in Figure 1.1, i.e. the application of
the theory to component specification and composition in terms of semantic constraints
among components; the transformation of features from formal specification into codes;
and then the composition of those codes into the target system. Finally, the contribution
of this paper, its future and related work are presented in Chapter 8.

5



Chapter 2

Background

2.1 Feature-Oriented Evolutionary Domains

Evolutionary domain is a reference framework for software evolution [16]. In brief, it
describes software evolution as a process of changing specification. In essence, it defines
an evolution relation � on which software are related to each other according to degree of
maturity. The typical scenario in software evolution is that the new specification is more
evolved than the previous version. Formally, the evolution problem can be expressed as
below:

• Let s, p be the current specification of the system and its implementation respec-
tively. A new specification s′ is formed by adding a change ∆s to s, i.e. s′ = s+∆s.
In this context, we define s � s′, namely s′ is more evolved than s.

• We need to find a program p′ implementing s′ such as p′ is constructed from the
composition of p and ∆p - the program fragment implementing ∆s.

The process realizing specifications like s, s′ or ∆s into respective concrete programs such
as p, p′ and ∆p is named evolutionary development process [16]. Basically, evolutionary
development process is specific to the software development paradigm in use. AOSD
paradigm is very promising in terms of software development and evolution because the
separation of concerns is achieved. s and ∆s can be separately implemented by p and
∆p. Here, concerns (possibly composite) are s and ∆s. The feature-oriented approach is a
particular case of AOSD in the sense that concerns are features the system offers its clients.
A key issue of software evolution relates to the consistency between p and ∆p, namely
∆p does not conflict to any inherent properties of p. This dissertation is addressing the
issue in the context of feature-oriented software. It also justifies the proposed approach
to be efficient.

This section describes an external view to feature-based systems from the perspective
of evolutionary domain. A system is structured by composing several features. Let PF
be the set of primitive features. The specification s of a feature-based system is a set
of features, fs ⊂ PF , it serves the environment. As more requirements come in, the
system evolves to a new version s′ which provides a richer set of features fs′. In this
circumstance, we define s′ to be more evolved than s. In a reference to the evolutionary
domain framework [16], we define:

• s � s′ ⇔ fs ⊆ fs′.

6



• The change to the system is ∆s = fs′ \ fs.

The above defines the evolution relation � in the feature-based specification domain.
By a feature-based software development process, each feature is separately mapped into
a respective hyperslice [37]; and the programs p, p′ and ∆p corresponding to s, s′ and ∆s
are formed by composing hyperslices in a well-ordered manner.

s, s′ are represented by set of primitive features. Composing primitive features together
results in a composite feature implemented by some program. In essence, s and s′ are
considered as complete features because their respective programs p and p′ can run on its
own. On the contrary, though ∆s is also a set of primitive features, it is not regarded
as a complete composite feature since its program can not stand on its own. Rather it
refines or extends s. Its implementation is usually a partial program. ∆s is called partial
feature, either composite or primitive. From the perspective on the formal model defined
in Chapter 3, a partial feature does not have its own initial state. Rather, that state is
defined as no-care value (⊥) because the initial state is supplied by some complete base
feature on which the extension feature refines.

Subsequent discussion in the thesis treats the typical case in which the base is a
complete feature, while the extension is partial. The arguments can be equally applied
to both composite and primitive features. More specifically, we focus on the formal
specification structure of each feature based on which consistency between features is
formally defined and verified.

2.2 Aspect-Oriented Software Development

Separation of concerns is at the core of software engineering, and all developers do it.
In its most general form, it refers to the ability to identify, encapsulate and manipulate
only those parts of software that are relevant to a particular concept, goal or purpose.
Concerns are the primary motivation for organizing and decomposing software into man-
ageable and comprehensible parts. There are many kinds of concerns. For example,
OOSD focuses on classes, functional languages are interested in functions or this thesis
only considers features crosscutting multiple objects. A kind of concern like class, func-
tion or feature is referred as a dimension of concern. Separating concerns in a software
according to a particular dimension may result in a contrasting effectiveness in software
evolution. Achieving a “clean” separation of concerns via a proper dimension can reduce
software complexity, improve comprehensibility, promote traceability throughout the soft-
ware lifecycle, facilitate evolution and reuse etc. This thesis advocates the separation of
concerns according to feature dimension. Software developed in this manner is called
feature-oriented.

AOSD is an emerging software technology and has attracted great attention from
the software engineering community. It is an improvement from OOSD. Even though
OO technology brings about a great change in effectiveness and efficiency during soft-
ware development and evolution via its three main mechanisms, namely encapsulation,
inheritance and polymorphism, it still suffers from a problem called the tyranny of the
dominant decomposition [36]. It only permits the separation and encapsulation of classes
- the dominant dimension in the OO world. The same thing also happens in feature-
oriented software. However, from system evolution perspective as shown in Section 2.1
above, the requirement changes often occur in terms of new system services or features

7



instead of classes. Further, these changes of features very often crosscuts many mem-
ber classes in the system - separating system along the class dimension would be a very
bad idea. Hence, capturing the changes by separating concerns according to the feature
dimension is the best way to limit the effect of the changes and to minimize the devel-
opment efforts. Specifically, changes are usually localized at a single feature or at most
some neighbor features. That is the reason for feature-oriented software to be in focus of
the dissertation.

ContainerNode

Alloc collaboration Node for Alloc Container for Alloc

Bintree collaboration Node for Bintree Container for Bintree

Timestamp collaboration Node for Timestamp

Sizeof collaboration Node for Sizeof Container for Sizeof

Container for Timestamp

Figure 2.1: The evolution of a complex data structure via handling some extra features.

Below is a simple example showing the advantages of AOSD by separating concerns
via the dominant feature dimension over OOSD. The example about a data structure
is shown in Figure 2.1. That is a specific example illustrated in [35]. The example is
about a data structure design. In this simplified example, there are two participating
classes, namely a node class and a container class. All data nodes in this data structure
are instances of node class, while there is only one instance of container class per data
structure. The target data structure consists of four different collaborations or features:
BinTree, Alloc, TimeStamp and Sizeof. BinTree captures the functionality of a binary
tree. Alloc is in charge of memory allocation. TimeStamp is responsible for maintaining
timestamps for data structure and element updates. Sizeof simply keeps track of the data
structure size. In the simplest way, the system has evolved from the simplest structure of
binary tree only (two top layers) into a more complex structure with additional timestamp
and size features. Though AOSD via proper concern dimension outperforms OOSD in
all stages of software lifecycle, due to the small example, its advantage over OOSD is
presented in the implementation phase only. In OOSD, surely all code fragments of the
same class below must be merged into a single bulk. Any new feature, if added to the
system, simultaneously affect the two classes. That is certainly very hard to maintain
and evolve in the event of changes. On the contrary, the situation is different in AOSD
because each feature is managed and implemented separately in its own layer or at most
in a few neighbor related layers. The codes in C++ and Java are shown below.

In C++, each collaboration is implemented in a layer via template.
template <class EleType> class ALLOC{
public:

class Node {

8



EleType element; // The actual stored data

public:

etc...// methods definition

};

class Container {
protected:

typedef Super::EleType EleType;

// The actual type of stored data

void* node alloc();//memory allocation

};
};

template <class Super> class BINTREE: public Super{
public:

class Node: public Super::Node {
// Class name is hard-coded into definition.

// Upper layer must consist of the class Node.

// Otherwise, error - super-class not found.

Node* plink, llink, rlink;// Node data members

public:

etc...// node interface

};

class Container: public Super::Container {
Node* header;

public:

void insert (EleType el) {...}
void erase (Node* node) {...}
bool find (EleType* el) {...}

};
};

The template-based implementation in C++ for the other two collaborations, namely
TimeStamp and Sizeof are skipped. The target data structure is formed by composing
layers. Depending on the desired functions of the target data structure, a layer can be
flexibly decided on whether or not to be included. For example, a binary tree structure
storing integers, maintaining time-related access information and size can be formed as:
typedef SIZEOF < TIMESTAMP < BINTREE < ALLOC < int > > > > Tree;

On the other hand, the Java codes and the composition via Hyper/J are shown below.
Each feature is mapped into a separate package collab.*.
// Alloc layer

package collab.Alloc;

public class Container{// Container definition

public Node AllocNode(int n, String s){
Node res = new Node(n, s);

9



return res;

};
void Process(Node n){

// process node appropriately in this layer

};
}; // END class Container

package collab.Alloc;

public class Node{// Node definition

public Node(int n, String s){
// create proper elem data member by option s.

};
...

private Element elem;

}; // END class Node

The Java code for the other three layers, namely BinTree, TimeStamp and Sizeof, are
quite similar to that of Alloc layer. The source code of those layers are skipped. Once a
layer implementation is completed, we can compile Container and Node classes separately
into Java’s .class files. When the compilation is finished, Hyper/J compositor comes in
to deal with those .class files. It looks for its three component files in the project.
// Hyperspace specification file: OpenDS.hs

// It instructs Hyper/J to compose all Java classes in provided packages.

hyperspace CollabHyperspace

composable class collab.Element.*;

composable class collab.Alloc.*;

composable class collab.BinTree.*;

composable class collab.TimeStamp.*;

composable class collab.SizeOf.*;

// Concern mapping file: concerns.cm

// It specifies the feature corresponding to each package.

package collab.Element : Feature.Alloc

package collab.Alloc : Feature.Alloc

package collab.BinTree : Feature.BinTree

package collab.TimeStamp : Feature.TimeStamp

package collab.SizeOf : Feature.SizeOf

// Hypermodule specification file: DS.hm

// It instructs Hyper/J to merge classes, methods sharing the same name.

hypermodule DS

hyperslices:

Feature.Alloc,

Feature.BinTree,

Feature.TimeStamp,

Feature.SizeOf;

relationships:

10



mergeByName;

override action Feature.BinTree.Node.Value with action

Feature.Alloc.Node.Value;

end hypermodule;

2.3 An Initial Attempt on the Formal Model of Feature-

Oriented Software

An initial effort towards the formal model of feature-oriented software has been attempted
[25]. However, in that work, only class diagrams are considered. Hence, the model is static.
The formal model presented in this thesis takes a step further in defining the dynamic
behavior within classes. Comparing the model in [25] and the multi-object model in
Section 5.1, there is a great similarity. Models are all expressed by layers of collaborations
[25] and features in this work. Within each layer are many member objects. This work
goes further into the details of each object in any layer by defining its behavior via a state
transition model. Each state model provides interface states at which other models of
the same object belonging to other layers can be plugged together. To some extent, this
dissertation continues the work in [25].

2.4 Model Checking

CTL∗ is the logic for specifying properties of state transition systems. A tree is formed
by designating a state in the system as the initial state and then expanding the structure
into an possibly infinite tree with the designated state at the root. Basically, this logic
is formally expressed via two quantifiers A (“for all paths”) and E (“for some path”)
together with five operators X (“next”), F (“eventually”), G (“always”), U (“until”) and
R (“release”).

This dissertation is only concerned with the verification of CTL properties. CTL
is a restricted subset of CTL∗ in which each temporal operator must be preceded by
a quantifier. Basically, we have ten basic CTL operators. Those are: EX f , AX f ,
EG f , AG f , EF f , AF f , E [f U g], A [f U g], E [f R g], A [f R g] where f and g
are CTL properties or atomic propositions. According to [6], these ten operators can
be transformed into three basics, namely EX f , EG f , E [f U g]. In general, all CTL
formulae can be transformed into a form expressed by these three operators, a negation
and a union operators.

• AX f = ¬EX (¬f)

• EF f = E [True U f ]

• AG f = ¬EF (¬f)

• AF f = ¬EG (¬f)

• A [f U g] ≡ ¬E [¬g U (¬f ∧ ¬g)] ∧ ¬EG (¬g) = ¬(E [¬g U ¬(f ∨ g)] ∨ EG (¬g))

• A [f R g] ≡ ¬E [¬f U ¬g]

11



• E [f R g] ≡ ¬A [¬f U ¬g]

Model checking field faces a common problem, namely state explosion, in which all
reachable states in the model must be checked. There are some notable approaches to deal
with the problem. The first is via modular model checking [13, 18, 20, 31]. However, these
methods are rather closed, though modular. From the software evolution perspective,
they are not very helpful since future changes are unanticipated. OIMC proposed in the
dissertation addresses exactly the weakness. Besides, to tackle the number of states to be
verified, parallel model checking is suggested. The parallel version of OIMC is proposed
in Section 6.4.

The theoretical foundation on software verification in the thesis focuses on the infinite
model by considering only infinite paths starting from the initial state. The finite model
differs only in the fact that those paths must end at an implicitly designated final state.
Certainly, the infinite model is stronger, even though the two are quite identical in many
aspects. Subsequently, upon any conclusion or theorem drawn with respect to the infinite
model, a corresponding conclusion with respect to the finite model is presented without
going into details.

2.5 OIMC - The Basics

The initial incremental verification methodology of feature-based software has been at-
tempted by [10]. The approach consists of the following activities:

1. Proving a CTL property of a system.

2. Deriving a set of constraints in the interface states of the system such that if those
constraints are preserved, the corresponding property is guaranteed. According to
[10], those constraints are named preservation constraints.

3. A separate feature does not violate the above property of the first feature if, during
its execution, the preservation constraints are preserved. In this activity, rather
than entire state space of the first feature, only interface states are considered during
verifying the second feature.

The following list are the key ideas presented by [10] to accomplish activities above.

• Proposing a formal model of features of which interfaces are fixed with a single exit
and a single reentry states. Implicitly, this model is additive, i.e. the extension is
not allowed to override any behavior of the base.

• Presenting a verification algorithm to check whether a CTL property p continues to
hold at those exit states. Fundamentally, the algorithm is based on an assumption
that all reentry states are proper. From that assumption, conclusion about the
extension with respect to the property is drawn.

We believe that [10] is based on a rather strict model and too relaxed assumptions. The
formal interface is generalized to accommodate multiple exit and reentry points (Chap-
ter 3) with base-behavior overriding capability. Due to that generalization, fundamental
foundation of OIMC is rebuilt (Section 4.1). Unlike [10], a sound theoretical foundation

12



of OIMC is introduced. More specifically, the conformance condition, soundness and scal-
ability of OIMC with respect to this generalized model are investigated. Initially, the
theoretical foundation and related issues are constructed for single-object features. Issues
related to multi-object features, especially state explosion due to cross-product of member
states, are discussed in Chapter 5.

13



Chapter 3

Formal Models of Feature-Oriented
Software

3.1 Basic Definitions

In feature-oriented software, each feature is packaged by one or more components as shown
in the example in Section 2.2. In general, each feature can be regarded as a component in
the most general sense (either composite or primitive). A composite component is formed
from some sub-components, whereas a primitive component is the most basic building
block.

The most common form of components in practice is Commercial-Off-The-Shelf (COTS)
on very independent components. The computation paths of these components rarely in-
terleave with each other. The relationship between components can be named functional
addition. Besides COTS, there is another aspect of component evolution - functional
refinement - in which a feature refines another. Feature refinements are fairly coupled
because they interleave execution paths. Even though the discussion in this work mainly
focuses on refinement, the results can be well applied to COTS because analyzing COTS
is obviously simpler.

Typically, there are two features under consideration: a base and an extension. Be-
tween the base and its extension, on the base side, is an interface consisting of exit and
reentry states. An exit state is the state where control is passed to the extension. On
the other hand, a reentry state is the point at which the base regains control. Corre-
spondingly, the extension interface contains in- and out-states at which the refinement
component receives and releases system control. Let AP be a set of atomic propositions.
Each feature is separately specified by a state transition model.

Definition 1 A state transition model M is a tuple 〈S, Σ, s0, R, L〉 where S is a set of
states, Σ is the set of input events, s0 ∈ S is the initial state, R ⊆ S ×PL(Σ) → S is the
transition function (where PL(Σ) denotes the set of guarded events in Σ whose conditions
are propositional logic expressions), and L : S → 2AP labels each state with the set of
atomic propositions true in that state.

Definition 2 A base is expressed by a transition model B and an interface I, where
B = 〈SB, ΣB, soB

, RB, LB〉. An interface is a tuple of two state sets I = 〈exit, reentry〉,
where exit, reentry ⊆ SB and exit, reentry = ∅.

14



Definition 3 An extension is represented by a model E = 〈SE , ΣE,⊥, RE , LE〉. ⊥ de-
notes no-care value. The interface of E is J = 〈in, out〉.

Above base and extension models are all intended for single-object features. The
model of features crosscutting multiple objects is introduced in Section 5.1.

Unlike the simple model in [10], the interface I could have multiple points. Moreover,
it is possible that exit ∩ reentry = ∅, i.e. dual states are allowed. Note that, unlike the
interface I = 〈exit, reentry〉 of the base, the in- and out-states are terminal in E because
at those points, E starts and ends its execution trace. Formally,

• ∀i ∈ J.in, �s ∈ SE : (s,⊥, i) ∈ RE .

• Similarly, ∀o ∈ J.out, �s ∈ SE : (o,⊥, s) ∈ RE.

E can be syntactically plugged with B via compatible interface states. Logically, along
the computation flow, when the system is in an exit state ex ∈ I.exit of B matched
with an in-state i ∈ J.in of E, denoted as ex ↔ i, it can enter E if the conditions to
accept extension events, namely the set of atomic propositions at i, are satisfied. Similar
arguments are made for the matching of a reentry state re ∈ I.reentry and an out-state
o ∈ J.out. The conditions resembles to pre- and post-conditions in design by contract [24].

Definition 4 Within interfaces I and J of B and E, the pairs 〈ex, i〉 and 〈re, o〉 can be
respectively mapped according to the following conditions.

• ex ↔ i if LB(ex) ⇒ LE(i).

• re ↔ o if LE(o) ⇒ LB(re).

Given two features B and E, the above definition provides the syntactical condition
for two interface states to be mapped together. Unlike [10, 28], features specified in this
model are clearly independent with each other. The decision for actual matching is left
to the modeler. Along the flow of computation paths, if an interface state is mapped to
more than one interface states of the other component, the mapping is a fork. Conversely,
the mapping is a join. During composition, the transitions (states, events and guards) at
interface states will be adapted according to the mapping. Fork mapping is illustrated
Figure 3.1 in which the out-state o2 of E is mapped to two reentry states u.clr and u.crd
of B. Correspondingly, the transition paidu between u.chg and o2 in the component E
is represented by two complementary transitions paidu with [ontime] and [overdue]

guards to the two reentry states respectively. On the other hand, other interface state
mappings are simple such as i1 ↔ u.wait, i2 ↔ u.borr and o1 ↔ u.init. Details are
presented in the example in Chapter 4.

The actual mapping configuration is decided by the modeler at composition time.
Subsequently, states ex and re will be used in place of i and o whenever interface states
are referred. Identically, J is replaced by I.

The composition of B and E is defined as:

Definition 5 Composing the base B with the extension E, through the interface I pro-
duces a composition model C = 〈SC , ΣC , s0C

, RC , LC〉. C is defined from B = 〈SB, ΣB,
s0B

, RB, LB〉 and E = 〈SE, ΣE ,⊥, RE, LE〉.
• SC = SB ∪ SE;

15



u.chg
u.borru.wait

u.chg

i1

i2 o2

o1lost_u

paid_u

Feature E

lost_u v

v [overdue] ret_u
ava_u

[overdue] ret_u

User Account

u.init

res_u

Base (B)

Extension (E)

lost_u

[ontime] ret_u

u.crd

crdd_u

u.clr

[ontime] paid_u

[overdue] paid_u
lost_u v [overdue] ret_u

Figure 3.1: The extension feature (E) and the composition (C) of both base and extension
features in the library system. The base feature (B) is obvious from the composition
model.

• ΣC = ΣB ∪ ΣE ;

• s0C
= s0B

;

• RC is defined from RB and RE. For each s ∈ SC, let ∨E
s =

∨
pli where (s, [pli] e) ∈

Dom(RE),

– ∀(s, [pli] e) ∈ Dom(RE): RC(s, [pli] e) = RE(s, [pli] e)

– ∀(s, [plB] e) ∈ Dom(RB): RC(s, [plB ∧ ¬∨E
s ] e) = RB(s, [plB ∧ ¬∨E

s ] e)

• ∀s ∈ SB, s ∈ I.exit ∪ I.reentry : LC(s) = LB(s);

• ∀s ∈ SE , s ∈ J.in ∪ J.out : LC(s) = LE(s);

• ∀s ∈ I.exit ∪ I.reentry : LC(s) = LB(s);

The atomic proposition produced at the interface states can be explained in the following.
Due to Definition 4, if an exit state ex is mapped with an in-state i, LB(ex) ⇒ LE(i). After
composition, ex ↔ i, the set of atomic propositions is the union from LB(ex) ∪ LE(ex).
However, as LB(ex) ⇒ LE(i), we have: LB(ex) ∪ LE(ex) ≡ LB(ex). On the other
hand, if a reentry state re is mapped with an out-state o, according to Definition 4,
LE(o) ⇒ LB(re). By similar arguments, the union LE(o) ∪ LB(re) ≡ LE(o). However,
besides computation paths through E to re, there exist some old paths completely lying
in B. In such a situation, LE(re) does not contribute to the atomic proposition set at re.
By unifying the two different routes, the weakest condition, namely LB(re), is taken as
in Definition 5.

In the formal model, the expressions of guarded events between different transitions
from the same state are disjoint 1. ∨E

s represents the union of all events directing to the
extension from a state s. In the composition definition above, a transition (s, plB, s′) in
the base can be partially or completely overridden by the extension. In this circumstance,
s is certainly an exit state. It is completely removed from C if plB ∧ ¬∨E

s = false.
Otherwise, it is partially overridden. This is another key difference between our model
and the former [10] in which the extension is not allowed to override any transition in the
base. The former is called additive-only composition, while ours is overriding. Further,

1The formal model is deterministic.

16



there is no inconsistent interface state due to atomic proposition composition. That is,
∀s ∈ exit ∪ reentry : �a ∈ AP, a ∈ LB(s) ∧ ¬a ∈ LE(s).

This work concentrates on the preservation of CTL properties when features are com-
posed. A CTL property is normal if it does not contain any logical operators such as ¬,
∨, ∧ at the outermost level. It is a negation single property if it is in negation form of a
normal property. It is single if it is either a normal or a negation property. Otherwise, the
property is composite. For example, EX (AG f ∨ E [f U g]) is a normal single property,
while EX f ∨A [f U g] is composite.

Definition 6 The order of a CTL property p, |p|, is defined as follows:

• p ∈ AP : |p| = 0

• p is one of AX f,EX f,AF f,EF f,AG f,EG f : |p| = 1 + |f |
• p is one of A [f U g],E [f U g],A [f R g],E [f R g] : |p| = 1 + max(|f |, |g|)
• p = ¬f : |p| = |f |
• p = f ∨ g or p = f ∧ g: |p| = max(|f |, |g|)

Definition 7 The closure of a property p, cl(p), is the set of all sub-formulae of p in-
cluding itself. cl(p) is defined as:

• p ∈ AP : cl(p) = {p}
• p is one of AX f,EX f,AF f,EF f,AG f,EG f : cl(p) = {p} ∪ cl(f)

• p is one of A [f U g],E [f U g],A [f R g],E [f R g] : cl(p) = {p} ∪ cl(f) ∪ cl(g)

• p = ¬f : cl(p) = cl(f)

• p = f ∨ g or p = f ∧ g: cl(p) = cl(f) ∪ cl(g)

Note that, if two properties p and q are logically equivalent, their respective closure
sets may not. For example: A [f U g] = ¬E [¬g U (¬f ∧ ¬g)] ∧ ¬EG (¬g). The closure
set of the left-hand side is:

cl(LHS) = {A [f U g]} ∪ cl(f) ∪ cl(g)

On the other hand, the closure set of the right-hand side is:

cl(RHS) = {cl(¬E [¬g U (¬f ∧ ¬g)]), cl(¬EG (¬g))}
= {¬E [¬g U (¬f ∧ ¬g)],¬EG (¬g)} ∪ cl(f) ∪ cl(g).

Surely, the later is “stronger” than the former in the sense that the first two properties
in cl(RHS) can derive their union property which is exactly A [f U g]. In terms of the
preservation of closure set to be discussed in subsequent sections, obviously preserving
cl(RHS) requires a more restricted condition than that of cl(LHS). Specifically, the
preservation of the first two properties of cl(RHS) can derive the preservation of A [f Ug]
but not the other way around. This is the reason why A [f U g] requires a complete proof
in all theorems in this thesis with respect to the preservation of closure set at exit states
in the later proofs. We can not employ the equivalent form of union property for A [f Ug]
because the condition to preserve the closure set of the union property is stronger than
the counterpart of cl(A [f U g]). Proof details are shown in Chapter 4.

17



Definition 8 Given two properties p and q, two respective closure sets cl(p) and cl(q) are
logically equivalent, cl(p) ≡ cl(q), in terms of preservation if a tuple of truth values at a
state with respect to the former can derive directly the corresponding tuple of truth values
of that state with respect to the latter and vice versa.

From this definition, except A [f U g], we have the following equivalent closure sets
from the equivalent properties pairs in Section 2.4:

• cl(AX f) ≡ cl(¬EX (¬f))

• cl(EF f) ≡ cl(E [True U f ])

• cl(AG f) ≡ cl(¬EF (¬f)) ≡ cl(E [True U (¬f)])

• cl(AF f) ≡ cl(¬EG (¬f))

• cl(A [f R g]) ≡ cl(¬E [¬f U ¬g])

• cl(E [f R g]) ≡ cl(¬A [¬f U ¬g])

Definition 9 For each model M = 〈S, Σ, s0, R, L〉, the set of ending states, end(M),
consists of all states without any out-going transitions, i.e. end(M) = {s ∈ S | � pl, e, s′ :
(s, [pl] e, s′) ∈ R}.

Definition 10 An assumption function for a transition model M = 〈S, Σ, s0, R, L〉 is a
function As : end(M) → 2CTL.

CTL denotes the set of all CTL properties. For every f ∈ cl(p), if f ∈ As(e), we
assume that f holds at the ending state e. A property f is said to hold under assumption
model checking [20] at a state s ∈ S, M, s |=as f , if either M, s |= f directly under regular
model checking or M, s |= f if assumption truth values at some ending state are required.

Definition 11 The truth values of state s with respect to a set of CTL properties ps
within a model M , denoted VM(s, ps), is a function: S × 2CTL → 2CTL.

• VM(s, ∅) = ∅
• VM(s, {p} ∪ ps) = VM(s, {p}) ∪ VM(s, ps)

• VM(s, {p}) =

{ {p} if M, s |= p
{¬p} otherwise

Hereafter, VM(s, {p}) = {p} (or {¬p}) is written in the shorthand form as VM(s, p) = p
(or ¬p) for individual property p.

In the subsequent discussion, OIMC is represented by an assumption model checking
in E only rather than in C. In such a situation, the ending states in E, i.e. reentry states
re, are assumed with some truth values seeded from B, VB(re, cl(p)). In other words, the
assumption function As is defined as As(re) = VB(re, cl(p)).

Definition 12 The assumption function As of an assumption model checking in E is
proper at an ending state re if the assumed truth values are exactly those resulted at re
from the standard model checking in C, i.e. VB(re, cl(p)) = VC(re, cl(p)).

18



OIMC is particularly useful for open systems - future extensions are not known in
advance. In the typical case of component refinement, the composite model C is regarded
as the combination of two sequential components B and E. Besides execution paths
already defined in B, a typical execution path in C consists of three parts: initially in B,
next in E and then back to B. Associated with each reentry state re of E is a computation
tree in B represented by a set of temporal properties. If these properties at re are known,
without loss of correctness, we can efficiently derive the properties at the upstream states
in E by ignoring model checking in B to find the properties at re. Instead, we start from
these reentry states with the associated properties; check the upstream of the extension
component, and then the base component if needed 2. The properties associated with a
reentry state re are assumed with truth values from B, As(re) = VB(re, cl(p)). Of course,
this method is reliable if As(re) is proper.

3.2 Fundamental Issues of OIMC

Given a structure B = 〈S, Σ, s0, R, L〉 defined upon AP as in Definition 1, a property p
is inherent to B if B, s0 |= p. The base B is then composed with an extension E. We
propose the way in which E does not violate p in B.

Definition 13 Given the property p inherent to the base B, an extension E is consistent
with B regarding p if C, s0 |= p, where C is the composition of B and E.

From Definition 13, if B and E are consistent, E does not violate the property p in
B. To this stage, the most fundamental issue of OIMC with can be described as follows:

Given B and p, what are the necessary conditions for E so that B and E are consistent
with respect to p?

Because the formal model allows the extension to override the base as in Definition 5,
that fact complicates the matter to a great extent. There is another question. Which
overriding manner can still maintain the soundness of the verification task? In addition,
this work also examines the scalability of OIMC. We are concerned with the preservation
of p not only for the addition of E but also for many subsequent extensions to C.

3.3 Basic Notations

In the subsequent discussion, the following notations are used.

• If a state d is reachable from a state a, a is the ascendant while d is called the
descendant. If (a,⊥, d) ∈ R, d is an immediate descendant of a.

• bφ, eφ, cφ are sets of states in the base B, the extension E and the composition C at
which the property φ holds. Formally, bφ = {s ∈ SB|B, s |= φ}. eφ, cφ are similarly
defined.

2There is no need to check the base again if the consistency constraints associated with the exit states
of B are preserved at the corresponding in-states of E as of Theorem 17 later.

19



• B′ is the model resulted from B after removing all overridden transitions, if any.
Surely, in case of additive composition, B and B′ are exactly identical. In case
of overriding composition, B′ is very much similar to B. In fact, the labels at
corresponding states between the two can be derived rather quickly.

• s1
dep.−→ s2 - verification dependency due to model checking, i.e. from an ascendant

state s1 to a descendant state s2. The truth values of s1 with respect to a set of
properties can be derived only if the counterparts of s2 are already determined.

• Also c1
dep.−→ c2 - verification dependency due to model checking between components

c1 and c2. In terms of OIMC, model checking c2 requires input from the result of
OIMC within c1. Hence, c2 can only be checked after OIMC has been completed in
c1. This notation is used only in Section 6.4.

• A computation path can be represented by two ways: state names or respective
labels at those states. For example, a path π = s0s1s2 . . . is shown in the first
form via states si. In the second form, π can be represented by the sequence of
relevant truth values (i.e. formula pattern) at those states on the path. Typically,
we consider two patterns:

1. π = f ∗ - the pattern for the path π in which EG f holds. This pattern means
f holds at all states along the path.

2. π = (f, ⊥)∗ (⊥, g) (⊥, ⊥)∗ - the pattern for any path in which E [f Ug] holds.
This pattern requires the first property f to hold until the second property g is
found. Each 2-tuple represents the pair of truth values with respect to f and
g respectively.

For comprehensibility, we start the presentation by considering the simple case of
composition: the interface consists of a single exit state ex and a single reentry state re.
Further, we assume that re is not an ascendant of ex. E does not have a cycle containing
ex and re either. The generalized interface will be dealt with in the soundness issue after
the theoretical foundation has been established. In Section 4.2 about the soundness of
OIMC, the previous assumption among ex and re is dropped.

As a first step in verifying properties in the extension, some observations have been
made. All properties under consideration are CTL. Regarding to a CTL property p, the
labels of a state only depends on the labels of its descendants in the computation paths.
Therefore, in the event of an extension addition, if the computation tree (i.e. shape and
labels at nodes) associated with a given state is not changed, its labels with respect to
cl(p) are unchanged. From that observation, it is easy to conclude that the truth values
of re and its descendant states are preserved regardless of the extension. The states of
interest are the rest, namely ex and its ascendants.

20



Chapter 4

Fundamental Theoretical Foundation
of OIMC

4.1 Properties Preservation at Base States

4.1.1 A Theorem on Additive-Only Composition

Due to the inherently inside-out characteristic of model checking, at the end of a task
checking a property p, at each state s in B, besides the atomic proposition labels provided
by LB, VB(s, cl(p)) are also recorded. The truth values VB(ex, cl(p)) at the exit state ex
serve as the conformance for the composition between B and E according to the theorems
below.

Definition 14 B and E are in conformance at an exit state ex (with respect to cl(p))
if VB(ex, cl(p)) = VE(ex, cl(p)). They are in strict conformance if besides the regular
conformance condition, with regards to any property in cl(p) of the form A [f U g] (or
¬EG f) holding at ex, E does not make A [f U g] false (or EG f true) at ex by patching
a path of (f ∧¬g)∗ (or f ∗ ) with another existing (f ∧¬g)∗ (or f ∗ ) path in B to make
a complete cycle (f ∧ ¬g)∗ (or f ∗ ) through ex in C.1

Theorem 15 Given a model B and a CTL property p, an extension E is attached to the
model B via an exit state ex. ∀s ∈ SB : VB(s, cl(p)) = VC(s, cl(p)), if B and E conform
each other at ex.

Intuitively, E does not affect the truth values with respect to cl(p) at all base states
if it conforms B at exit states. Formally, if there is a conformance between B and E,
∀φ ∈ cl(p) : bφ = cφ ∩ SB. Figure 4.1 only shows that B and E are composable with
respect to single property p = EG f . In this figure, we do not care about the descendant
states in E. Thus, E is intentionally left end-open so that the reentry state re is not
explicitly displayed. In this part, what E can deliver at ex is important regardless of its
descendants in E. We actually want ∀φ ∈ cl(p) : E, ex |= VB(re, φ) no matter via regular
model checking (the assumption at re is not needed) or assumption model checking (the
assumption at re is required). The subsequent arguments on the theorem are still valid
when the downstream of E converges to re.

1Due to the partial model in assumption model checking, there is a danger of mistakenly claiming
A [f U g] or ¬EG f to be true at interface states. How to check for these extra requirements is shown in
Section 4.1.4. Regarding to the finite model, the regular conformance condition is sufficient.

21



. . . . . . . . .

. . .

B

. . .

. . . . . . . . .

. . .

B

. . .
If these two parts derive to the same truth values
with respect to cl(p), the validity of all states in B
with respect to cl(p) are not affected by E.

ex

s1

s2

s1

s2

f

EG f

f

f*

f

f

EG f f

f*

s3 s3f

f*

f

ex

. . . . . .

E

Figure 4.1: An illustration of B and E conformance in case of additive-only composition.
The property p = EG f is preserved at ex and all states in B.

Most theorem proofs in this paper are essentially structured into two mutually related
parts to prove the theorems with respect to the CTL set. It is easy to see that if part 1
(dealing with normal properties, namely the ten basic operators) and part 2 (dealing with
the rest of CTL properties formed by the combination of normal properties with negation
and union operators) are both justified, the theorems are valid with respect to the whole
CTL set.

• Proving the theorems for the basic case - atomic propositions, i.e. the order n = 0.
This initial proof claims that the theorems are true with respect to all normal
properties with zero-order.

• The main proof consists of two parts:

1. Proving the theorems for the ten normal temporal properties of an arbitrary
order n by induction. By assuming the theorems for all CTL properties with
the order n ≤ k, the theorems are confirmed for normal properties with the
order n = (k+1). Basically, we only need to prove four basic cases: EXf , EGf ,
E [f U g] and A [f U g] 2. The other six operators are rather straightforward
derivatives from the four.

2. Proving the theorems for any other CTL property with order less-than-equal
to k, i.e. a property formed by normal properties via negation (¬) and union
(∨) operators.

The justification for the induction proof structure with respect to property order is
described below:

K1. Assuming that the theorems are valid for any CTL property with order ≤ k.

K2. Part 1 of the proof: based on (K1), proving the theorems with respect to four basic
operators EX f , EG f , E [f U g] and A [f U g] with order (k + 1).

2The operator A [f U g] is exceptional, even though it can be expressed via two operators E [f U g]
and EG f . That is because in the equivalent form expressed via the two operators, there is a union
operator strengthening the closure set than the closure set of A [f U g] itself (see Definitions 7 and 8 in
Section 3.1). Hence, A [f U g] takes a separate part in the proofs.

22



K3. By part 2 of the proof with respect to the negation operator, the theorems are
valid with regards to the corresponding negation forms of the above four operators,
namely ¬EX f , ¬EG f , ¬E [f U g], ¬A [f U g].

K4. From (K2) and (K3), the theorems can be proved regarding the remaining six normal
CTL properties of order (k+1) since those properties can be expressed via negation
forms of the four basic properties above (Refer to Definition 8 in Section 3.1).

K5. Similar to (K3), via the negation operator, the theorems are proved with respect to
the negation forms of the six remaining basic operators in (K4). Up to this stage,
all ten normal CTL properties of order (k+1) and their negation forms are proved.
That is, the theorems hold for all single CTL properties with order (k + 1).

K6. By part 2 on the union operator and (K5), the theorems are proved with respect to
any composite CTL property with order (k + 1). To this point, the theorems are
justified for all CTL properties with order (k + 1). The induction proof is done.

Due to the assumption on the reentry state re for presentation comprehensibility at the
end of Section 3.3, namely re is not an ascendant of ex in B, there is surely no loop
between re and ex formed by B and E in which each feature contains a half of the loop.
Hence, the extra loop-checking in Definition 14 for A [f U g] and ¬EG f is not needed.
We are only concerned with the regular conformance condition at this stage. Below is the
proof for Theorem 15.

Proof
i). p ∈ AP : cl(p) = {p}. All atomic proposition labels for states in B are preserved

after composition, according to the Definition 5. In other words, for any s ∈ SB :
VB(s, cl(p)) = VC(s, cl(p)) in case of |p| = 0, .

Suppose the theorem is true for all CTL properties whose order is less than or equal
to k. We prove the theorem is also valid for all single CTL properties whose order is
(k + 1). We only need to prove in four basic cases, namely EX f , EG f where |f | = k;
and E [f U g], A [f U g] where max(|f |, |g|) = k, i.e. (K1).

ii). p = EX f where |f | = k: Let s be a state in SB.
If E conforms B at ex with respect to cl(p) then certainly E conforms B with respect

to cl(f) ⊂ cl(p). Due to the conformance B and E on cl(f) and |f | = k, according to the
inductive hypothesis above, the set bf is not affected by E, i.e. bf = cf ∩ SB. From the
perspective of p = EX f , the portion of cp in B certainly includes bp: bp ⊆ cp ∩SB by the
following arguments.

Given a state s ∈ bp, at least one of its immediate descendants must possess f label.
Because bf = cf ∩ SB, that descendant is still a member of cf and hence it causes s to
satisfy p = EX f , i.e. s ∈ cp. That is, ∀s ∈ bp : s ∈ cp. Hence, bp ⊆ cp ∩ SB.

We now prove that bp = cp ∩ SB by showing that E does not re-label any state in
b¬p into cp. In terms of p = EX f , the only base state possibly under E’s relabeling is
ex. However, because E and B agree at ex with respect to p, there is no new state to be
added by E to the set cp ∩ SB other than those in bp.

In brief, bp does not change due to E. We have: ∀s ∈ SB,VB(s, cl(p)) = VC(s, cl(p))
because cl(p) = {p} ∪ cl(f) and

• VB(s, p) = VC(s, p) (by above arguments).

23



• VB(s, cl(f)) = VC(s, cl(f)) due to the inductive hypothesis for |f | = k.

The theorem is valid for p = EX f whose order is (k + 1).
iii). p = EGf where |f | = k: Similar to the above arguments, since f is a sub-formula

of p, if B and E conform at ex with respect to cl(p) then they do so with respect to cl(f).
By the hypothesis, the set bf is not affected by E, i.e. bf = cf ∩ SB.

Because C contains B completely, any path in B with the pattern f ∗ is certainly in
C. If s ∈ bp then s ∈ cp. That is, bp ⊆ cp ∩ SB. We now prove that the contribution of E
to the cp ∩ SB is not new from that of bp, i.e. bp = cp ∩ SB. We are only concerned with
the ascendants of ex because E only affects to ex directly and its ascendants indirectly
via ex. There are two cases to consider.

First, if B, ex |= p, then E, ex |= p due to the conformance, i.e. for all computation
paths from ex to E, their languages are not of the pattern f ∗ . In such a case, there is
surely no path from an ascendant in B through ex to E with the language of f ∗ . Hence,
E does not relabel any state in b¬p into cp. The labels in base states with respect to p are
preserved.

Second, B, ex |= p and so does E, ex |= p. That means, at ex there are at least two
paths. Each lies completely in either B or E. From the perspective of EG f , there is
no difference between having two or one paths. If an ascendant s ∈ bp, there is no path
from s to ex such that f holds along the path. As a result, the extra path in E does not
help to assign p to s. If s ∈ bp, with the occurrence of E, s has at least one more path of
f ∗ via E. Overall, with respect to p, the truth values of base states are preserved after
composing E: bp = cp ∩ SB.

In brief, ∀s ∈ SB,VB(s, cl(p)) = VC(s, cl(p)) because cl(p) = {p} ∪ cl(f) and

• VB(s, p) = VC(s, p) (by above arguments).

• VB(s, cl(f)) = VC(s, cl(f)) due to the inductive hypothesis for |f | = k.

The theorem is valid for p = EG f whose order is (k + 1).
iv). p = E [f U g] where max(|f |, |g|) = k: We have cl(f), cl(g) ⊂ cl(p). If B

and E conform then B and E are certainly in agreement for cl(f) and cl(g). Of course,
|f |, |g| ≤ k, by the hypothesis, bf = cf ∩ SB and bg = cg ∩ SB.

Because C contains B completely, any path in B with pattern (f, ⊥)∗ (⊥, g) (⊥, ⊥)∗

is certainly in C. In other words, bp ⊆ cp ∩ SB. We now prove that the contribution of E
to the cp ∩ SB is not new from that of bp. As above, we are only concerned with ex and
its ascendants. There are two cases to consider.

First, if B, ex |= p, then E, ex |= p, i.e. for all computation paths from ex to E, their
languages are not that of (f, ⊥)∗ (⊥, g) (⊥, ⊥)∗ . In such a case, E could not relabel
any state in b¬p to be a member of cp either. Hence, bp = cp ∩ SB.

Second, if B, ex |= p and so does E, ex |= p. That means, at ex there are at least two
“suffix” paths with the pattern (f, ⊥)∗ (⊥, g) (⊥, ⊥)∗ . Each lies completely in either
B or E. From the perspective of E [f U g], there is no difference between having two or
one paths. If an ascendant s is not in bp then there is no prefix path from s to ex such
that either (f, ⊥)∗ or (f, ⊥)∗ (⊥, g) (⊥, ⊥)∗ hold along this prefix path. This prefix
pattern is needed to concatenate with the suffix path from ex to form a p-satisfying path
rooted at s. In brief, E does not relabel p to any s ∈ b¬p.

Finally, we have: ∀s ∈ SB,VB(s, cl(p)) = VC(s, cl(p)) because cl(p) = {p}∪cl(f)∪cl(g)
and

24



• VB(s, p) = VC(s, p) (by above arguments).

• VB(s, cl(f)) = VC(s, cl(f)) due to the inductive hypothesis for |f |, |g| ≤ k.

The theorem is valid for p = E [f U g] whose order is (k + 1).
v). p = A [f U g] where max(|f |, |g|) = k: As above, we are only concerned with ex

and its ascendants. There are two cases to consider.
First, if B, ex |= p, then E, ex |= p. There exists some computation path from ex to

E, whose pattern is not (f, ⊥)∗ (⊥, g) (⊥, ⊥)∗ . Thus, E could not relabel p at ex or
any ex’s ascendants in b¬p. That is, bp = cp ∩ SB.

Second, B, ex |= p and E, ex |= p. From ex, all paths - completely lying in B (I);
involving some prefix in E and then back to B (II) - satisfy [f U g]. For paths of types
(I) and (II), it is obvious about their fulfillment with respect to p.3

From the above arguments, C, ex |= p = A [f U g]. For any ascendant s of ex,
because the labels at ex are fixed while all intermediate base states between s and ex
are unchanged both in terms of transitions and labels up to f , g (due to the inductive
hypothesis), the truth value at s with respect to p is preserved. That is, bp = cp ∩ SB.

The theorem is valid for p = A [f U g] whose order is (k + 1).
Briefly, to this stage, the theorem holds with regards to four basic normal operators

(K2).
vi). For the other normal properties, the proof is simple as they can be directly derived

from the above four normal properties - (K3).
First, p = AX f = ¬EX (¬f), cl(AX f) ≡ cl(EX (¬f)) (Definition 8). From the case

ii, we have:

If VB(ex, cl(EX (¬f))) = VE(ex, cl(EX (¬f))),
∀s ∈ SB : VB(s, cl(EX (¬f))) = VC(s, cl(EX (¬f))).

By a simple substitution between equivalent closure sets:

⇒ If VB(ex, cl(AX f)) = VE(ex, cl(AX f)),
∀s ∈ SB : VB(s, cl(AX f)) = VC(s, cl(AX f)).

The theorem holds for the normal property p = AX f .
Second, p = EF f = E [True U f ], cl(EF f) ≡ cl(E [True U f ]) (Definition 8). From

the case iv, we have:

If VB(ex, cl(E [True U f ])) = VE(ex, cl(E [True U f ])),
∀s ∈ SB : VB(s, cl(E [True U f ])) = VC(s, cl(E [True U f ])).

By a simple substitution between equivalent closure sets:

⇒ If VB(ex, cl(EF f)) = VE(ex, cl(EF f)), ∀s ∈ SB : VB(s, cl(EF f)) = VC(s, cl(EF f)).

The theorem holds for the normal property p = EF f .
Third, p = AG f = ¬EF (¬f), cl(AG f) ≡ cl(EF (¬f)) (Definition 8). From the

right above arguments for EF f , we have:

3For the paths of type (II), since re is not an ascendant of ex in B, there certainly exists no f∗ loop
between ex and re in C through the connection of two half cycles between re and ex in B and E. Hence,
C, ex |= EG f and C, ex |= A [f U g].

25



If VB(ex, cl(EF (¬f))) = VE(ex, cl(EF (¬f))),
∀s ∈ SB : VB(s, cl(EF (¬f))) = VC(s, cl(EF (¬f))).

By a simple substitution between equivalent closure sets:

⇒ If VB(ex, cl(AG f)) = VE(ex, cl(AG f)),
∀s ∈ SB : VB(s, cl(AG f)) = VC(s, cl(AG f)).

The theorem holds for the normal property p = AG f .
Fourth, p = AF f = ¬EG (¬f), cl(AF f) ≡ cl(EG (¬f)) (Definition 8). From the

case iii, we have:

If VB(ex, cl(EG (¬f))) = VE(ex, cl(EG (¬f))),
∀s ∈ SB : VB(s, cl(EG (¬f))) = VC(s, cl(EG (¬f))).

By a simple substitution between equivalent closure sets:

⇒ If VB(ex, cl(AF f)) = VE(ex, cl(AF f)), ∀s ∈ SB : VB(s, cl(AF f)) = VC(s, cl(AF f)).

The theorem holds for the normal property p = AF f .
Fifth, p = A[fRg] = ¬E[(¬f)U(¬g)], cl(A[fRg]) ≡ cl(E[(¬f)U(¬g)]) (Definition 8).

From the case iv, we have:

If VB(ex, cl(E [(¬f) U (¬g)])) = VE(ex, cl(E [(¬f) U (¬g)])),
∀s ∈ SB : VB(s, cl(E [(¬f) U (¬g)])) = VC(s, cl(E [(¬f) U (¬g)])).

By a simple substitution between equivalent closure sets:

⇒ If VB(ex, cl(A [f R g])) = VE(ex, cl(A [f R g])),
∀s ∈ SB : VB(s, cl(A [f R g])) = VC(s, cl(A [f R g])).

The theorem holds for the normal property p = A [f R g].
Sixth, p = E[fRg] = ¬A[(¬f)U(¬g)], cl(E[fRg]) ≡ cl(A[(¬f)U(¬g)]) (Definition 8).

From the case v, we have:

If VB(ex, cl(A [(¬f) U (¬g)])) = VE(ex, cl(A [(¬f) U (¬g)])),
∀s ∈ SB : VB(s, cl(A [(¬f) U (¬g)])) = VC(s, cl(A [(¬f) U (¬g)])).

By a simple substitution between equivalent closure sets:

⇒ If VB(ex, cl(E [f R g])) = VE(ex, cl(E [f R g])),
∀s ∈ SB : VB(s, cl(E [f R g])) = VC(s, cl(E [f R g])).

The theorem holds for the normal property p = E [f R g].
Overall, the induction proof is completed for Part 1, i.e. Theorem 15 is true for all

ten normal CTL properties - (K2, K4).
Concerning with Part 2, the proof is carried out for two cases: negation (i.e. p = ¬f ,

where f is normal) and union (p = f ∨g where f , g are single CTL properties). Note that
the closure set, cl(¬f) = cl(f) and cl(f ∨ g) = cl(f) ∪ cl(g) as defined in Definition 7.

In the first case, the proof is simple via definition: if p = ¬f , cl(p) = cl(f). Therefore,

If VB(ex, cl(f)) = VE(ex, cl(f)), ∀s ∈ SB : VB(s, cl(f)) = VC(s, cl(f)).

26



. . . . . . . . .

. . .

B

. . .
If these two parts derive to the same truth
values with respect to cl(p), ex is not affected
if the edge ex−s3 is removed.

ex

s1

s2

s1

s2

f

EG f

f

f*

f

f

EG f f

f*

ex

. . . . . .

E

. . . . . . . . .

. . .

B

. . .

s3 s3f

f*

f

Figure 4.2: An illustration of B and E conformance in case of overriding composition.
The property p = EG f is preserved at ex and all states in B.

By a simple substitution between two equal closure sets cl(p) and cl(f):

⇒ If VB(ex, cl(p)) = VE(ex, cl(p)), ∀s ∈ SB : VB(s, cl(p)) = VC(s, cl(p)).

Theorem 15 is valid for negation operator - (K3, K5).
In the second case, p = f ∨g, cl(p) = cl(f)∪ cl(g) where f and g are single properties.

Given the truth values with respect to cl(p) are preserved at ex, the counterparts with
respect to cl(f) and cl(g) are certainly preserved. For properties in cl(f), as they are
preserved at ex, according to the theorem so far for single properties - (K2, K3, K4, K5),
the truth values with respect to cl(f) are preserved at all base states. In case of cl(g), the
argument is similar. Because the member labels cl(f), cl(g) are preserved, their union
labels cl(p) are certainly preserved at all base states - (K6).

From arguments above, Part 2 of the proof is completed. Together with Part 1,
Theorem 15 is proved. �

4.1.2 A Theorem on Limited-Overriding Composition

The previous section addresses the case in which E only introduces new behaviors to B
without changing any base behavior. The following theorem is about the case in which
the extension overrides base behavior.

Theorem 16 Let C be a composition model formed by the base B and the extension E
as of Theorem 15. Let C ′ be the new model resulted from C after removing some or even
all out-going transitions from ex in B. If B and E conform with each other at ex with
respect to a CTL property p, ∀s ∈ SB : VB(s, cl(p)) = VC′(s, cl(p))

Figure 4.2 illustrates this theorem. If B and E conform with each other, B and E
can be composed even at the cost of some transitions from ex. The preserved property
shown in this figure is p = EG f . Like Figure 4.1 in Section 4.1.1, reentry state re is not
explicitly shown. Formally, the theorem claims that if there is a conformance between B
and E, ∀φ ∈ cl(p) : bφ = c′φ ∩ SB.

Proof

27



The proof is very similar to the previous. It also consists of two parts: the first for
the ten normal CTL properties, and another for logical operators (¬ and ∨). We prove
that ∀s ∈ SB : VC′(s, cl(p)) = VC(s, cl(p)). Further, due to Theorem 15, ∀s ∈ SB :
VB(s, cl(p)) = VC(s, cl(p)). The result is that: ∀s ∈ SB : VB(s, cl(p)) = VC′(s, cl(p)) for
any CTL property p.

i). p ∈ AP : cl(p) = {p}. All atomic proposition labels for states in B are preserved
after composition, according to the Definition 5. Furthermore, any transition removal
does not affect those atomic label sets. In other words, for any s ∈ SB,VB(s, cl(p)) =
VC′(s, cl(p)) in case |p| = 0.

Suppose the theorem is valid for all CTL properties whose order is less than or equal
to k. We prove the theorem is also valid for all normal CTL properties whose order is
(k+1). Like the previous proof in Section 4.1.1, only four basic normal properties, namely
EX f , EG f,E [f U g] and A [f U g], are required. By an observation, if any out-going
transitions are removed, the action only affects the truth values with respect to cl(p) of ex
directly and its ascendants indirectly via ex. Intuitively, because E patches any change at
ex due to transition removal, this patch effectively keeps any ex’s ascendant unchanged
with regards to cl(p).

ii). p = EX f where |f | = k: Due to B and E conformance at ex, though some
transitions are removed, VC′(ex, p) = VC(ex, p). There are two cases to consider.

First, C, ex |= p: If the removed transition contributes to the only valid path for ex
with respect to p, i.e. to a state at which f holds, due to the conformance, there exists
another state in E that can fill up this role. As a result, C ′, ex |= p.

Second, C, ex |= p, all paths from ex do not satisfying p. If some of transitions are
removed, surely the computation tree rooted at ex gets smaller and there is no path
satisfying p. The result after removal is that C ′, ex |= p.

There is no change at ex, ∀s ∈ SB : VC′(s, p) = VC(s, p). In addition, for any ascendant
s of ex:

• The computation tree rooted at s is fixed in C and C ′.

• VC(s, cl(f)) = VC′(s, cl(f)) (by the inductive hypothesis).

• For any immediate descendant d of s, VC(d, cl(f)) = VC′(d, cl(f)) (by the inductive
hypothesis).

⇒ VC(s, p) = VC′(s, p), where p = EX f

In summary, ∀s ∈ SB : VC′(s, cl(p)) = VC(s, cl(p)) because cl(p) = {p} ∪ cl(f) and

• ∀s ∈ SB : VC′(s, p) = VC(s, p) (above arguments).

• ∀s ∈ SB : VC′(s, cl(f)) = VC(s, cl(f)) due to the inductive hypothesis for |f | = k.

From Theorem 15, ∀s ∈ SB : VB(s, cl(p)) = VC(s, cl(p)). We have: ∀s ∈ SB :
VC′(s, cl(p)) = VB(s, cl(p)). The theorem is valid for p = EX f whose order is (k + 1).

iii). p = EG f where |f | = k: Similarly, there are two cases to consider.
First, C, ex |= p: If the removed transition is critical to ex with respect to p 4, due

to the conformance, there exists another path in E that can fill up this role. As a result,
C ′, ex |= p.

4The criticality of a transition is defined in Section 4.2.1

28



Second, C, ex |= p, all paths from ex do not satisfy p. If some of transitions are
removed, surely the computation tree rooted at ex gets smaller and there is no path
satisfying p. The result after removal is that C ′, ex |= p.

There is no change at ex, ∀s ∈ SB : VC′(s, p) = VC(s, p). Furthermore, for any
ascendant s of ex, we have:

• The computation tree rooted at s is fixed in C and C ′.

• VC(s, cl(f)) = VC′(s, cl(f)) (by the inductive hypothesis).

• For any base descendant d of s, VC(d, cl(f)) = VC′(d, cl(f)) (by the inductive hy-
pothesis).

• In case of ex - the only descendant with changing computation tree, in addition to
cl(f), the truth value with respect to p is also preserved.

⇒ VC(s, p) = VC′(s, p) with p = EG f

In summary, ∀s ∈ SB : VC′(s, cl(p)) = VC(s, cl(p)) because cl(p) = {p} ∪ cl(f) and

• ∀s ∈ SB : VC′(s, p) = VC(s, p) (above arguments).

• ∀s ∈ SB : VC′(s, cl(f)) = VC(s, cl(f)) due to the inductive hypothesis for |f | = k.

From Theorem 15, ∀s ∈ SB : VB(s, cl(p)) = VC(s, cl(p)). We have: ∀s ∈ SB :
VC′(s, cl(p)) = VB(s, cl(p)). The theorem is valid for p = EG f whose order is (k + 1).

iv). p = E [f U g] where max(|f |, |g|) = k: Identically, we consider two cases.
First, C, ex |= p: If the removed transition is critical to ex with respect to p, due to

the conformance, there exists another path in E that can fill up this role. As a result,
C ′, ex |= p.

Second, C, ex |= p, all paths from ex do not satisfy p. If some of transitions are
removed, surely the computation tree rooted at ex gets smaller and there is no path
satisfying p. The result after removal is that C ′, ex |= p.

There is no change at ex, ∀s ∈ SB : VC′(s, p) = VC(s, p). Moreover, for any ascendant
s of ex, we have:

• The computation tree rooted at s is fixed in C and C ′.

• VC(s, cl(f)) = VC′(s, cl(f)), VC(s, cl(g)) = VC′(s, cl(g)) (by the inductive hypothe-
sis).

• For any base descendant d of s, VC(d, cl(f)) = VC′(d, cl(f)), VC(s, cl(g)) =
VC′(s, cl(g)) (by the inductive hypothesis).

• In case of ex - the only descendant with changing computation tree, in addition to
cl(f) and cl(g), the truth value with respect to p is also preserved.

⇒ VC(s, p) = VC′(s, p) in which p = E [f U g]

In summary, ∀s ∈ SB : VC′(s, cl(p)) = VC(s, cl(p)) because cl(p) = {p} ∪ cl(f) ∪ cl(g)
and

29



• ∀s ∈ SB : VC′(s, p) = VC(s, p).

• ∀s ∈ SB : VC′(s, cl(f)) = VC(s, cl(f)) due to the hypothesis for |f | ≤ k.

• ∀s ∈ SB : VC′(s, cl(g)) = VC(s, cl(g)) due to the hypothesis for |g| ≤ k.

By Theorem 15, ∀s ∈ SB : VB(s, cl(p)) = VC(s, cl(p)). We have: ∀s ∈ SB :
VC′(s, cl(p)) = VB(s, cl(p)). The theorem is valid for p = E [f U g] whose order is (k + 1).

v). p = A [f Ug] where max(|f |, |g|) = k: By analogy, there are two cases to consider.
First, C, ex |= p: If there are some transitions to be removed, the set of computation

paths starting at ex in C ′ will be a true subset of the counterpart in C. Moreover, each
computation path is a valid path with respect to [f U g]. As a result, C ′, ex |= p.

Second, C, ex |= p, some path from ex does not satisfy p. After composition, surely
even the computation tree rooted at ex in E itself violates A [f U g]. The result after
removal is that C ′, ex |= p.

There is no change at ex, ∀s ∈ SB : VC′(s, p) = VC(s, p). Besides, for any ascendant s
of ex, we have:

• The computation tree rooted at s is fixed in C and C ′.

• VC(s, cl(f)) = VC′(s, cl(f)), VC(s, cl(g)) = VC′(s, cl(g)) (by the inductive hypothe-
sis).

• For any descendant d of s, VC(d, cl(f)) = VC′(d, cl(f)), VC(s, cl(g)) = VC′(s, cl(g))
(by the inductive hypothesis).

• In case of ex - the only descendant with changing computation tree, in addition to
cl(f) and cl(g), the truth value with respect to p is also preserved.

⇒ VC(s, p) = VC′(s, p) where p = A [f U g]

In summary, ∀s ∈ SB : VC′(s, cl(p)) = VC(s, cl(p)) because cl(p) = {p} ∪ cl(f) ∪ cl(g)
and

• ∀s ∈ SB : VC′(s, p) = VC(s, p).

• ∀s ∈ SB : VC′(s, cl(f)) = VC(s, cl(f)) due to the hypothesis for |f | ≤ k.

• ∀s ∈ SB : VC′(s, cl(g)) = VC(s, cl(g)) due to the hypothesis for |g| ≤ k.

From Theorem 15, ∀s ∈ SB : VB(s, cl(p)) = VC(s, cl(p)). We have: ∀s ∈ SB :
VC′(s, cl(p)) = VB(s, cl(p)). The theorem is valid for p = A [f U g] whose order is (k +1).

vi). For the other normal properties, the proof is simple as they are derived from the
above four normal properties. The proof is exactly as the counterpart in Theorem 15.
The rest of six normal properties are proved.

Overall, the induction proof is completed for Part 1, i.e. Theorem 16 is true for all
normal CTL properties.

Concerning with Part 2, the proof is carried out for two cases: negation (i.e. p = ¬f ,
where f is normal) and union (p = f ∨g, where f , g are single CTL properties) operators.
It is identical to that in Theorem 15. Part 2 of the proof is completed. Together with
Part 1, Theorem 16 is proved. �

30



4.1.3 The Feature Consistency Issue

Theorems 15 and 16 above are justified based on two facts: a simple interface (single
exit and single reentry states) and the assumption about reentry state and exit state, i.e.
the reentry state is not an ascendant of the exit state. The simple interface is used for
simplicity. The assumption is used to guarantee that seeded values at re is proper, i.e. the
assumption function As is proper. All arguments in the proofs can be well extended to
the generalized interface of many exit, reentry and dual states as long as the assumption
function As is proper, and there is a conformance between base and extension at all exit
states.

The generalized version of Theorems 15 and 16 with respect to generalized interface
about the conformance between base and extension, no matter the composition is additive-
only or overriding, can be described in the following.

Theorem 17 Given a base B and a property p, an extension E is composed with B via
some interface states (either additive or overriding). Further, suppose that the assumption
function As defined during model checking E is proper. If B and E conform with each
other at all exit states, ∀s ∈ SB : VB(s, cl(p)) = VC(s, cl(p)).

Formally, the theorem claims that if the base and the extension conform, ∀φ ∈ cl(p) :
bφ = cφ ∩SB . From Theorem 17, given a property p holds on B, it continues to hold in C
if B and E conform with each other at exit states. The following corollary is the answer
to the problem prescribed in Section 3.2 - the key of the dissertation.

Corollary 18 Given a model B and a CTL property p adhered to it, an extension E is
attached to B at some interface states. Suppose that the assumption function As in model
checking E is proper. E does not violate p inherent to B if B and E conform with each
other at all exit states.

The properness of the assumption function As is a major part for the soundness of
the incremental verification to be dealt with in Section 4.2. In that section, instead of
assuming As’s properness, we prove it.

4.1.4 Open Incremental Model Checking

Incremental verification method should consist of the following steps:

1. Proving a CTL property of a base system B.

2. Deriving a set of constraints at the interface states of B such that if those constraints
are preserved, the corresponding property is guaranteed. According to [10], those
constraints are named preservation constraints. From Theorem 17, the preservation
constraints are required at exit states only. At each exit state ex, the constraints
are exactly VB(ex, cl(p)).

3. An extension feature E does not violate the above property of B if, during its
execution, the constraints are preserved. In this activity, only the state space of the
extension feature is verified.

Corresponding to each exit state ex, the algorithm to verify a preservation constraint
in E can be briefly described as follows:

31



i. Seeding each reentry state re with the corresponding VB(re, cl(p)). They represent
the ending states as of Definition 9. These seeded values are related to the soundness
of the assumption function As to be discussed in Section 4.2.

ii. Executing the CTL assumption model checking procedure in E to check for φ,
∀φ ∈ cl(p).

iii. At the end of the model checking task, checking if VE(ex, cl(p)) = VB(ex, cl(p)).

iv. If re is not an ascendant of ex in B′, then simply skip to the next step. Otherwise,
for the strict conformance, two extra checks for the non-existence of any (f ∧¬g)∗

or f ∗ loop to assure properties of the forms A [f U g] and ¬EG f are required.
Details of the checking are shown separately.

v. Repeating the procedure for other exit states.

At the end of the process, if at all exit states, the truth values with respect to cl(p) are
matched respectively. B and E are consistent.

The procedure of loop checking is below:
For any sub-formula: φ = A [f U g] ∈ cl(p) holding at ex in both B′ and E, surely
B′, ex |= ¬EG f ; and B′, re |= A [f U g] (for seeding during assumption model checking
within E so that there exists a chance for any f ∗ circle via ex and re). Due to B′, re |=
A [f U g], B′, re |= ¬EG f . Because ¬EG f holds in both ex and re with respect to both
B′ and E via assumption model checking, we are certain that the circle of f ∗ between
ex and re in C, if any, is the only path causes the label EG f to be turned on at these
two states. Therefore, the equivalent check for a circle of f ∗ between ex and re can be
carried out as follows:

1. Seeding at re the property EG (f ∧¬g) 5 and checking within E to see if E, ex |=as

EG (f ∧ ¬g). If so, there is definitely a path of (f ∧ ¬g)∗ from ex to re in E.

2. Seeding at ex the property EG (f ∧¬g) and checking within B′ to see if B′, re |=as

EG (f ∧ ¬g). If so, there is certainly a path of (f ∧ ¬g)∗ from re to ex in B′.

3. When both checks above return EG (f ∧ ¬g) at both ex and re, i.e. there exists a
circle of (f ∧¬g)∗ between the two states, signaling that B and E do not conform
with respect to the strict conformance condition.

For any sub-formula: φ = ¬EG f ∈ cl(p) holding at ex in both B′ and E, the check is
similar to the above, except that (f ∧ ¬g) is replaced by f .

4.2 The Soundness of Incremental Verification

4.2.1 Criticality of Transitions

This section focuses on the correctness of Theorem 17 in Section 4.1 after dropping the
assumption on the properness of As. The question is that with respect to the generalized

5¬g is added to ensure that g is not turned on at any state in the circle. Otherwise, this circle of f∗

still satisfies [f U g].

32



interface, whether the conformance between B and E at exit states can derive the preser-
vation of properties in base states. The answer is yes for any additive-only or non-critical
overriding composition, while it may fail for extreme cases of overriding composition where
the overridden transition is critical to some sub-formula of p at ex.

The criticality of one or more transitions to a property p at state s is informally
expressed by the fact that if those transitions are removed, the label for p at s is inverted.
Initially, let M = 〈S, Σ, s0, R, L〉 and s ∈ S. Further, M ′ = 〈S, Σ, s0, R \ {(s,⊥, d)}, L〉
- the remainder of M after removing the transition. The following definition defines the
criticality of the transition (s,⊥, d) to the state s. For a group of transitions, the definition
is similar.

Definition 19 A transition (s,⊥, d) ∈ R is critical to s with respect to cl(p) if ∃φ ∈
cl(p) : M, s |= φ and M ′, s |= φ.

In the base model B of Figure 4.10, the transition associated with the event e1 is critical
to the property E[fUg] at the state ex1. If e1 is removed from B, then B′, ex1 |= ¬E[fUg],
whereas initially B, ex1 |= E [f U g].

Due to the inherently inside-out characteristic of model checking, at the end of a task
checking a property p in M = 〈S, Σ, s0, R, L〉, at each state s, VM(s, cl(p)) are recorded.
To check the criticality of a transition (s,⊥, d) ∈ R regarding any sub-property φ ∈ cl(p),
the algorithm can be described briefly in the following.

1. φ ∈ ACTL and VM(s, φ) = φ, the transition is critical only if there is a unique
immediate descendant d of s in M .

2. φ ∈ ECTL and VM(s, φ) = ¬φ, the transition is critical only if there is a unique
immediate descendant d of s in M .

3. φ = AX f and VM(s, φ) = ¬φ, the transition is critical only if �(s,⊥, d′) ∈ R, d =
d′ : M, d′ |= f .

4. φ = AF f and VM(s, φ) = ¬φ, the transition is critical only if �(s,⊥, d′) ∈ R, d =
d′ : M, d′ |= φ.

5. φ = AG f and VM(s, φ) = ¬φ, the transition is critical only if M, s |= f and
�(s,⊥, d′) ∈ R, d = d′ : M, d′ |= φ.

6. φ = A [f U g] and VM(s, φ) = ¬φ, the transition is critical only if M, s |= (f ∧ ¬g)
and �(s,⊥, d′) ∈ R, d = d′ : M, d′ |= φ.

7. φ = A [f R g] and VM(s, φ) = ¬φ, the transition is critical only if M, s |= (¬f ∧ g)
and �(s,⊥, d′) ∈ R, d = d′ : M, d′ |= φ.

8. For φ ∈ ECTL and VM(s, φ) = φ, it is similar to the cases 3-7.

4.2.2 Dependency Structure Among Base States

In Section 4.1, in the assumption model checking within E, the assumption function As
is constructed by copying the truth values at reentry states in the model B directly.
The copying step implicitly assumes that As is proper at all reentry states. This section

33



is mainly concerned with proving As’s properness instead of assuming it, i.e. checking
whether Theorem 17 remains valid if the assumption on the properness of As is dropped.

The CTL model checking procedure defines a dependency from an ascendant to its
descendants in the sense that its truth value with respect to any CTL property is derived
from the truth values of the descendants. In Section 4.1.4, to model check an exit state
ex, we have implicitly assumed that the seeded VB(re, cl(p)) at reentry states are proper.
A conservative thinking would treat the truth values at the reentry states with respect
to cl(p) in C to be different from those counterparts in B. As a matter of fact, when
E extends B, it more likely causes the truth values of those states to change than to
preserve. Our job is to prove that E preserves those truth values, if possible.

For the generalized interface of many exit and reentry states, a reentry state re depends
on all base descendant states which also perform exit states of the interface. Those exit
states again depend on their reachable reentry states in E. Similarly, this model checking
dependency chain among interface states continues towards the end of B’s computation
paths. Formally, we have the following structure constructed from two basic dependency
types due to model checking.

• A base state s depends on a base descendant ex if ex is an exit state: VB(s, p)
dep.−→

VB(ex, p). The state s is called B-dependents on ex.

• Within E, an exit state ex depends on all reachable reentry states re: VE(ex, p)
dep.−→

VE(re, p). Because these dependencies are supplied by E, ex is called E-dependent
on re.

By this dependency chain, a structure of nodes is constructed. Each node corresponds
to a state in B. Between nodes is a dependency link showing the source node is either a
B- or a E-dependent on the destination. This structure is different from the model B in
the following manner. At least one end of a link is an interface state: a B-dependent link
departs from a base state and finishes at an exit state; a E-dependent link connects an
exit state to a reachable reentry state. Moreover, this structure is entirely defined after
the addition of E.

From this structure, we can conclude that if there is no cycle in the above dependency
chain, the incremental verification is sound (As is surely proper if B and E conform).
We start from the reentry states re in the lowest downstream of dependency chain whose
descendants are unaffected by E. The assumed truth values at re are proper and exactly
VB(re, cl(p)). VE(ex, cl(p)) derived at any exit state ex, which is an E-dependent on re,
are reliably established. If B and E conform at ex, we can update the set of new reentry
states by uniting current re states with those newly verified ex since some of these ex may
be dual. The process is then repeated until all exit states are confirmed. Theorem 17 is
still valid without the assumption on As’s properness.

Figure 4.3 presents a composition which can give a sound incremental verification. In
this figure, there is a cycle within base states s2, s3 but that cycle does not involve any
interface state. From B and E, the dependency structure is essentially acyclic. In details,

• VC(s1, p), VC(s2, p) and VC(s3, p)
dep.−→ VC(s4, p) and VC(s5, p) (B-dependents) be-

cause within B, s4, s5 are reachable exit states from s1, s2 and s3.

• VC(s4, p)
dep.−→ VC(s5, p) and VC(s6, p) (E-dependent) since s5 and s6 are reachable

reentry states from s4 within E.

34



s5s6

s2 s3

s4s5s6

s1 s3

s8 s7

s2

s4

s1

Extension

e

BaseBase
e

Figure 4.3: An example of B and E composition in which the verification result is sound.
E overrides the transition in B associated with event e.

s5s6

s2 s3

s4s5s6

s1 s3

s8 s7

s2

s4

s1

Extension

e

BaseBase
e

Figure 4.4: Another example of B and E composition in which a sound verification result
can be delivered.

• VC(s5, p)
dep.−→ VC(s6, p) (E-dependent) as s6 is a reachable reentry state from s5 in

E.

Initially, p holds in B. After composition, VC(s6, cl(p)) = VB(s6, cl(p)) is valid because
it is a base state unaffected by E. By an assumption model checking within E whose
input is VB(s6, cl(p)), we can determine VE(s5, cl(p)). More importantly, the result of
this verification is well-justified. Suppose B and E are verified to conform at s5, the
verification task is repeated by feeding two inputs VC(s5, cl(p)) and VC(s6, cl(p)) to verify
the conformance at s4. If s4 is also confirmed then the rest of states, namely s1, s2 and
s3, are automatically qualified without any further model checking.

Figure 4.4 presents another composition which can give a sound incremental verifica-
tion. This figure is slightly different from the previous figure. There is a cycle in the base
involving the interface state s4. However, the dependency structure is still acyclic. The
incremental model checking is still sound. The dependency structure is exactly the same
as that of Figure 4.3. The verification procedure is hence identical.

However, if there is a cycle in the dependency structure, ensuring the soundness of
incremental verification is more complicated. In fact, in some special cases of B and E,
the incremental verification does not deliver sound results since As is not proper. There
are three basic cases in which a cyclic dependency could come from:

1. Two exit states ex1 and ex2 are B-dependents of each other, namely two B-links
form the cycle. Refer to Figure 4.6 for the illustration.6

6In fact, there are two other simpler cases with this circular dependency style. First, re1 and re2 are

35



s5s6

s2 s3

s4s5s6

s1

s8 s7

s2

s4

s1s3

Extension

e

BaseBase
e

Figure 4.5: An example of B and E composition in which the incremental verification
may not be sound.

2. Two exit states ex1 and ex2 are reentry states of each other, i.e. two E-links form
the cycle. This case is depicted in Figure 4.8.

3. re is actually a base ascendant of ex, i.e. the assumption about the relationship
between re and ex is dropped. In this case, a B-link and an E-link form the cycle.
The case is shown in Figure 4.11.

Figure 4.5 depicts a composition in which OIMC may not deliver a sound result.
Unlike Figures 4.3 and 4.4, there is a base connection from reentry state s5 back to an
ascendant of exit state s4. This difference causes s5 to be an ascendant of s4. Therefore,
by incremental model checking, VC(s5, cl(p)) is entirely determined by VC(s4, cl(p)). On
the other hand, within the extension, we have the opposite, namely VE(s4, cl(p)) is decided
by VC(s5, cl(p)). As the labels at these two states mutually affect each other, the result
delivered by OIMC - based on the principle of fixing labels at one state to verify the other
- may be unsound.

We will examine each circular dependency in turn. An observation is made. If ex still
preserves its truth values with respect to cl(p) then its base ascendants preserve their truth
values as well. That leaves the work in this section to focus on properties preservation at
interface states - exit and reentry - only. The soundness problem in essence consists of
two parts:

1. Proving the assumed truth values at reentry states are in fact proper instead of
simply assuming them. (Soundness Problem 1)

2. Based on the above properness at reentry states, proving that the truth values
with respect to cl(p) are preserved at exit states if B and E conform. (Soundness
Problem 2)

If As can be proved to be proper and the preservation constraints at exit states are
justified, Theorem 17 can be perfectly applied: properties preservation at all base states.

4.2.3 Cyclic Dependency with Base Links Only

This basic case happens when two exit states ex1 and ex2 are mutually ascendants in

B. As a result, we have in both B and C: ex1
dep.−→ ex2 and ex2

dep.−→ ex1. In this cyclic

in a cycle of B, while ex1 and ex2 are distinct exit states. Second, ex1 and re2 are in a cycle, whereas
re1 and ex2 are separate. These two cases are ignored.

36



re1

EG f

ex1 ex2 re2

B

E

EG f

f*

e2

EG f

...f f

e1

f*
...

f*

EG f

f*
f f

e2

e1

Figure 4.6: An example of cyclic dependency due to base links only.

dependency, we can not verify a state based on the fixed truth values of the other which
is indeed derived from the verified truth values of the former state.

Figure 4.6 illustrates the basic case where reentry states re1, re2 are distinct from ex1,
ex2. In the section below, we prove that Theorem 17 is still valid in this structure, after
dropping the assumption on As. The proof follows the usual proof structure to show that:
As is proper at both reentry states re1 and re2 - Soundness Problem 1; (II) truth values
with respect to cl(p) at both exit states ex1 and ex2 are preserved - Soundness Problem 2.

Proof
In this basic case, re1 and re2 are not ascendants of ex1 and ex2. The extension does

not affect re1 and re2. Hence, As is proper at both re1 and re2. Now we are left with
only Soundness Problem 2 - proving properties preservation at ex1 and ex2 if B and E
conform.

i). p ∈ AP : the atomic label sets at all states in B do not change. p is preserved at
both ex1 and ex2. Theorem 17 is valid.

Suppose the theorem is valid for all CTL properties whose order is less-than-equal k.
We prove it holds for normal properties p where |p| = (k + 1) via basic four operators
EX f,EG f , E [f U g] and A [f U g].

ii). p = EX f : At ex1, its truth value with respect to p is not changed, even in
case of transition removal due to E. We consider two cases. First, B, ex1 |= p, then
E, ex1 |= p. There exists at least an immediate descendant in E causing C, ex1 |= p.
Second, B, ex1 |= p, hence E, ex1 |= p. The result is that all immediate descendants of
ex1 in B and E contain no f label. That is, C, ex1 |= p. Overall, the truth value at ex1

with respect to p is preserved.
In case of ex2, it is similar. We have: cl(p) = {p} ∪ cl(f) and

• VB(ex1, p) = VC(ex1, p) and VB(ex2, p) = VC(ex2, p) (due to above arguments).

• VB(ex1, cl(f)) = VC(ex1, cl(f)) and VB(ex2, cl(f)) = VC(ex2, cl(f)) (due to the
hypothesis where |f | = k).

In summary, Soundness Problem 2 is proved in case p = EX f with the order (k + 1).
iii). p = EG f : Similarly, there are two cases to consider. First, B, ex1 |= p and

hence E, ex1 |= p: there exists at least a path in E from ex1 to re1 and back to B such

37



that C, ex1 |= p. At ex1, its truth value with respect to p is not changed, even in case of
transition removal, due to E.

Second, B, ex1 |= p and E, ex1 |= p. All paths rooted at ex1 do not satisfy p. Even
after transition removal, the set of computation paths gets smaller and certainly it does
not fulfill p. C, ex1 |= p.

In case of ex2, it is similar. In brief, the truth value with respect to p is preserved at
both ex1 and ex2. We have: cl(p) = {p} ∪ cl(f) and

• VB(ex1, p) = VC(ex1, p) and VB(ex2, p) = VC(ex2, p) (due to above arguments).

• VB(ex1, cl(f)) = VC(ex1, cl(f)) and VB(ex2, cl(f)) = VC(ex2, cl(f)) (due to the
hypothesis where |f | = k).

In summary, Soundness Problem 2 is proved in case p = EG f with the order (k + 1).
iv). p = E [f U g]: Identically, there are two cases to consider. First, B, ex1 |= p and

hence E, ex1 |= p: there exists at least a path in E from ex1 to re1 and back to B such
that C, ex1 |= p. At ex1, its truth value with respect to p is not changed, even in case of
transition removal, due to E.

Second, B, ex1 |= p and E, ex1 |= p. All paths rooted at ex1 do not satisfy p. Even
after transition removal, the set of computation paths gets smaller and certainly it does
not fulfill p. C, ex1 |= p.

In case of ex2, it is similar. In brief, the truth value with respect to p is preserved at
both ex1 and ex2. We have: cl(p) = {p} ∪ cl(f) ∪ cl(g) and

• VB(ex1, p) = VC(ex1, p) and VB(ex2, p) = VC(ex2, p) (due to above arguments).

• VB(ex1, cl(f)) = VC(ex1, cl(f)) and VB(ex2, cl(f)) = VC(ex2, cl(f)) (due to the
inductive hypothesis where |f | ≤ k).

• VB(ex1, cl(g)) = VC(ex1, cl(g)) and VB(ex2, cl(g)) = VC(ex2, cl(g)) (due to the in-
ductive hypothesis where |g| ≤ k).

In summary, Soundness Problem 2 is proved in case p = E [f U g] with the order (k + 1).
v). p = A [f U g] where max(|f |, |g|) = k: Identically, at ex1, its truth value with

respect to p is not changed, even in case of transition removal. We can prove the preser-
vation of the truth value with respect to p at ex1 according to the following.

First, B, ex1 |= p, at least a path from ex1 does not satisfy p. Surely even the
computation tree rooted at ex1 in E itself violates A [f Ug]. The result is that C, ex1 |= p.

Second, B, ex1 |= p: Due to the preservation of f and g labels in all states, certainly
all paths from ex1 not through ex2 are still valid with respect to [f U g]. The only
concerned paths are those via ex2 (whose truth values may change due to composition).
If all those paths reach g before ex2 then they still satisfy [f U g] after composition due
to preservation of f and g in the base states. That is, the truth value of ex1 with respect
to p is unchanged. Suppose there exists a path having f along until ex2 (and only that
path may violate [f Ug] after composition). This “prefix” path will be concatenated with
the set of computation paths rooted at ex2. By the semantic of A [f U g] at ex1, due to
this prefix path, B, ex2 |= A [f U g]. By similar arguments, potential p-violating paths
from ex2 after composition are those via ex1 with f to be labeled at all intermediate
states. This situation creates a cycle between ex1 and ex2 in B such that f holds in all
states. Refer to Figure 4.7 for the illustration. However, this f ∗ cycle between ex1 and

38



re2re1 ex2ex1

E
...f f
f*

...
f*

f f

f f

f

g
g

f
f

A [f U g]
A [f U g]

A [f U g]
f

A [f U g]
f

B
g g

pp_2

pp_1

Figure 4.7: An illustration for composition with base-only cyclic dependency which still
preserves p = A [f U g] at exit states (pp1 and pp2 can not exist at the same time).

ex1 ex2

B

E

f

f f

EG f EG f

f* f*

Figure 4.8: An example of cyclic dependency due to extension links only.

ex2 can not exist. If so, B, ex1 |= EG f ⇒ B, ex1 |= A [f U g] which is contrasting
with B, ex1 |= p. Thus, we are certain that pp1 and pp2 - two halves of the cycle - can
not co-exist. A [f U g] continues to hold in ex1 after composition, even with transition
removal.

In case of ex2, it is similar. In brief, the truth value with respect to p is preserved at
both ex1 and ex2. By analogy, truth values with respect to all lower order sub-formulae
of cl(p) are preserved due to the inductive hypothesis, Soundness Problem 2 is proved in
case p = A [f U g] whose order is (k + 1).

vi). For the other normal properties, the proof is simple as they are derived from the
above four normal properties. The proof is exactly as the counterpart in Theorem 15.
The rest of six normal properties are proved.

Until this stage, part 1 of the proof is completed. We turn to part 2 involving p = ¬f
(f is normal) and p = f ∨ g (f and g are single CTL properties). In the first case, the
complementary set bf = SB \ bp of the set bp does not change due to part 1. So does
bp. Soundness Problem 2 is proved for negation operator. Similar, in the latter case,
bp = bf ∨ bg is not changed because both bf and bg are not changed due to part 1 and the
proof in the negation operator.

Overall, the proof of Soundness Problem 2 is completed. Theorem 17 is still valid for
this circular dependency style. �

39



4.2.4 Cyclic Dependency with Extension Links Only

In this case, two exit states ex1 and ex2 are mutually reachable reentry states of each other.

As a result, we have in both E and C: ex1
dep.−→ ex2 and ex2

dep.−→ ex1. These two states
affects each other during model checking. Like the previous section, copying directly the
labels from B into E for the assumption model checking is not sound as the characteristic
of that seeding step is to fix the labels at one state to verify the other. Figure 4.8 illustrates
this basic cyclic dependency case. We prove that Soundness Problems 1 and 2 are valid in
the additive and non-critical overriding composition. On the contrary, they may not be
in the critical-overriding composition because As is not proper, i.e. Soundness Problem 1
fails. Its counter-example is shown in the proof.

Proof
i). p ∈ AP : the atomic label sets at all states in B do not change. Both soundness

problems are justified.
Suppose both soundness problems are proved for all CTL properties whose order is

less-than-equal k. We prove them for normal properties p for the additive and non-critical
overriding composition where |p| = (k + 1) via EX f,EG f , E [f U g] and A [f U g].

ii). p = EX f : First, if B, ex1 |= p, there exists an immediate descendant s of ex1 in
B possessing f label. After composition, due to the hypothesis, s still preserves f . As a
result, C, ex1 |= p.

Second, B, ex1 |= p and hence E, ex1 |= p. That is, all immediate descendant states
of ex1 do not satisfy f . By the inductive hypothesis, their truth values with respect to f
are preserved after composition. So, C, ex1 |= p.

The truth value with respect to p at ex1 is preserved. By a similar argument, the
same thing happens to ex2. Together with the inductive hypothesis on the preservation
of truth values with respect to cl(f) at ex1 and ex2, we conclude that the truth values
with respect to cl(p) are preserved at all exit states. This conclusion implies two points:

• VB(ex1, cl(p)) = VC(ex1, cl(p)) and VB(ex2, cl(p)) = VC(ex2, cl(p)): As is proper at
both “reentry states” ex1 and ex2. That is, Soundness Problem 1 is proved.

• Properties preservation at both exit states ex1 and ex2. That is, Soundness Prob-
lem 2 is justified.

Both soundness problems are completed for p = EX f of the order (k + 1).
iii). p = EG f : Similarly, first, consider the case B, ex1 |= p. For additive and non-

critical overriding composition, because the computation path satisfying p, rooted at ex1

and lying completely in B is preserved in C both in terms of states and their labels up to
cl(f) (due to the inductive hypothesis for |f | = k). Hence ex1 still meets p’s requirement
after composition. As a result, C, ex1 |= p.

Second, if B, ex1 |= p and hence E, ex1 |= p. That is, all paths rooted at ex1 lying
either in B or E do not satisfy p. Neither do they after composition, C, ex1 |= p.

The truth value with respect to p at ex1 is preserved. By a similar argument, the
same thing happens to ex2. Together with the inductive hypothesis on the preservation
of truth values with respect to cl(f) at ex1 and ex2, we conclude that the truth values
with respect to cl(p) are preserved at all exit states. This conclusion implies two things:

• VB(ex1, cl(p)) = VC(ex1, cl(p)) and VB(ex2, cl(p)) = VC(ex2, cl(p)): As is proper at
both “reentry states” ex1 and ex2. That is, Soundness Problem 1 is confirmed.

40



• Properties preservation at both exit states ex1 and ex2. That is, Soundness Prob-
lem 2 is solved.

Both soundness problems are completed for p = EG f of the order (k + 1).
iv). p = E [f U g]: Identically, we consider two cases. First, B, ex1 |= p. For additive

and non-critical composition, because the computation path satisfying p, rooted at ex1

and lying completely in B is preserved in C both in terms of states and their labels up
to cl(f) and cl(g) (due to the inductive hypothesis for |f |, |g| ≤ k). Hence ex1 continues
to satisfy p after composition. As a result, C, ex1 |= p.

Second, if B, ex1 |= p and hence E, ex1 |= p. That is, all paths rooted at ex1 lying
either in B or E do not satisfy p. Neither do they after composition, C, ex1 |= p.

The truth value with respect to p at ex1 is preserved. By a similar argument, the
same thing happens to ex2. Together with the inductive hypothesis on the preservation
of truth values with respect to cl(f) and cl(g) at ex1 and ex2, we conclude that the truth
values with respect to cl(p) are preserved at all exit states. This conclusion implies two
points:

• VB(ex1, cl(p)) = VC(ex1, cl(p)) and VB(ex2, cl(p)) = VC(ex2, cl(p)): As is proper at
both “reentry states” ex1 and ex2. That is, Soundness Problem 1 is proved.

• Properties preservation at both exit states ex1 and ex2. That is, Soundness Prob-
lem 2 is established.

Both soundness problems are proved for p = E [f U g] of the order (k + 1).
v). p = A [f U g] where max(|f |, |g|) = k: Identically, for additive and non-critical

composition, at ex1, its truth value with respect to p is not changed. We can prove the
preservation of p at ex1 according to the following.

First, B, ex1 |= p, at least a path from ex1 does not satisfy p. In additive and non-
critical composition, certainly in that invalid path with respect to [f U g] are preserved
all f and g labels along its states. In C, the path is also invalid. The result is C, ex1 |= p.

Second, B, ex1 |= p: Due to the preservation of f and g labels in all states, certainly all
paths from ex1 in B are still valid with respect to [f U g]. Similar, all paths in E but not
through ex2 are still valid in C. The only concerned paths are those from ex1 in E via ex2

(whose truth values may change due to composition). If all those paths reach g before ex2

then they still satisfy [f U g] after composition due to preservation of f and g markings
in the intermediate states. That is, the truth value of ex1 with respect to p is unchanged.
Suppose there exists a path keeping f along until ex2 (and only that path may violate
[f U g] after composition). This prefix path will be concatenated with the set of paths at
ex2. By the semantic of E, ex1 |=as A [f U g], due to this prefix path, B, ex2 |= A [f U g].
By similar arguments, potential p-violating paths from ex2 after composition are those in
E via ex1 with f to be labeled at all intermediate states. This situation creates a cycle
between ex1 and ex2 completely in E such that f holds in all states. Refer to Figure 4.9
for the illustration. However, this f ∗ cycle between ex1 and ex2 invalidate ex1 and ex2

regarding A [f U g]. If there exists the cycle, E, ex1 |= EG f ⇒ E, ex1 |= A [f U g] which
is contrasting with the conformance with B, ex1 |= p. We are certain that the cycle does
not exist. Thus, A [f U g] continues to hold in ex1 after composition.

In case of ex2, it is similar. In brief, p is preserved at both ex1 and ex2. By analogy,
together with the preservation of truth values with respect to cl(f) and cl(g) due to the

41



ex1 ex2

B

E

f

f f

g g

A [f U g]A [f U g]
f f

pp_1

pp_2

Figure 4.9: An illustration for the additive-only composition with extension-only cyclic
dependency which still preserves A [f U g] at exit states (pp1 and pp2 can not exist at the
same time).

inductive hypothesis, the truth values with respect to cl(p) at ex1 and ex2 are preserved.
This conclusion implies two things:

• VB(ex1, cl(p)) = VC(ex1, cl(p)) and VB(ex2, cl(p)) = VC(ex2, cl(p)): As is proper at
both “reentry states” ex1 and ex2. That is, Soundness Problem 1 is proved.

• Properties preservation at both exit states ex1 and ex2. That is, Soundness Prob-
lem 2 is validated.

Both soundness problems are proved for p = A [f U g] of the order (k + 1).
vi). For the other normal properties, the proof is simple as they are derived from the

above four normal properties. The proof is exactly as the counterpart in Theorem 15.
The rest of six normal properties are proved.

However, in case of overriding composition, if the descendant is critical to the truth
value of ex1 with respect to p = E [f U g], after its removal (B becomes B′), B′, ex1 |= p.
ex1 has to rely on paths through E to satisfy p. For ex2, if that scenario also happens, the
final result is that ex1, ex2 mutually depend on each other. In E, even computation paths
from ex1 to ex2 and vice versa are of the form (f, ¬g)∗ , the ending states ex1 and ex2 do
not guarantee any more path in B′ with the suffix pattern of (f, ¬g)∗ (⊥, g) (⊥, ⊥)∗ .
Overall, C, ex1 |= p and C, ex2 |= p, i.e. VC(ex1, cl(p)) = VB(ex1, cl(p)). As is not proper
at ex1 and similarly at ex2. At states ex1 and ex2, initially in B, the property E [f U g] is
satisfied. But in the composition model C, the property (being crossed), even very weak
in this case as E [f U g], no longer holds at those states. Two soundness problems could
not be proved for this overriding case. This failing case is illustrated in Figure 4.10.

Until this point, we have proved part 1 for the two soundness problems in this cyclic
structure with respect to the additive and non-critical overriding composition. OIMC
may not be sound in some extreme cases of critical-transition removal. For the part
2, the argument is very similar to the counterpart with respect to negation and union
operators of Theorem 15. In short, OIMC is sound for all CTL properties under this kind
of circular dependency of the additive and non-critical overriding composition. For the
critical overriding composition, it may not. In such a circumstance, OIMC requires an
extra checking at removed transitions. Details are discussed in Section 4.2.1. �

42



ex1 ex2

E [f U g]

(f,!g)

e1

B

E

e2

E [f U g]

(f,!g)
e2

e1

(f,!g) (f,!g)

(f,!g)

E [f U g]E [f U g]

(_ ,g)

(_ ,g)

Figure 4.10: An example of composition failing to preserve p = E [f U g] in case of
extension-only cyclic dependency.

exre

B

E

EG f

f f

f*

EG f

ff

Figure 4.11: An example of cyclic dependency due to both base and extension links.

4.2.5 Cyclic Dependency with Both Base and Extension Links

In this structure, re is actually an ascendant of ex in B. As a result, we have: re
dep.−→ ex (in

B and C) and ex
dep.−→ re (in E and C). By analogy to the previous cyclic dependency cases,

these two states mutually determine the truth values of each other with respect to cl(p)
during model checking. Simply copying the labels at re from B into E for the assumption
model checking is not sound. Figure 4.11 illustrates this basic cyclic dependency case.
Like the previous section, we can prove that OIMC is sound in the additive and non-
critical overriding composition (Soundness Problems 1 and 2 are proved). In contrast, it
may not be sound in the critical overriding composition because Soundness Problem 1
may fail. Its counter-example is also shown in the proof. Importantly, during the proof,
the reason for the enforcement of loop-checking in Definition 14 is also explained.

Proof
i). p ∈ AP : the atomic label sets at all states in B do not change. OIMC is sound in

the basic case.
Suppose both soundness problems are proved for all CTL properties whose order is

less-than-equal k. We prove them for normal properties p for the additive and non-critical
overriding composition where |p| = (k + 1) via EX f,EG f , E [f U g] and A [f U g].

ii). p = EX f : We consider two cases. First, if B, ex |= p, there exists an immediate

43



descendant s of ex labeled with f . After composition, due to the hypothesis, s still
preserves f . As a result, C, ex |= p.

Second, B, ex |= p and hence E, ex |= p. That is, all immediate descendant states of
ex do not satisfy f . By the inductive hypothesis, their truth values with respect to f are
preserved after composition. Thus, C, ex |= p.

The truth value with respect to p at ex is preserved. Together with the inductive
hypothesis on the preservation of truth values with respect to cl(f) at ex, we conclude
that the truth values with respect to cl(p) are preserved at ex. Consider the computation
tree rooted at re. Basically, its shape and labels at states up to cl(f) do not change after
composing E. The only change occurs at ex. Fortunately, its labels do not. Overall, the
change in the shape of the computation tree rooted at ex does not affect labels at re. In
terms of assumption model checking, the truth values at re with respect to cl(p) are also
preserved.

In brief, we have:

• VB(re, cl(p)) = VC(re, cl(p)): Properties preservation at re, i.e. As is proper at re.
Soundness Problem 1 is established.

• VB(ex, cl(p)) = VC(ex, cl(p)): That is, Soundness Problem 2 is proved.

Both soundness problems are completed for p = EX f of the order (k + 1).
iii). p = EG f : Similarly, first, consider the case B, ex |= p. Due to additive and

non-critical overriding composition, because the computation path satisfying p, rooted at
ex and lying completely in B is preserved in C both in terms of states and their labels up
to cl(f) (due to the inductive hypothesis for |f | = k). Hence ex still meets p’s requirement
after composition: C, ex |= p.

Second, if B, ex |= p and hence E, ex |= p. That is, all paths rooted at ex lying either
in B or E do not satisfy p. Now the tricky portion is related with the introduction of the
extra checking for f ∗ loop in Definition 14 when ¬EG f holds at ex and re. What if
B′, re |= ¬EG f only occurs if B′, ex |= ¬EG f? That means, there exists at least a path
from re to ex in B′ in which f ∗ holds at all intermediate states. Unfortunately, as shown
in Figure 4.12, the computation tree at ex in C is a superset of that in the assumption
model checking in E. The extra branch causes trouble to VC(ex, p). The illustration is
shown in Figure 4.13. Initially, in B and B′, ¬EG f holds at both states ex and re. If E
extends B in the manner that there is a f ∗ path from ex to re. According to a separate
assumption model checking in E, given B′, re |= ¬EG f , certainly E, ex |=as ¬EG f .
That is, separate model checking in B and E gives the conformance at ex with respect
to ¬EG f . However, within C, a f ∗ loop exists through the patching of two f ∗ paths
between re and ex in B′ and E. This loop ensures C, ex |= EG f . So does at re. This
is the reason for the enforcement of the extra checking of the f ∗ loop in Definition 14.
Once B and E are in strict conformance, this loop never arises, ¬EG f is preserved in C
at both ex and re. That is, As is proper at re.

The truth value with respect to p at ex is preserved. By a similar argument in the
case (ii) above, the truth values at re with respect to cl(p) are also preserved. In brief,
we have:

• VB(re, cl(p)) = VC(re, cl(p)): Properties preservation at re, i.e. As is proper at re.
Soundness Problem 1 is solved.

44



ex

re

ex

E

...

... ... ... ...

this branch is pruned
during assumption model
checking within E

E

B’

V (re, cl(p))
B’

Figure 4.12: The difference between assumption model checking in E and regular model
checking in C, in terms of the computation tree at ex within E, in the base-extension
circular dependency.

• VB(ex, cl(p)) = VC(ex, cl(p)): That is, Soundness Problem 2 is proved.

Both soundness problems are proved for p = EG f of the order (k + 1).
iv). p = E [f U g]: Identically, we consider two cases for the additive and non-critical

overriding composition. First, B, ex |= p. Because the computation path satisfying p,
rooted at ex and lying completely in B is preserved in C both in terms of states and their
labels up to cl(f) and cl(g) (due to the inductive hypothesis for |f |, |g| ≤ k). Hence ex
continues to satisfy p after composition. As a result, C, ex |= p.

Second, if B, ex |= p. So, E, ex |= p. That is, all paths rooted at ex lying either in B
or E do not satisfy p. Neither do they after composition, C, ex |= p.

The truth value with respect to p at ex is preserved. By a similar argument in the
case (ii) above, the truth values at re with respect to cl(p) are also preserved. In brief,
we have:

• VB(re, cl(p)) = VC(re, cl(p)): Properties preservation at re, i.e. As is proper at re.
Soundness Problem 1 is justified.

• VB(ex, cl(p)) = VC(ex, cl(p)): That is, Soundness Problem 2 is proved.

Both soundness problems are proved for p = E [f U g] of the order (k + 1).
v). p = A [f Ug] where max(|f |, |g|) = k: Identically, for the additive and non-critical

overriding composition, at ex, its truth value with respect to p is not changed. We can
prove the preservation of p at ex according to the following.

First, B, ex |= p, at least a path from ex does not satisfy p. In additive and non-critical
overriding composition, certainly in that invalid path with respect to [f Ug] are preserved
all f and g labels along its states. In C, the path is also invalid. The result is C, ex |= p.

45



exre

B (B’), ex |= ! EG f
E, ex |=as ! EG f

B

E

f f

ff

B (B’), re |= ! EG f
E, re |=as ! EG f

! EG f
! EG f

However, due to this loop, C’, ex |= EG f and C’, re |= EG f

Figure 4.13: Strict conformance condition: The need of extra checking for any f ∗ loop
between ex and re at which ¬EG f holds.

Second, B, ex |= p: Due to the preservation of f and g labels in all states, certainly
all paths from ex in B are still valid with respect to [f U g]. Similar, all paths rooted at
ex in E but not through re are still valid in C. The only concerned paths are those in E
from ex via re (whose truth values may change due to composition). If all those paths
reach g before re then they still satisfy [f U g] after composition due to preservation of
f and g labels in the intermediate states. That is, the truth value of ex with respect
to p is unchanged. Suppose there exists a path keeping f along until re (and only that
path may violate [f U g] after composition). This prefix path will be concatenated with
the set of paths at re. From the semantic of E, ex |=as A [f U g], due to this prefix
path, B, re |= A [f U g]. By similar arguments, potential p-violating paths from re after
composition are those in B via ex with f to be labeled at all intermediate states. This
situation creates a cycle between ex1 and ex2 completely in C such that f holds in all
states. Refer to Figure 4.14 for the illustration. The following explains why the extra
checking is enforced in Definition 14.

In terms of infinite model, if A [f U g] holds at ex and re then the extra checking for
any (f ∧ ¬g)∗ loop between ex and re is essential. Figure 4.14 shows the need for extra
checking with respect to any φ = A [f Ug] ∈ cl(p) since the regular conformance condition
may mistakenly claim the preservation of A [f U g] at exit states. By assumption model
checking in E after setting A [f U g] at re due to B′, re |= A [f U g], we can easily derive
in the figure, E, ex |=as A [f U g]. Under the regular conformance condition, B and E
conform with respect to cl(p). However, the conclusion of property preservation at ex
from this regular conformance condition is wrong. In such a case, the strict conformance
condition is required because it checks for the absence of (f ∧¬g)∗ loop between ex and
re. Initially, before composition, A [f U g] holds at both ex and re. Further, there is
a path of (f ∧ ¬g)∗ from re to ex lying in B′. However, after composition, E patches

46



re ex

A [f U g]

(f,!g)

B

E

A [f U g]

(f,!g)

(f,!g)

A [f U g]A [f U g]

(_ ,g)

(_ ,g)

causes EG f to be turned on at both states and
hence A [f U g] is turned off respectively.

The loop of (f & !g) between ex and re

(f,!g)(f,!g)

Figure 4.14: Strict conformance condition: The need of extra checking for any (f ∧¬g)∗

loop between ex and re at which A [f U g] holds.

another (f∧¬g)∗ path from ex to re. The final result is C, ex |= EGf (the loop (f∧¬g)∗

connecting ex and re via the combination of the two above paths), i.e. C, ex |= A [f U g].
This is the reason to enforce another extra loop checking in Definition 14.

Overall, the truth value with respect to p is preserved at ex. By a similar argument
in the case (ii), the truth values at ex and re with respect to cl(p) are preserved. In brief,
we have:

• VB(re, cl(p)) = VC(re, cl(p)): Properties preservation at re, i.e. As is proper at re.
Soundness Problem 1 is established.

• VB(ex, cl(p)) = VC(ex, cl(p)): That is, Soundness Problem 2 is proved.

Both soundness problems are proved for p = A [f U g] whose order is (k + 1).
vi). For the other normal properties, the proof is simple as they are derived from the

above four normal properties. The proof is exactly as the counterpart in Theorem 15.
The rest of six normal properties are proved. Theorem 17 is valid, with regards to strict
conformance condition, for additive and non-critical overriding composition.

However, in case of transition overriding, if the descendant is critical to the truth value
of ex with respect to p, after its removal (B becomes B′), B′, ex |= p. ex has to rely on
E to satisfy p. For example, from ex to re in the extension, f holds along all states of
the path. For re, an extreme scenario happens such that its truth value with respect to
p depends solely on ex, namely from re to ex in the base, (f,¬g) holds along all states of
the path. The final result is that there is a cycle between ex, re in C and (f,¬g) holds
at all states. However, if there is no state in the cycle from which there is a path with
the suffix pattern of (f, ⊥)∗ (⊥, g) (⊥, ⊥)∗ , all states in the cycle, including ex and re,
do not satisfy p. That is, VC(re, cl(p) = VB(re, cl(p)). As is not proper. At states ex and
re, initially in B, the property E [f U g] is satisfied. But in the composition model C, the
property (being crossed) no longer holds at those states. Two soundness problems could
not be proved for this overriding case. This failing case is illustrated in Figure 4.10, even
for a weak property like E [f U g].

Until this point, we have proved part 1 for the two soundness problems in this cyclic
structure with respect to the additive and non-critical overriding composition. OIMC
may not be sound in some extreme cases of critical transition removal. For part 2, the
argument is very similar to the counterpart with respect to negation and union operators

47



re (f,!g) ex

B

Ee

(f,!g) (f,!g)

(f,!g)(f,!g)

e

(f,!g)
E [f U g]E [f U g]

E [f U g]
(_ ,g)

Figure 4.15: An example of failing composition to preserve p = E [f U g] in case of
base-extension cyclic dependency.

of Theorem 15. In short, OIMC is sound for all CTL properties under this kind of
circular dependency of the additive and non-critical overriding composition. For the
critical overriding composition, it may not. In such a circumstance, OIMC requires extra
checking at removed transitions. Details are discussed in Section 4.2.1. �

4.3 Properties Preservation at Extension States

Until this stage, we have used the assumption model checking in E to verify the confor-
mance between B and E at exit states. During this model checking task, VB(re, cl(p)) at
reentry states are seeded into the ending states of E. Unlike Section 4.1 dealing with the
base states, this section is about the effect of conformance at exit states on the extension
states.

Lemma 20 Given a model B and a CTL property p, an extension E is attached to the
model B via an exit state ex and a reentry state re. Suppose that the assumption function
As is proper. If B and E are in conformance at ex, ∀s ∈ SE : VC(s, cl(p)) = VE(s, cl(p)).

Informally, this lemma claims that if base and extension conform, there is no change
in truth values of extension states with respect to cl(p) between model checking in entire
C or in E only. Formally, ∀φ ∈ cl(p) : eφ = cφ ∩ SE. The proof structure is as usual -
proving the lemma to be valid for all CTL properties p.

Proof
i). p ∈ AP : the atomic label sets at all states in E are supplied by LE and hence they

are fixed. The lemma is valid for single properties with zero order, |p| = 0.
Suppose the lemma is valid for all CTL properties with order less than or equal to k.

We prove it holds for any single property p of which |p| = (k+1) via four operators EXf ,
EG f , E [f U g] and E [f U g]. Since As is proper, certainly VC(re, cl(p)) = VE(re, cl(p)).
Further due to the conformance, the same happens for ex. The proof is only concerned
with the rest, i.e. pure extension states. Let s ∈ SE and s = ex, re.

48



ii). p = EX f : All paths rooted at s are initially in E and then through re back to
B. By the hypothesis, all states in these paths preserve their f labels. Moreover, As is
proper at re. Comparing the respective computation trees rooted at s in C and in E,
they are identical in terms of shape and labels with respect to cl(f) at descendant states
(in the initial portion from s to re). Hence, VC(s, p) = VE(s, p).

The truth value with respect to p is preserved at all extension states: ∀s ∈ SE :
VC(s, p) = VE(s, p). We have: cl(p) = {p} ∪ cl(f) and

• VC(s, p) = VE(s, p) (due to above arguments).

• VC(s, cl(f)) = VE(s, cl(f)) (due to the hypothesis where |f | = k).

Overall, the lemma holds for p = EX f with the order (k + 1).
iii). p = EG f : Similarly, we compare the computation trees rooted at s in both

models C and E and see that they match the initial portion from the root s to state re.
At all intermediate states, labels up to cl(f) are matched in both trees. The branches
from re are equivalently substituted by the seeded values VB(re, cl(p)) which is proper.
So this substitution does not affect the truth value with respect to p at s.

Overall, the truth value with respect to p is preserved at s. By a similar argument
in (ii) together with the inductive hypothesis on cl(f), we can conclude that the truth
values with respect to cl(p) at s are preserved. The lemma holds for p = EG f with the
order (k + 1).

iv). p = E [f U g]: Identically, by comparing the computation trees rooted at s in
both models C and E, we find out that they match the initial portion from the root s to
state re. At all intermediate states, labels up to cl(f) and cl(g) are respectively matched
in both trees. The branches from re can be substituted by the seeded values VB(re, cl(p)).
This substitution does not affect the truth value with respect to p at s.

Overall, the truth value with respect to p is preserved at s. By a similar argument in
(ii) together with the inductive hypothesis on cl(f) and cl(g), we can conclude that the
truth values with respect to cl(p) at s are preserved. The lemma holds for p = E [f U g]
with the order (k + 1)

v). p = A [f U g]: This case is similar to the case (iv) as two computation trees are
matched respectively in terms of shape; and labels in cl(f) and cl(g) at each states. The
theorem is also valid for p = A [f U g] whose order is (k + 1).

vi). For the other normal properties, the proof is simple as they are derived from the
above four normal properties. The proof is exactly as the counterpart in Theorem 15.
The rest of six normal properties are proved.

Until this stage, part 1 of the proof is completed. We turn to part 2 involving p = ¬f
where f is normal; and p = f∨g where f and g are single CTL properties at which lemma
holds. In the first case, the complementary set ef = SE \ ep of the set ep does not change
due to part 1. So does ep. The lemma is valid for the negation operator. Similar, in the
latter case, ep = ef ∨ eg is not changed because both ef and eg are not changed.

Overall, the lemma on assumption model checking is valid for all CTL properties with
respect to simple interface composition. �

Next we consider Lemma 20 under the generalized interface. At exit states, due to
the conformance of B and E, VC(ex, cl(p)) = VE(ex, cl(p)) for all ex as long as the
seeded truth values at their respective reentry states are proper. The same requirement is
expected for dual states. From the perspective of a pure extension state, if all reachable

49



reentry states from that state are seeded with proper truth values, the arguments in the
proof for the above lemma are still valid.

In summary, Lemma 20 can be extended to the theorem below for the generalized
interface as long as the seeded truth values at all reentry states are proper. Indeed, this is
the soundness issue of incremental verification mentioned in Section 4.2. According to the
result in that section, the seeded values, i.e. the function As, at reentry states are surely
proper in the additive and non-critical overriding composition. For critical overriding
composition, OIMC may not be sound in some extreme cases of the critical overriding
composition with circular dependency structure.

Unlike Theorem 17 addressing the base, the following theorem is another key of incre-
mental verification but it focuses on the extension.

Theorem 21 Given a base B and a property p, an extension E is attached to B at some
interface states. Further, suppose that As is proper. If B and E are in conformance at
all exit states, ∀s ∈ SE : VC(s, cl(p)) = VE(s, cl(p)).

Two theorems 17 and 21 serve as the foundation of incremental model checking.

4.4 The Scalability of Incremental Verification

This section addresses the scalability of incremental verification. The incremental veri-
fication method executes the assumption model checking for each exit state between B
and E to check their conformance. Corresponding to each ex, the algorithm to verify a
preservation constraint in the extension E is briefly described as in Section 4.1.4. If at all
exit states, the truth values with respect to cl(p) are matched respectively, B and E are
composable. By a simple analysis, the complexity of this algorithm is shown below.

Let �SE, �RE denote the numbers of states and transitions in E respectively. Similarly,
�cl(p) is the number of sub-formulae in cl(p). Note that �cl(p) is different from |p|, for
instance, in composite CTL properties.

The above algorithm runs over E once and the conformance at all exit states can be
verified. At each exit state, we need to verify that ∀φ ∈ cl(p), B and E agree with each
other at the exit state with respect to φ. Therefore, the complexity of this algorithm is
certainly proportional to �cl(p).

For any φ, the standard CTL model checking procedure is executed entirely within E.
According to [6], the complexity of this model checking procedure for checking a property
φ is O(�SE + �RE). Therefore, given a property p adhered to B, the complexity of the
incremental verification for any pair B and E is O(�cl(p)× (�SE + �RE)). This complexity
is independent from the base B.

We consider the general case of n-th version (Cn) during software evolution as a
structure of features B, E1, E2, ..., En where Ei is the extension to the (i− 1)-th evolved
version (C(i−1)). The initial version is C0 = B. We can prove that the complexity of
verification does not change after adding feature En, i.e. the complexity of the incremental
verification for confirming En not violating the property p in B is O(�cl(p)×(�SEn+�REn)).

Lemma 22 Given the extensions Ek where k = 1, n are respectively in conformance with
their bases, i.e. C(k−1)

• ∀s ∈ SB: VCn(s, cl(p)) = ... = VC(k+1)
(s, cl(p)) = VCk

(s, cl(p)) = ... = VB(s, cl(p))

50



• ∀s ∈ SEk
: VCn(s, cl(p)) = ... = VC(k+1)

(s, cl(p)) = VCk
(s, cl(p)) = VEk

(s, cl(p))

Proof
The proof is by induction. In the basic case, i = 1, the claim is correct as shown in

case B and E1 are composed, namely C1 = B + E1

• ∀s ∈ SB: VC1(s, cl(p)) = VB(s, cl(p)) (Theorem 17).

• ∀s ∈ SE1: VC1(s, cl(p)) = VE1(s, cl(p)) (Theorem 21).

Suppose the lemma is valid for any i-th evolved version, i ≤ (k − 1). We prove its
truth for Ck: Ck = C(k−1) + Ek. Since Ek is in conformance with C(k−1), we have:

• By Theorem 17: ∀s ∈ SC(k−1)
: VCk

(s, cl(p)) = VC(k−1)
(s, cl(p)). (1)

For s ∈ SC(k−1)
= SB ∪ SE1 ∪ ... ∪ SE(k−1)

, there are two cases to consider.
First, if s ∈ SB, by the above inductive hypothesis for C(k−1),

VC(k−1)
(s, cl(p)) = VC(k−2)

(s, cl(p)) = ... = VB(s, cl(p))

Also, from Equation (1) above:

VCk
(s, cl(p)) = VC(k−1)

(s, cl(p))

Therefore,

∀s ∈ SB: VCk
(s, cl(p)) = VC(k−1)

(s, cl(p)) = ... = VB(s, cl(p))

The claim is true for s ∈ SB in case of Ck.
Second, if s ∈ SEj

where j = 1, (k − 1), by the above hypothesis for C(k−1),

VC(k−1)
(s, cl(p)) = VC(k−2)

(s, cl(p)) = ... = VCj
(s, cl(p)) = VEj

(s, cl(p))

Besides, due to Equation (1),

VCk
(s, cl(p)) = VC(k−1)

(s, cl(p))

As a result, the claim is also true in case of Ck for s ∈ SEj
where j = 1, (k − 1).

For s ∈ SEk
: VCk

(s, cl(p)) = VEk
(s, cl(p)) (from Theorem 21), the claim is also valid

for Ek states in Ck version.
Overall, Lemma 22 is valid for Ck. By induction, the claim is also valid for n-th

version. The proof is completed. �

We apply Lemma 22 to prove the scalability of incremental verification in the general
case of n-th version. Let exs′ be the set of new exit states formed by composing C(n−1)

and En. The incremental verification method consists three activities:

1. Verifying property p of a base system, namely: C(n−1). (Activity 1)

2. Deriving VC(n−1)
(ex′, cl(p)) as the set of preservation constraints for each exit state

ex′ ∈ exs′. (Activity 2)

3. Executing the above incremental verification algorithm in En to check its confor-
mance with its base, i.e. whether VEn(ex′, cl(p)) = VC(n−1)

(ex′, cl(p)). (Activity 3)

51



Activity 1 above can be ignored in this case because we have done it during evolving
to (n− 1)-th version. E(n−1) does not violate p in B. So in C(n−1), p continues to hold in
B. The complexity of this activity is O(1).

Activity 2 is provided as the secondary result at the end of Activity 1. The result can
be retrieved directly from previous separate verifications of C(n−1) and En. There is no
need to re-run model checking in C(n−1) to find VC(n−1)

(ex′, cl(p)) at the exit state ex′.
That claim can be justified in the following. Because ex′ ∈ SC(n−1)

= SB ∪SE1 ...∪SE(n−1)
,

there are two cases to consider.
If ex′ ∈ SB, due to Lemma 22, VC(n−1)

(ex′, cl(p)) = VB(ex′, cl(p)). That is, the truth
values of the base state stay the same if model checking in either Cn or B. The right-hand
side is provided after verifying p in B initially. So this preservation constraints at ex′ is
already supplied.

In case ex′ ∈ SEk
where k = 1, (n − 1), due to Lemma 22, VC(n−1)

(ex′, cl(p)) =
VEk

(ex′, cl(p)). The right-hand side is also already given after the incremental model
checking within (n − 1) previous versions during system evolution.

Therefore, the complexity of Activity 2 is O(1). On the other hand, the complexity of
Activity 3 is exactly that of the incremental verification algorithm on En, i.e. O(�cl(p)×
(�SEn + �REn)). The total complexity of ensuring En not violating p in B is the same
as that of other Ej , j = 1, (n − 1). The incremental verification method maintains its
scalability.

Theorem 23 If all respective pairs of base (C(i−1)) and refining (Ei) components con-
form, the complexity of OIMC to verify the consistency between En and B is independent
from the n-th version Cn, i.e. it only executes within En.

By the way, to enable OIMC, it is essential to allocate memory for each state s to
record its preservation constraints VEk

(s, cl(p)). As any state could be an interface state
in the future, we need to memorize the constraints at all states in the feature Ek. Hence,
the memory cost for OIMC within a given Ek is O(�cl(p) × �SEk

).

4.5 An Example about Consistency among Single-

Object Features

This section gives an example about a typical user account management in a simple library.
Initially, the account management system provides basic feature of book reservation and
updates user credit when he is overdue (B). Later, the system is extended to handle the
case when he loses borrowed books (E - loss-handling feature). After the system evolves
to this stage (C1 = B + E), another change (E ′) in policy is made so that the system
distinguishes students from faculties of the university. In this change, a faculty possesses
higher priority in services of the library, C2 = C1 + E ′. These changes to system are
rather unanticipated. Basically, the system evolves in three different versions by changing
feature set incrementally.

In this section, the following notations are used to denote states and events associated
with User object. They are:

• User states: u.init(ial), u.wait(ing), u.borr(owing), u.chg (charging fines), u.crd
(updating the credit), u.clr (the account is clear), u.ord(er), u.sdd (deducting
salary).

52



u.borru.wait

o’2

o’1i’1

i’2

u.ord

i1 o1

o2i2 u.chg

lost_u

paid_ulost_u  v  [overdue] ret_u

Extension (E)

ava_u
[overdue] ret_u

User Account

u.init

res_u
[ontime] ret_u

u.crd

crdd_u

u.clr

Base (B)

Another extension (E’)

u.sdd ddt_u

[faculty_u] lost_u arr_u

[faculty_u] lost_u   v

v   [faculty_u & overdue] ret_u

Figure 4.16: A base component and its refining components for a user account.

• Events: resu (reservation request), avau (book available), lostu (loss), retu (book
return), paidu (fine payment), crddu (the credit update is done), arru (book replace-
ment arrival), ddtu (salary deduction).

• Guards: facultyu (faculty user), ontime, overdue.

The feature-based model of the account is shown in Figure 4.16 and Figure 4.17. The
three layers are corresponding to three separate features: basic book reservation, loss-
handling and faculty priority. The independent components are depicted in Figure 4.16.
The figure is rather self-explained. In B, once the user reserves, he waits for the book if
it is on loan to someone else. In E, if the user is waiting for some book currently on loan
and that book is lost, he has to go back to the initial state because there is no book for
his request anymore. If he actually loses the book, he has to pay money for the book. If
the payment (for book loss or overdue) is on time, his credit is not affected. Otherwise,
his credit will be deducted.

In E ′, some changes are made to both existing features: basic reservation and book-
loss handling. First, when the faculty is waiting for the book on loan to someone else
and that book is lost, he is not going back to the initial state like regular students. The
library will order a replacement directly to the publisher. When the book arrives, the
system notifies the faculty immediately. In case the faculty actually loses the book, the
system will charge the fine directly to his salary and his credit is not affected at all.

The composite model of the account is shown in Figure 4.17. Within E, importantly,
E overrides the transition retu with the guard [overdue] of B, i.e. E changes courses
of some scenarios in B. Considering the composition of E with B, obviously i1 can be
mapped with u.wait, i1 ↔ u.wait, according to the plugging conditions among compatible
interface states as both states specifies the state when the user is waiting for the book.

53



u.borru.wait

u.chg

ava_u
[overdue] ret_u

User Account

u.init

res_u

[faculty_u] lost_u

Base (B)

Extension (E)

New Extension (E’)

lost_u
[!faculty_u] lost_u

u.ord u.sdd

arr_u

[ontime] ret_u

u.crd

crdd_u

u.clr

[faculty_u] lost_u v [overdue] ret_u

non−critical overriding

lost_u v [overdue] ret_u

ddt_u

[!faculty_u] lost_u v [overdue] ret_u

[overdue] paid_u

[ontime] paid_u

Figure 4.17: The state transition chart of a user account in the library management
system

Similarly, o1 ↔ u.init, i2 ↔ u.borr, o2 ↔ u.clr and o2 ↔ u.crd 7.
For E ′, by a similar manner, we have the following mapping configuration between

interface states: i′1 ↔ u.wait, o′1 ↔ u.borr, i′2 ↔ u.borr and o′2 ↔ u.clr.
In this example, a property adhered to the base is that the user can always get to

the final state, i.e. u.clr state. Informally, he eventually succeeds in borrowing a book
under any circumstance. Of course, this informal meaning of the property is intended for
the first feature in which books are never lost. For subsequent evolution steps, because
some user may lose books, the property can be informally interpreted as the user always
succeeds in borrowing a book as long as it is still in the library. In terms of CTL notation,
the property can be expressed as: p = AG (EF (state = u.clr)). This property can be
easily verified to hold on the base. We need to verify that property is not violated by the
extension E with respect to B, then by E ′ with respect to C1.

The following shows the application of the OIMC theory so far. The closure set of p
is cl(p) = {p, f, a}, where:

• f = EG (state = u.clr)

• a = (state = u.clr)

Within B, obviously,

• ∀s ∈ SB: B, s |= p and B, s |= f .

• On the contrary, ∀s = u.clr : B, s |= ¬a.

There are two exit states between B and E, u.wait and u.borr. Because they are
unrelated in E, they can be considered separately. First, in case of u.wait, this is an

7Depending on the guard of paidu, o2 is mapped into two different states in B.

54



additive composition. Theorem 17 is applicable. In the extension, from exit state u.wait,
there is only one reentry state u.init. Hence, by seeding VB(u.init, cl(p)) to the ending
state init for the assumption model checking within the extension E, certainly we have:

• E, u.wait |=as p and E, u.wait |=as f .

• E, u.wait |=as ¬a.

Therefore, E and B conform at u.wait with respect to cl(p).
Second, the exit state u.borr is a little more complicated due to its overriding of the

base transition [overdue] retu. In the extension, at u.chg, there are two paths. The one
direct to u.clr ensures that p and f hold at u.chg directly. On the other hand, in the
second path to u.crd, by seeding VB(u.crd, cl(p)) to the reentry state for the assumption
model checking, we have:

• E, u.chg |=as p and E, u.chg |=as f .

• E, u.chg |=as ¬a.

From the derived truth values VE(u.chg, cl(p)), the truth values at u.borr are:
VE(u.borr, cl(p)) = {p, f,¬a} = VB(u.borr, cl(p)). B and E are in conformance at u.borr.

In summary, Theorem 17 can be applied as B and E conform at all exit states. All
states in the base B are not affected by E, namely p is preserved by the second feature
E after evolving to C1.

In the third feature E ′, there are two exit states: u.wait (a B state at which E ′

partially overrides lostu transition into lostu ∧ ¬facultyu) and u.chg (an E state). The
assumption model checking to be executed within E ′ is similar to the previous counterpart
in E. Identically, within E ′, it is easy to verify that:

• VE′(u.wait, cl(p)) = {p, f,¬a} = VB(u.wait, cl(p)) = VC1(u.wait, cl(p)). E ′ and C1

conform at u.wait.

• E ′ and C1 are in conformance at u.chg.

The conclusion is that p is preserved by both extensions E, E ′. In this example,
the scalability of incremental model checking is maintained as it only runs on E and E ′,
independently from the base B and C1 respectively.

55



Chapter 5

OIMC for Consistency among
Multi-Object Features

5.1 The Fundamental Approach

The arguments in Sections 4.1 and 4.3 are based on the assumption that base and exten-
sion models are fully given in advance. That is true when each feature is encapsulated
within a single object. The problem is more complicated when features crosscut several
objects and those member objects may not synchronize in entering and returning from
the extension. Constructing the extension model itself is hence a difficult task.

This part is the improvement from the static model [25] mentioned in Section 2.3.

5.1.1 A Formal Model of Features Crosscutting Multiple Ob-
jects

For simplicity, suppose that each feature in the system crosscuts the same number of
objects: o1, ..., ok. Each oi is corresponding to a pair of base (Bi) and extension (Ei).
Unlike the model in Section 3.1, a multi-object feature contains many objects and they
often communicate with each other via output events. Hence, the element Σ in Definition 2
should extend to cover output events. That is Σ is with the form ie/oe - where ie and oe
are input and output events respectively.

Definition 24 A base is a tuple 〈B1, ..., Bk〉 of base object models and a tuple of inter-
faces, where Bi = 〈SBi, ΣBi, soBi

, RBi, LBi〉 is defined in Definition 2. The interface is a
tuple 〈I1, ..., Ik〉, where Ii = 〈exiti, reentryi〉.

Definition 25 An extension is a tuple 〈E0, ..., Ek〉 of extension object models. Each
Ei = 〈SEi, ΣEi,⊥, REi, LEi〉 is compatible with the respective Bi as of Definition 3.

Definition 26 Composing the base with the extension, through the interface 〈I1, ..., Ik〉
produces a tuple 〈C1, ..., Ck〉 of composed object models. Each Ci = 〈SCi, ΣCi, s0Ci

, RCi,
LCi〉 is defined from Bi = 〈SBi, ΣBi, s0Bi

, RBi, LBi〉 and Ei = 〈SEi, ΣEi,⊥, REi, LEi〉 as
previously defined in Definition 5.

Hereafter, the term local (or object) model is used for addressing individual objects,
while global model is for the whole system with multiple objects. Further, assume that

56



is21 is22

es11 es12

is11 is12 is13

es21

AS1 b11 AS2b21

Object 2Object 1

e11/e21 e21e12 e22/e12e12e13/e21

Figure 5.1: Composing a full extension model with a partial base feature.

message passing mechanism between objects are synchronous. Events in the model are
categorized into external and internal classes. External events are visible from outside.
The system and its environment communicate with each other via these events. On
the contrary, internal events are passed among objects and hence invisible from outside.
Invisible internal events are subsequently generated among objects during handling an
external event. They occur during the system is in transition. By ignoring these internal
events, the system is considered to transit from a stable state to another stable state due
to an external event. Let ΣEE denote the external event set. In Figure 5.1, the transition
e11/e21 of o1 shows its handling of the external event e11 by signaling the internal event
e21 to o2.

5.1.2 Transforming Multi-Object Models into a Global Model

Because each feature is modeled separately, in order to apply the verification algorithm
in Section 4.1.4, the models must be first transformed into a global model. At any point
in time, the state of the whole system is represented by a global state which is essentially
a cross-product of its object states.

Due to feature encapsulation, it is ideal to reveal only the interface to the other
features. However, in order to give objects more freedom during their synchronization at
the interfaces before entering their local extensions, further internal structure bi of each
object oi is made visible from the corresponding extension Ei. Hence, if viewed from Ei,
the state set of oi is SBi = exiti ∪ reentryi ∪ bi ∪{HSi}, where HSi represents the hidden
part of Bi. In practice, objects usually synchronize well at the interface so the set of
additional visible states bi is rather small.

The global base model constructed from the local base models of k objects is expressed
as B = 〈SBG, ΣBG, s0BG

, RBG, LBG〉 where:

• SBG =
∏k

i=1 SBi, ∀sBG ∈ SBG : sBG
def.
= 〈s1, ..., sk〉, where si ∈ SBi.

• ΣBG = ΣEE ∩ ⋃k
i=1 ΣBi

.

• s0BG
=

∏k
i=1 s0Bi

≡ 〈s0B1
, ..., s0Bk

〉.
• RBG ⊆ SBG × PL(ΣBG) → SBG.

• LBG(s) =
⋃k

i=1 LBi(si), where s = 〈s1, ..., sk〉.

57



The global composition model C = 〈SCG, ΣCG, s0CG
, RCG, LCG〉 is similarly defined

upon Ci’s. That is, C = 〈SCG, ΣCG, s0CG
, RCG, LCG〉 where:

• SBG =
∏k

i=1(SBi ∪ SEi), ∀sCG ∈ SCG : sCG = 〈s1, ..., sk〉, where si ∈ SBi ∪ SEi.

• ΣCG = ΣEE ∩ ⋃k
i=1 ΣCi.

• s0CG
= s0BG

≡ 〈s0B1
, ..., s0Bk

〉.
• RCG ⊆ SCG × PL(ΣCG) → SCG.

• LCG(s) =
⋃k

i=1 LCi(si), where s = 〈s1, ..., sk〉.
Here, any entity with subscript Ci is defined from the respective entity pairs with

subscripts Bi and Ei as in Section 3.1 for single object model.
A system is in its global extension E = 〈SEG, ΣEG,⊥, REG, LEG〉 if at least one of its

objects are in the respective local extension. More specifically,

• SEG = SCG \ SBG =
∏k

i=1(SBi ∪ SEi) \
∏k

i=1 SBi.

• ΣEG = ΣCG.

• REG ⊆ SEG × PL(ΣEG) → SEG.

• LEG(s) = LCG(s).

This full representation of global base and extension models are too redundant in
terms of states, especially interface states. We present some principles to compact E and
its interface with B.

Based on local bases Bi and extensions Ei, i = 1, k, the candidates for global exit and
reentry states are identified via four main factors: global exit/reentry events, invariants
adhered to the base, use-case scenarios for interaction between features and the clients;
and compatible interface states between components.

First, synchronization of message passing among local objects are utilized. Potential
global exit (and reentry) events are identified. These exit events are external events
causing the system to enter the extension. By an observation, this event typically connects
an exit state 〈s1, ..., si, ..., sk〉 to an extension state 〈s1, ..., s

′
i, ..., sk〉, where sj ∈ SBj and

s′j ∈ SEj, j = 1, k. Hence, this event is surely an exit event of oi - the first object to start
its crossing among k objects. Further, it must be an external event (ΣEE).

In Figure 5.1, local exit events are: e11, e21, e13. Given the transition e11/e21 in Fig-
ure 5.1, e21 ∈ ΣEE can not be a global exit event. Hence, only external events e11, e13 are
left as candidates for global exit events.

Similarly, in case of reentry events, a global reentry event must be an external reentry
event. It is associated with the object which starts the handling of the event so that
the system is back to the base at the end of the handling process. In Figure 5.1, since
e12 ∈ ΣEE, the only candidate for global reentry event is e22.

Associated with any global event are a key object oi and the state of the object during
which it receives the event. Depending on whether the event is exit or reentry, the state
of oi is a key local exit or reentry state contributing to the interface state in the global
model. In Figure 5.1, is12, is13 are key exit states, while is21 is a key reentry state.

58



Definition 27 Suppose ex[i] is a key local exit state of the object oi, potential global
exit states are those cross-products of local base states containing ex[i], i.e. exBG =
〈s1, ..., ex[i], ..., sk〉. Potential global reentry states are similarly defined upon a key local
reentry state re[i] as reBG = 〈s1, ..., re[i], ..., sk〉.

In Figure 5.1, potential global exit state exBG is a cross-product of either is12 or is13

with any base state of o2. On the other hand, reBG is a cross-product of is21 with any
base state of o1.

Second, up to this stage, there are still possibly many potential global interface states.
Certain combination of some object states, i.e. the coexistence of their respective atomic
label sets, are in conflict. Formally, for any two objects oi and oj, i, j = 1, k and i = j, if
∃a ∈ AP : (LCi(si) ⇒ a) ∧ (LCj(sj) ⇒ ¬a), then any state cross-product containing the
both si, sj never exists. Those cross-products are dropped and hence the restriction on
global states is strengthened. With these invariants, besides simplifying the global state
space, the set of potential interface states is also further compacted.

Third, usually the extension feature interacts with the base in some pre-defined se-
quences of external events. That is, the interacting scenarios are given in advance. By
this order of external events, this scenario-based interaction between base and extension
reduces the state space further. Unlike the first principle about deriving the order of
internal events, this scenario-based principle deals with the order of external events.

Fourth, to enter and exit from the extension feature, certain conditions must be sat-
isfied. The conditions Lex and Lre are respective pre-condition and post-condition asso-
ciated with a scenario of the extension feature. A potential exit state exBG = 〈s1, ..., sk〉
is compatible to be an exit state to the extension if the pre-condition Lex to accept the
extension events are satisfied. That is,

⋃k
i=1 LBi(si) ⇒ Lex. We can safely drop those

potential exit states exBG at which the pre-condition is not satisfied from the set of po-
tential exit states. Similarly, for reentry states, the associated post-conditions Lre must
be satisfied after the control is returned to the base at state reBG = 〈s′1, ..., s′k〉. That is,

Lre ⇒
⋃k

i=1 LBi(s
′
i). This condition to match compatible states between features are used

to eliminate redundant interface states.
Through the utilization of the above principles, the global state model is compacted

and so are the interface states. The extension model is then constructed as any possible
path running from an exBG and ending at a reBG. Along the path are global extension
states. The event connecting two adjacent global states is corresponding exactly the
external event at the object initiating that transition.

5.1.3 Incremental Verification Within Global Model

The theoretical foundation of OIMC is constructed with respect to explicit state-based
model. Hence, when dealing with multi-object features, model checking must be done in
global state space. To do that, we need to transform tuple of individual object models into
a single global state model before any model checking attempt is carried out. Like Sec-
tion 4.1.4 on single-object features, the corresponding steps to verify feature consistency
among multi-object features can be briefly presented below:

1. Constructing a explicit state-based model for the base feature B; and then verifying
within this global model that a CTL property p holds.

59



u.wait u.borr

u.chg

u.crd

Base

User Account

u.clru.init

b.in

b.ord

Book

Base
arr_b

ExtensionExtension

res_u

ava_u/borr_b

[ontime] paid_u

lost_u/lost_b

crdd_u

lost_u/lost_b

borr_b

lost_b

ord_b

b.borr

b.lost

[overdue] paid_u

[overdue] ret_u/ret_b

[ontime] ret_u/ret_b

[overdue] ret_u/ret_b

ret_b

Figure 5.2: A simple library with two features: book reservation and loss-handling.

2. Within this model, for any state s, recording all truth values of cl(p) at s. Those
are preservation constraints to preserve p in the base if s is set to be an exit state
for a future extension feature.

3. An extension feature E is attached with the base via some interface states. To
verify the consistency between B and E, first we need to transform multiple object
models and their respective extensions into a single global extension model. The
OIMC procedure shown in Section 4.1.4 can be applied as usual because this model
can be equally treated as a single-object model.

However, there is a subtle difference between single- and multi-object OIMC. After
transforming multiple object models into a single global extension model, under any
computation path from a exit state exBG to a reentry state reBG, there are some extension
states. If all extension states are not of the cross-product form containing some local state
HSi, the verification is straightforward as of Section 4.1.4. If p holds in the extension
part as of this case, the extension and the base features crosscutting multiple objects are
composable.

In the other case, there exists a state involving HSi in the global extension model.
OIMC does not work then. The only solution is to reveal further states in HSi so that
HSi does not occur in the extension model any more, i.e. achieving the ease of OIMC at
the cost of feature encapsulation.

5.2 An Example of Consistency among Multi-Object

Features

This section presents a simple example about verifying multi-object feature consistency.
It is a library with two participating objects: User and Book as shown in Figure 5.2. This
library is more detailed than the counterpart in Figure 4.17 in Section 4.5. The two layers
are corresponding to two separate features: basic book reservation and loss-handling. The
figure is rather self-explained. Once the user reserves, he waits for the book if it is on
loan to someone else. The book will be available for his use only after the previous user
has finalized book-borrowing procedure, i.e. reaching u.clr state. In the extension, if the
user is waiting for some book currently on loan and that book is lost, he has to go back to
the initial state because there is no book for his request anymore. If he actually loses the

60



book, he has to pay a fine. Importantly, the extension feature also charges the user if he is
overdue, i.e. complete overriding of the base transition [overdue] retu/retb happens here.
If the payment (for book loss or overdue) is on time, his credit is not affected. Otherwise,
his credit will be deducted.

In this section, the following notations are used to denote states and events associated
with User and Book objects. They are:

• User states: u.init(ial), u.wait(ing), u.borr(owing), u.chg (charging fines), u.crd
(updating the credit), u.clr (the account is clear).

• Book states: b.in (in the library), b.borr (on loan), b.lost (loss), b.ord (being ordered
to the publisher).

• External user events: resu (reservation request), avau (book available), lostu (loss),
retu (book return), paidu (fine payment), crddu (the credit update is done).

• External book events: arrb (book arrival), ordb (replacement order). Internal events
(generated from user events): borrb (borrowed), retb (book return), lostb (loss).

• Guards: ontime, overdue.

In Figure 5.2, local exit events are: {lostu, [overdue] retu, lostb}. However, since
lostu ↪→ lostb, key exit events are {lostu, [overdue]retu}. Similarly, key reentry events are
{lostu, [ontime]paidu, [overdue]paidu, arrb}. They lead to key exit states {u.wait, u.borr}
and key reentry states {u.init, u.clr, u.crd, b.in}. From these sets, we can derive the can-
didates for global exit and reentry states as:

• Exit candidates: 〈u.wait, b.in〉, 〈u.wait, b.borr〉, 〈u.borr, b.in〉, 〈u.borr, b.borr〉.
• Reentry candidates: 〈u.init, b.in〉, 〈u.wait, b.in〉, 〈u.borr, b.in〉, 〈u.crd, b.in〉, 〈u.clr,

b.in〉, 〈u.init, b.borr〉, 〈u.clr, b.borr〉, 〈u.crd, b.borr〉.
Because of the invariant adhered to the base, namely a book can not be on loan and

in the library at the same time, we can remove unreachable states from the candidate
sets such as: 〈u.borr, b.in〉,1 〈u.clr, b.borr〉, 〈u.crd, b.borr〉. Besides, 〈u.wait, b.in〉 is not
a valid reentry state within the extension model because there is no corresponding exit
state. The interface states are:

• Exit states: 〈u.wait, b.in〉, 〈u.wait, b.borr〉, 〈u.borr, b.borr〉.
• Reentry states: 〈u.init, b.in〉, 〈u.crd, b.in〉, 〈u.clr, b.in〉, 〈u.init, b.borr〉.
From these potential interface states, the global extension model is constructed in

Figure 5.3.
A property adhered to the base model is that: Under any circumstance, the system can

always reach the safe final state eventually, namely the user account is clear of the book,
and the book (or its replacement after being extended to handle the book-loss feature) is
in the library. In terms of CTL, the property can be expressed as: p = AG(EF((u.state =
u.clr) ∧ (b.state = b.in))). The closure set of p is cl(p) = {p, f, ua, ba} where:

1u.borr means book.status = out, whereas b.in means book.status = in.

61



Base

Base

ord_b ord_b

arr_b

<u.clr,b.lost><u.chg,b.lost>

<u.chg,b.in> <u.clr,b.in>

<u.clr,b.ord>

<u.wait,b.in> <u.wait,b.borr> <u.borr,b.borr>

lost_u

lost_ulost_u

<u.init,b.in> <u.init,b.borr>

crdd_u

crdd_u

crdd_u

arr_b

[overdue] paid_u

<u.chg,b.ord>

<u.crd,b.in>

<u.crd,b.ord>

<u.crd,b.lost>

[ontime] paid_u

[ontime] paid_u

[ontime] paid_u

[overdue] ret_u

Figure 5.3: The global extension model of the library example.

• f = EF ((u.state = u.clr) ∧ (b.state = b.in))

• ua = (u.state = u.clr) and ba = (b.state = b.in) (user and book respective atomic
propositions).

This property is confirmed within the base feature providing basic book-borrowing
service. After a model checking task within the base B, we can derive the following in
global base model:

• ∀s ∈ SB: B, s |= p and B, s |= f .

• ∀s = 〈u.clr,⊥〉: B, s |= ua; otherwise B, s |= ¬ua.

• ∀s = 〈⊥, b.in〉: B, s |= ba; otherwise B, s |= ¬ba.

The book-loss feature is verified not violating p. Applying the truth values in the base
model to four reentry states as in Figure 5.3 as follows:

• Seeding values at 〈u.init, b.in〉, 〈u.crd, b.in〉 are {p, f,¬ua, ba}.
• Seeding values at 〈u.clr, b.in〉 is {p, f, ua, ba}.
• Seeding values at 〈u.init, b.borr〉 is {p, f,¬ua,¬ba}.
Within the global extension model depicted in Figure 5.3, the assumption model check-

ing is executed to show the truth values at exit states as follows:

• VE(〈u.borr, b.borr〉, cl(p)) = {p, f,¬ua,¬ba} = VB(〈u.borr, b.borr〉, cl(p)).

• VE(〈u.wait, b.borr〉, cl(p)) = {p, f,¬ua,¬ba} = VB(〈u.wait, b.borr〉, cl(p)).

• VE(〈u.wait, b.in〉, cl(p)) = {p, f,¬ua, ba} = VB(〈u.wait, b.in〉, cl(p)).

In brief, we have the conformance at all exit states with respect to cl(p). Hence, p is
preserved by the extension feature E.

62



Chapter 6

OIMC Improvements

This chapter tries to improve some results in Chapter 4. In particular, we are concerned
with the conformance condition between a base component and its refinement.

6.1 Relaxing the Conformance Condition

Like Chapter 4, we are concerned with property preservation in B after composing B
with E. Specifically, exit states are of interest due to particulars of their associated
computation trees. At each exit state ex, the computation tree rooted at ex within C is
formed by combining the computation trees from B′ 1 and E. Hence, the truth values at
ex in C is derived from the counterparts in B′ and E. In fact, we can prove that if the
assumption function As is proper, ∀φ: VC(ex, φ) = VB′(ex, φ) ⊕ VE(ex, φ). Because B′

and B are very similar, in most of the cases, VB′(ex, cl(p)) = VB(ex, cl(p)). Even when
they differs, VB′(ex, cl(p)) can be derived rather quickly from VB(ex, cl(p)).

In addition, unlike the counterpart in Chapter 4, VE(ex, cl(p)) is derived by the as-
sumption model checking within E in which the assumed truth values at a reentry state
re are VB′(re, cl(p)). In the former, the seeded values are VB(re, cl(p)). The values from
the model B′ certainly reflect more accurately the computation tree at re in C.

Definition 28 ⊕ is the composing operator defined over CTL properties of two sub-trees
rooted at the same node.

• If φ is a single universal CTL property (ACTL), i.e. φ = Af

1. φ ⊕ φ = φ.

2. Otherwise, ⊥⊕ ¬φ = ¬φ ⊕⊥ = ¬φ.

• If φ is a single existential CTL property (ECTL), i.e. φ = Ef

1. ¬φ ⊕ ¬φ = ¬φ.

2. Otherwise, ⊥⊕ φ = φ ⊕⊥ = φ.

• φ = φ1 ∨ φ2, φ ⊕ φ = (φ1 ⊕ φ1) ∨ (φ2 ⊕ φ2).

• φ = φ1 ∧ φ2, φ ⊕ φ = (φ1 ⊕ φ1) ∧ (φ2 ⊕ φ2).

1B′ is the remainder of B after removing all overridden transitions, if any.

63



However, by Definitions 7 and 11, ∀φ ∈ cl(p) : VM(ex, φ) ∈ {φ,¬φ} because all
properties in cl(p) are single. Within this paper, the operator ⊕ in essence operates
on pairs of single CTL properties. The new conformance condition is proposed below.
Basically, it is similar to the counterpart - Definition 14.

Definition 29 B and E are in conformance at an exit state ex (with respect to cl(p)) if
VB′(ex, cl(p))⊕VE(ex, cl(p)) = VB(ex, cl(p)). They are in strict conformance if besides the
regular conformance condition, with regards to any property in cl(p) of the form A [f U g]
(or ¬EG f) holding at ex, E does not make A [f U g] false (or EG f true) at ex by
patching a path of (f ∧ ¬g)∗ (or f ∗ ) with another existing (f ∧ ¬g)∗ (or f ∗ ) path in
B′ to make a complete cycle (f ∧ ¬g)∗ (or f ∗ ) through ex in C.

If the assumption function As is proper, the left-hand side of the equation can be
proved to be exactly VC(ex, cl(p)). Therefore, the conformance between B and E ensures
the preservation of truth values with respect to cl(p) at ex. Compared with the condition
proposed in Section 4.1, the above condition is more relaxed because the former proposes
the condition VE(ex, cl(p)) = VB(ex, cl(p)). The conformance condition is proved below to
be weakened. That is, ∀φ ∈ cl(p), if VE(ex, φ) = VB(ex, φ) then VE(ex, φ) ⊕VB′(ex, φ) =
VB(ex, φ).

The proof follows. According to Definition 7, all member properties φ in cl(p) are
single. A single property φ belongs to either ACTL or ECTL. In the former condition
in Section 4.1, ∀φ ∈ cl(p) : VE(ex, φ) = VB(ex, φ). There are four cases to consider.

First, VB(ex, φ) = φ ∈ ECTL implies VE(ex, φ) = φ. According to Definition 28
above, VE(ex, φ) ⊕⊥ = φ = VB(ex, φ). That is, VE(ex, φ) ⊕ VB′(ex, φ) = VB(ex, φ).

Second, VB(ex, φ) = ¬φ and φ ∈ ECTL. This means all paths in B rooted at ex
do not satisfy φ. As B′ is a sub-model of B, the set of paths from ex in B′ is a subset
of the counterpart in B. Certainly, VB′(ex, φ) = ¬φ. In addition, since VE(ex, φ) =
VB(ex, φ) = ¬φ. We have, VE(ex, φ)⊕VB′(ex, φ) = ¬φ⊕¬φ = ¬φ = VB(ex, φ) (according
to Definition 28 and φ ∈ ECTL).

Third, VB(ex, φ) = φ ∈ ACTL. Similar to the second case, as B′ is a sub-model
of B, VB′(ex, φ) = φ. Composing VE(ex, φ) = VB(ex, φ) = φ with VB′(ex, φ) = φ, the
conformance condition in Definition 29 is derived.

Fourth, VB(ex, φ) = ¬φ and φ ∈ ACTL. Similar to the first case, we have: VE(ex, φ)⊕
VB′(ex, φ) = ¬φ ⊕⊥ = ¬φ = VB(ex, φ).

After examining four cases, the proof is completed. �

In the similar manner to Chapter 4, the subsequent theorems and arguments built on
this relaxed conformance definition are presented. Note that, since B′ has already taken
in account the removal of any overridden transitions, even critical, there is no need to
care about the critical overriding composition as in Chapter 4 anymore. In this context,
the composition types, such as additive, non-critical overriding and critical overriding,
are equivalent in terms of OIMC procedure and verification soundness. The assumption
function As is not of concern anymore.

Theorem 30 Given a base B and a property p, an extension E is attached to B at some
interface states. ∀s ∈ SB : VB(s, cl(p)) = VC(s, cl(p)) if B and E conform with each other
at all exit states.

This theorem is equivalent to Theorem 17 in Chapter 4. Informally, this key theorem
claims that provided the conformance between base and extension, the truth values of base

64



. . . . . . . . .

. . .

B

. . .

ex

s1

s2

s1

s2

f

AG f

f

f*

f

f

AG f f

f*

ex

. . . . . .

E

. . . . . . . . .

. . .

B’

. . .

s3 s3f

f*

f

f*

f* f*

f*

f*
f*

f*

f

B, ex |= AG f B’, ex |= AG f

E, ex |= AG f

AG f

AG f!f !f AG f

AG f

C, ex |= AG f

ev

ev

Figure 6.1: An illustration of B and E conformance in case of overriding composition.
The truth value with respect to the property p = AG f is preserved at ex and all states
in B.

states with respect to cl(p) in B and in C are the same. The theorem holds regardless
the composition type, either additive, critical or non-critical overriding. The detailed
proof is quite similar with the counterpart in Chapter 4 and hence skipped. Note that
comparing the conformance condition of Theorem 30 with the counterpart in Theorem 17,
it is obvious that the condition presented in this section is more relaxed.

Figure 6.1 depicts the composition preserving the property p = AG f when B and
E are in conformance. The composition is done via a single exit state ex. Further, E
overrides the transition ex-s3 in B. f ∗ denotes that f holds at all intermediate states
along the computation path. In the figure, within B, p = AGf holds at s2, ex and s3 but
not at s1. As VE(ex, p) = VB′(ex, p) = VB(ex, p) = AG f ∈ ACTL, B and E conform
at ex. While the edge ex-s3 is removed, the new paths in E together with the remaining
computation tree in B′ still preserve p at ex directly; and consequently s2 indirectly. For
s1, its truth value VC(s1, p) = ¬p is preserved as well. On the other hand, s3 is not
affected by E. In this figure, we do not care about the descendant states in E. Thus,
E is intentionally left open-end so that the reentry state re is not explicitly displayed.
In this part, what E can deliver at ex is important regardless of ex’s descendants. The
arguments are still valid when the downstream of E converges to the reentry state re.

From Theorem 30, given a property p holds on B, it continues to hold in C if B and
E conform with each other at all exit states. The following corollary is the answer to the
fundamental issue prescribed in Section 3.2. It is equivalent to Corollary 18, except that
this corollary is not concerned with the properness of assumption function As due to the
weakened conformance condition in Definition 29.

Corollary 31 Given a base B and a property p holding on B, an extension E is attached
to B at some interface states. With respect to the relaxed conformance condition in
Definition 29, E does not violate p adhered to B if B and E conform with each other at
all exit states.

With the change of model B into B′, the incremental verification algorithm is changed
a little bit as follows. Comparing with the counterpart in Section 4.1.4, we only change
the seeding labels at reentry states from model B to B′. By this change, we are sure that
the seeding is always proper, i.e. As is proper.

65



1. Seeding reentry states re with the corresponding VB′(re, cl(p)).

2. Executing the CTL assumption model checking procedure within E to check for φ,
∀φ ∈ cl(p).

3. At the end of the model checking task, checking if VE(ex, cl(p)) ⊕ VB′(ex, cl(p)) =
VB(ex, cl(p)).

4. If re is not an ascendant of ex in B′, then simply skip to the next step. Otherwise,
for the strict conformance, two extra checks for the non-existence of any (f ∧¬g)∗

or f ∗ loop to assure properties of the forms A [f U g] and ¬EG f are required.
Details of the checking are already shown in Section 4.1.4.

5. Repeating the procedure for other exit states.

6.2 The Soundness Issue

The relaxed condition presented in this chapter indeed solves some failures in cyclic depen-
dency cases discussed previously. Reminding that in Section 4.2, there are some extreme
cases in which the assumption function As is not proper at reentry states. Hence the
composition of B and E fails to preserve the property in the base.

The reason for which the soundness issue is no longer of concern is because we seed
each reentry state re with the labels VB′(re, cl(p)). It is certain that the labels are proper.
That is, As is proper. As a consequence, the incremental model checking in E derives a
reliable result. If VB′(ex, cl(p))⊕VE(ex, cl(p)) = VB(ex, cl(p)), the conformance is certain.
The conclusion about base and extension consistency upon the relaxed conformance, i.e.
Corollary 31, is not effected by the change of condition.

6.3 The Scalability Issue

This issue is not affected by the relaxed condition. As long as the bases and their respective
extensions conform pair-wise, OIMC maintains the scalability as discussed in Section 4.4.

6.4 Parallelizing the OIMC Algorithm

Theorem 23 emphasizes on the fact that if the respective base (Ci−1) and extension (Ei)
components pair-wise conform, although p is introduced by the inner most component
B, any future extension En can still be independently verified to be consistent with B
by OIMC. The input are seeded truth values at the out-states of En, whereas the output
are truth values derived at in-states of En which in turn could be used as input for the
OIMC of future extension components. This point serves as the key idea for parallelizing
the above OIMC algorithm in component-based software.

Recently, due to the ever-growing complexity of software, there is an urgent need to
improve performance of verification procedures. Besides modular verification as of OIMC,
one approach is to execute verification process in parallel. Due to Theorem 23, a parallel
version of the OIMC algorithm in Section 4.1.4 is possible and it is the focus of this
section.

66



So far, we only consider the simple component-based software of a base and a refine-
ment. In the general case, a component-based system S is formed through a sequence
of components C1, C2, ..., Cn. Initially, S = C1. Later, S is extended with C2 and then
C3, ..., Cn in that order. Each component Ci is represented by the formal model in Def-
inition 1. Associated with a component Ci is an interface Ji = 〈in, out〉, where in- and
out-states are terminal states of the respective component (Definition 3 in Section 3.1).

The relation between components C’s could be either refinement or COTS. A COTS
component can be indeed regarded as a special case of refinement in which there is only a
single exit state and no reentry state with the base. The computation tree of the COTS
deviates from the base and never joins the base again. After composed with a COTS,
instead of an assumption model checking within the COTS, because there is no reentry
state, a standard model checking procedure can be executed entirely within the COTS to
find the properties at the exit state. The conformance condition to ensure the consistency
between the two components can be well applied as usual.

Regarding the general case of component-based software, the basic consistency issue
among components can be described as the following. Initially, a property p is inherent
to the first component C1. The question is on how to ensure the consistency of other
components with respect to p in the assembled system S. In this perspective, within S,
C1 is the base, all other components are considered as extensions.2

Consider a pair Ci and Cj in which Cj actually refines Ci. As OIMC requires the
truth values at all reentry states (i.e. VCi

(re, cl(p))) as the input to its execution within
the refinement, the truth values in the base must be determined before executing OIMC
in the refinement. This ordering among components is used to schedule the component
verification based on the OIMC algorithm. Formally, Cj depends on Ci, denoted as

Cj
dep.−→ Ci, if ∃o ∈ Jj .out, re ∈ SCi

: o ↔ re.
If Ci and Cj are COTS, there is no order between Ci and Cj, namely the OIMC-based

verification of Ci and Cj can be executed in parallel.
From the above dependency between components, among C1, ..., Cn, there exists a

dependency structure showing which components should be verified first, which one can
be done later. This structure shows the degree of importance associated with a com-
ponent with regards to the whole system. Since OIMC is based on assumption model
checking which requires a sequential order of components during verification, the depen-
dency structure should not contain any circular dependency among components, namely

� i, j, .., k = 1, n : Ci
dep.−→ Cj

dep.−→ ...
dep.−→ Ck

dep.−→ Ci. As components are integrated in the
order C1, C2, ..., Cn, we assume that any component Cj only depends on the lower-index

components, if any. That is, ∀j, � k > j : Cj
dep.−→ Ck. Surely, there is no cycle in the

structure.
From the above arguments, any component in S is assigned with a number showing

its verification order. The parallel version of the OIMC algorithm consists of two parts.
The first part involves with assigning numbers to components. The second part is about
actual parallel verification.
/* assigning order numbers to components */

2If p is not initially inherent to C1 but introduced by C2, then we consider p to be inherent to the base
component (C1 + C2). The issue is then translated into the consistency between C3, ..., Cn with respect
to p in (C1 + C2). This is identical to the basic case depicted above. If p is introduced subsequently by
any other component Ck, the argument is similar and the problem also resembles the basic case.

67



int turn[n];

int maxturn = 0;

for k = 1 to n { turn[k] = 0; }

for i = 1 to n {
for j = (i + 1) to n {

if (Cj
dep.−→ Ci) ∧ (turn[j] ≤ turn[i]) {

turn[j] = turn[i] + 1;// Cj must be verified after Ci.

} // end if

} // end for

} // end for

for k = 1 to n { maxturn = max(maxturn, turn[k]); }

/* Parallel verification */

for k = 0 to maxturn {
parallel for i = 1 to n { // executed in parallel

if (turn[i] = k) {
Seeding truth values to all out-states of Ci;

Executing an assumption model checking in Ci to check φ, ∀φ ∈ cl(p);
Storing the truth values for all in-states of Ci;

} // end if

} // end parallel for

} // end for

parallel for k = 1 to n { // read-only loop, hence executed in parallel

parallel for j = (k + 1) to n {
if i ∈ Jj .in,∃ex ∈ SCk

: i ↔ ex {
if (VCj (i, cl(p)) ⊕ VC′

k
(ex, cl(p)) = VCk

(ex, cl(p))) {
// C ′

k - remainder of Ck after removing overridden transitions.

Message(‘‘Cj and Ck do not conform at the state i ↔ ex’’);

return(false);

} // end if

} // end if

} // end parallel for

} // end parallel for

return(true);// p is preserved by Ci’s.

68



Chapter 7

Model-Based Feature
Implementation and Application

This chapter is mainly concerned with the application and realization of the feature-
oriented software model. First, a typical application of the theory developed in previous
chapters is about component specification and composition. This part proposes a way to
facilitate the ideal paradigm of plug-and-play components in component-based software.

Next, the chapter is involved with the realization of formally specified features during
AOSD implementation phase. A pseudo language is presented to describe formally fea-
tures. Later, based on the specification of each feature, code transformation is briefed.
Specifically, the corresponding Java codes implementing the feature are generated via
meta rules. Subsequently, entities such as classes, data members, functions etc. between
features are mapped together and then composed accordingly via Hyper/J or AspectJ to
form the concrete composed system.

Finally, the relation between the OIMC foundation of previous chapters with an actual
model checker (e.g. NuSMV2) is another topic. We examine the possibility of applying
the OIMC idea to NuSMV - a well-known open-source model checker.

7.1 Component Specification and Consistency Veri-

fication

As an unanimity within the software engineering community, high quality software are
structured from lowly coupled components. Within the component-based approach, com-
posing components properly is very essential. Component-based software idealizes the
plug-and-play concept. The current component technology generally supports component
matching at the syntactic level. Components can be syntactically checked and hence
plugged. However, they do not play as expected. A major issue of concern is the mis-
matches of the components in the context of an assembled system [11]. A main source of
this phenomenon is because a component violates some property inherent to another. In
our opinion, the problem is two-fold: underlying logic is not powerful enough to express
component properties; and even if formally specified, it is difficult to verify the properties
in an open way - future components are not known in advance. For instance, temporal
inter-component constraints are difficult to formally specify, much harder to check among
components with the current specification methods. This dissertation introduces the tem-

69



poral logic CTL into component semantic to facilitate component matching. Specifically,
this thesis addresses two points in the issue: how to explicitly specify such a component
semantic; and given that kind of information in the component interface, how to efficiently
analyze components and to decide whether they are safe to be composed together.

Most current approaches for component interface definition deal with primarily syn-
tactic issues among static interface elements such as operations and attributes, like those
of the CORBA Interface Definition Language (IDL) [14]. Regarding a component’s ex-
act capability, essential semantic aspects of the component should also be described.
This dissertation advocates the inclusion of two additional semantic aspects of compo-
nent specification to facilitate proper component composition. Given a base component
B = 〈SB, ΣB, soB

, RB, LB〉, the semantic aspects are: dynamic behavior (via state tran-
sition model in which only potential future interface states are visible to other compo-
nents - Section 3.1) and their associated consistency constraints (via the truth values of
VB(s, cl(p)) at such an interface state s, where p is a CTL property holding in the base
component - Section 4.1).

7.1.1 Interface Signature

Component signatures are the fundamental aspect to the component interface. As com-
monly recognized, the traditional interface signature of a component contains attributes
and operations. First, through attributes 1, the current state of a software component may
be externally observable. The component’s clients can observe and even change the val-
ues of those attributes. Second, the outside world interacts with the component through
operations. The operations represent services or functions the component provides.

Unlike above two static aspects, the introduction of dynamic behavior of a component
to the interface is recommended in this paper. Components in reality resemble classes in
the object-oriented (OO) approach. This specification style hence follows the encapsula-
tion principle of OO technology so that only essential information is exposed. Only the
partial dynamic model of the component consisting of potential future interface states is
visible to clients. The rest of the model can be hidden. Associated with a visible interface
state s is the set of atomic propositions L(s) (Definition 1). These propositions are often
expressed via logic expressions among attributes above.

7.1.2 Interface Constraints

The interface signature only shows the individual elements of the component for inter-
action with clients in syntactic terms. In addition to the constraints imposed by their
associated types, the attributes and operations of a component interface may be subject
to a number of further semantic constraints regarding their use. In general, there are two
types of such constraints: internal to individual components and inter-component relation-
ships. The first type is simple and has been thoroughly mentioned in many component-
related works [14, 40]. The notable examples are the operation semantics according to
pre-/post-conditions of operations; and range constraints on attributes. For the second

1Attribute is termed as property in [14] which are essentially the entities expressing states of com-
ponents. To distinguish them from temporal properties inherent to components in Section 7.1.2, those
entities are named attributes.

70



type, current component technologies such as UML and OCL [40], OMG CORBA or Mi-
crosoft COM/DCOM etc are limited to a very weak logic in terms of expressiveness. For
example, different attributes in components may be inter-related by their value settings;
or an operation of a component can only be invoked when a specific attribute value of
another falls in a given range etc [14]. The underlying logic only expresses the constraint
at the moment an interface element is invoked, i.e. static view, regardless of execution
history.

The dissertation introduces two inter-component semantic constraints. The first con-
straint is based on the plugging compatibility for a refining component to be plugged at
special states of the base. This situation resembles the extension of use-case scenarios.
The base gives the basic interacting scenarios of the component with clients. The ex-
tension component refines some of those scenarios further at a certain point from which
the component deviates from the pre-defined course to enter new traces in the extension
component. Such a point corresponds to an exit state in Definition 2.

On the other hand, the second semantic constraint emphasizes on how to make com-
ponents play once they are plugged. Importantly, this constraint type is expressed in
terms of CTL so its scope of expressiveness is enormous. In contrast to the logic above,
CTL can describe whole execution paths of a component, i.e. dynamic view. Via OIMC
in Section 4.1.4, a refining client E to a base component B can be efficiently verified on
whether it preserves the property p of B.

Once composed, the new component C = B + E exposes its new interface signatures
and constraints. Static aspects like attributes and operations are simply the sum of those
in B and E. The dynamic behavior of C is exposed according to the composition of
corresponding visible parts of B and E. In terms of constraints, any potential interface
state s is exposed with the set of propositions LC(s) = LB(s) according to Definition 5.
On the other hand, the consistency constraint at s is derived either from VB(s, cl(p)) (for
any s ∈ SB) or VE(s, cl(p)) which is resulted from the above execution of OIMC within
E (if s ∈ SE). Subsequent refinements to C follow the same manner as the case of E to
B because of Theorem 23.

7.1.3 Component Specification and Composition

Component specification can be represented via interface signatures and constraints writ-
ten in an illustrative specification language below. Indeed, a language similar to that
of [2] for declaring and refining state machines in layering manner is used. Based on
the exemplary specification, components are implemented as classes in typical object-
oriented languages. Component composition is then done via class aggregation/merging.
Component attributes and operations are declared in the object-oriented style like C++.
The virtual keyword is used to only name an element without actual memory allo-
cation. The element will be subsequently mapped to the actual declaration in another
component. This mechanism resembles mergeByName in Hyper/J [36] in which compo-
nent entities sharing the same label are merged into a single entity during component
composition.

Figure 7.1 shows the dynamic model of a simple component, while below is the corre-
sponding specification of the component. The interface signatures should declare: edges
with name, start state, end state, transition guard and input event; as well as transition
action. At the end are the semantic constraints of the component written in both types

71



one (1) two (2)

three (3)

t1: [test] e1

t2: [!test] e1

Figure 7.1: The dynamic behavior model of the “black” component.

���
���
���
���

(d) aggregation hierarchy

���
���
���
���

���
���
���
���

(a) Original diagram (c) Second refinement(b) First refinement

1_black 2_black

3_black 1_brick

i1_brick

i3_brick

i2_brick

i3_white

1_white

i2_white

Figure 7.2: Component refinements and component composition via class aggregation.

shown in Section 7.1.2, namely plugging compatible conditions and inherent temporal
properties at potential interface states. For illustration purpose, this producer-consumer
example is very much simplified so that only some key transitions and states are shown.
Because of this over-simplified model, the whole dynamic behavior of the component is vis-
ible to clients. In practice, regarding the encapsulation principle, only essential part of the
model for future extension is visible. The rest of the model is hidden from clients. There
are three components: “black” (the base B of Figure 7.2a - item-producing function);
“brick” (the first refinement E of Figure 7.2b - variable-size buffer and item-consuming
function); and “white” (the second refinement E ′ of Figure 7.2c - optimizing data buffer).
Component B {
Signature:

states 1 black, 2 black, 3 black;

/* edge declarations */

edge t1: 1 black -> 2 black

condition test // OK if adding k items to buffer

input event e1 // producing k items

do { produce(k)... }; /* t1 action */

edge t2: 1 black -> 3 black;

... /* similarly defined */

// operations and attributes declaration

boolean test;

int cons, prod;// consumed, produced items

int buffer[];// a bag of data items

...

init(){ state = 1 black; ...};
produce(n){ prod = prod + n;...};

Constraint:

72



/* compatible plugging conditions - CC */

1 black cc: cons = prod;// empty buffer

2 black cc: test = true, cons < prod;

3 black cc: test = false, cons ≤ prod;

/* Inherent properties - IP */

1 black ip: AG (cons ≤ prod), cons ≤ prod;

2 black ip: AG (cons ≤ prod), cons ≤ prod;

3 black ip: AG (cons ≤ prod), cons ≤ prod;

}

As components are composed with each other, they can be progressively refined or
extended in layering manner. The process adds states, actions, edges to an existing
component. The original component and each refinement are expressed as separate speci-
fications that are encapsulated in distinct layers. Figure 7.2 shows this hierarchy: the root
component is generated by the specification from Figure 7.1 or Figure 7.2a; its immediate
refinements are in turn generated from component specifications according to the order
in the Figures 7.2b and 7.2c.
Component E {/* for refining black */

Signature:

states 1 brick, i1 brick, i2 brick, i3 brick;

/* edges declaration */

edge t3: i2 brick -> i3 brick

condition ... // ready to consume

input event ... // consuming k items

do { consume(k)... }; /* t3 action */

edge t4: i1 brick -> 1 brick

condition ... // ready to change buffer size

input event ... // change the size

do { changesize();... }; /* t4 action */

edge t5: 1 brick -> i3 brick;

edge t6: i2 brick -> i2 brick;

// buffer inquiry only, consuming zero item

... /* similarly defined */

// operations and attributes declaration

virtual int cons;// mapped with cons in B
virtual int prod;// mapped with prod in B
virtual int buffer[];// mapped with buffer in B
consume(n){ cons = cons + n;...};
changesize(){ buffer = malloc();...};

Constraint:

1 brick cc: cons ≤ prod;

73



i1 brick cc: cons ≤ prod;

i2 brick cc: test = true, cons < prod;

i3 brick cc: test = false, cons < prod;

}

Component E ′ {/* for refining black + brick */

Signature:

states 1 white, i2 white, i3 white;

/* edges declaration */

edge t7: i2 white -> 1 white

condition ... // ready to compact buffer

input event ...// compact the data buffer

do { resetbuffer();... }; /* t7 action */

edge t8: 1 white -> i3 white;

... /* similarly defined */

// operations and attributes declaration

virtual int cons;// mapped with cons in B
virtual int prod;// mapped with prod in B
virtual int buffer[];// mapped with buffer in B
resetbuffer(){ prod = prod - cons; cons = 0;...};

Constraint:

1 white cc: cons ≤ prod, cons = 0;

i2 white cc: test = true, cons ≤ prod;

i3 white cc: test = false, cons ≤ prod;

}

Aggregation then plays a central role in this component implementation style. All
the states and edges in Figure 7.2a are aggregated with the refinement of Figure 7.2b;
and this figure is in turn united with the refinement of Figure 7.2c. The component to
be executed is created by instantiating the bottom-most class of the refinement chain of
Figure 7.2d.

The following explains the preservation of the constraint in B by all subsequent two
component refinements E and E ′. Informally, the property means that under any cir-
cumstance, the number of produced items by the component is always greater or equal to
that of consumed items. In terms of CTL notation, p = AG (cons ≤ prod). The closure
set of p is hence cl(p) = {p, a}, where a = (cons ≤ prod).

Initially, B is composed with E. Interface plugging conditions are used to map compat-
ible interface states among components. The base exposes three interface states 1 black,
2 black and 3 black. On the other hand, the refinement component exposes four interface
states, namely 1 brick, i1 brick, i2 brick and i3 brick. Based on the respective atomic
proposition sets at those states, corresponding interface states are mapped accordingly.
For instance, LB(1 black) = {cons = prod} ⇒ LE(i1 brick) = {cons ≤ prod}. Ac-
cording to Definition 4, i1 brick ↔ 1 black. Also, because LE(i2 brick) = LB(2 black),

74



i2 brick ↔ 2 black. Similarly, LE(i3 brick) ⇒ LB(3 black), i3 brick ↔ 3 black. Here,
i1 brick and i2 brick perform exit states of the base component, while i2 brick and
i3 brick are reentry states.

The composite model of the two components C1 = B + E is shown in Figure 7.2b.
After the designer decides on the mapping configuration between interface states, and
properly resolves any mismatches at the syntactic level between B and E, the semantic
constraint of consistency between the two due to p is in focus. The OIMC algorithm in
Section 4.1.4 is applied as follows:

1. Copying VB(s, cl(p)) to the respectively mapped out-states i2 brick and i3 brick in
E for any reentry state s such as 2 black and 3 black.

2. Executing assumption model checking within E to find VE(i1 brick, cl(p)) and
VE(i2 brick, cl(p)).

3. Checking if VE(i1 brick, cl(p)) = VB(1 black, cl(p)) and VE(i2 brick, cl(p)) =
VB(2 black, cl(p)). If so, B and E conform.

The model checking is very simple and hence its details are skipped. At the end, B
and E components conform at all exit states. According to Theorem 17, p is preserved
by the second component after evolving to C1 = B + E.

C1 is then extended with E ′. Notably, the interface of the new component C1 is de-
rived from B and E as below:
Component C1 {
Signature:

states 1 black, 2 black, 3 black, 1 brick;

/* edge declarations */

edge t1: 1 black -> 2 black;

edge t2: 1 black -> 3 black;

edge t3: 2 black -> 3 black;

edge t4: 1 black -> 1 brick;

edge t5: 1 brick -> 3 black;

edge t6: 2 black -> 2 black;

/* identical to each component’s declaration */

// operations and attributes declaration

boolean test;

int cons, prod;// consumed, produced items

int buffer[];

init(){ state = 1 black; ...}
consume(n){ cons = cons + n;...};
produce(n){ prod = prod + n;...};
changesize(){ buffer = malloc();...};

Constraint:

/* compatible plugging conditions - CC */

1 black cc: cons = prod;

2 black cc: test = true, cons < prod;

75



3 black cc: test = false, cons ≤ prod;

1 brick cc: cons ≤ prod;

/* Inherent properties - IP */

1 black ip: AG (cons ≤ prod), cons ≤ prod;

2 black ip: AG (cons ≤ prod), cons ≤ prod;

3 black ip: AG (cons ≤ prod), cons ≤ prod;

1 brick ip: AG (cons ≤ prod), cons ≤ prod;

}

The approach in composing E ′ with C1 is similar to the above, we have the following
mapping configuration between interface states: i2 white ↔ 2 black, i3 white ↔ 3 black.
The same result is achieved, p is preserved by E ′. More importantly, the verifica-
tion method is executed within E ′ only. After composing E ′, the component becomes
C2 = C1 + E ′ shown below:
Component C2 {
Signature:

states 1 black, 2 black, 3 black, 1 brick, 1 white;

/* edge declarations */

edge t1: 1 black -> 2 black;

edge t2: 1 black -> 3 black;

edge t3: 2 black -> 3 black;

edge t4: 1 black -> 1 brick;

edge t5: 1 brick -> 3 black;

edge t6: 2 black -> 2 black;

edge t7: 2 black -> 1 white;

edge t8: 1 white -> 3 black;

/* identical to each component’s declaration */

// operations and attributes declaration

boolean test;

int cons, prod;// consumed, produced items

int buffer[];

init(){ state = 1 black; ...}
consume(n){ cons = cons + n;...};
produce(n){ prod = prod + n;...};
changesize(){ buffer = malloc();... };
resetbuffer(){ prod = prod - cons; cons = 0;...};

Constraint:

/* compatible plugging conditions - CC */

1 black cc: cons = prod;

2 black cc: test = true, cons < prod;

3 black cc: test = false, cons ≤ prod;

1 brick cc: cons ≤ prod;

1 white cc: cons ≤ prod, cons = 0;

76



/* Inherent properties - IP */

1 black ip: AG (cons ≤ prod), cons ≤ prod;

2 black ip: AG (cons ≤ prod), cons ≤ prod;

3 black ip: AG (cons ≤ prod); cons ≤ prod;

1 brick ip: AG (cons ≤ prod); cons ≤ prod;

1 white ip: AG (cons ≤ prod); cons ≤ prod;

}

In brief, p is preserved by both extensions E and E ′. In this example, the scala-
bility of incremental model checking is maintained as it only runs on the refinements,
independently from the bases B and C1 respectively.

7.2 Layered Architecture for Feature-Oriented Soft-

ware

The major goal of the illustrative specification language in the example of Section 7.1
is to minimize the “conceptual distance” between architectural abstractions and their
implementation [2]. The specification language is similar to that of [2] for declaring and
refining state machines in layering style. The architectural abstraction for component
refinement is essentially layered.

The layered architecture is very effective in separating concerns [37]. A system usually
consists of several concerns which are essentially high-level abstraction of some system
requirements or goals. At the core of software engineering is the “separation of concerns”
concept. Concerns are the primary motivation for organizing and decomposing software
into manageable and comprehensible parts. It is difficult to manage and to evolve several
concerns together, especially when they tangle each other. System complexity can be
reduced significantly if each concern can be separately managed. In terms of system
design, the layered architecture facilitates the concept by assigning each concern to a
layer.

Fundamentally, given a system with several concerns, there are several associated di-
mensions of concerns such as: class, function, feature etc [37]. Thus, there could be several
layered architectures for the system due to the system partition in different dimensions.
The best layered architecture is the one in accordance to the dimension in which the
tangling degree among layers is at minimum.

Regarding component refinement as of this dissertation, the layered architecture re-
sembles the way components refine each other. The base component and each refinement
are expressed as separate specifications that are encapsulated in distinct layers. As com-
ponents are composed with each other, they can be progressively refined/extended in
layering manner. The process adds states, transitions and actions to an existing com-
ponent’s behavior model. Figure 7.2d shows the layering hierarchy for the example in
Section 7.1: the top layer corresponds to the specification from Figure 7.1 or Figure 7.2a;
the below layers are in turn respectively associated with component specifications in Fig-
ures 7.2b and 7.2c.

With respect to the general feature-oriented software, the layered architecture also
plays an important role in terms of both system development and evolution. First, for

77



system development, each component targets a particular system function/service. So,
from the layered architecture’s perspective, each layer corresponds to a component or a
group of closely-related components. The layers are ordered from top to bottom accord-
ing to the sequence of component compositions, i.e. base component on top, and then
refinements sequentially. In the example of Section 7.1, there are three layers correspond-
ing to the concerns: item-producing function; variable buffer size plus data-consuming
function; and optimum memory usage. The layers are mapped with the base component
B and refinements E, E ′ from top to bottom in accordance with the dependency among
components. The development process then simply involves the composition of layers in a
proper order. Because the separation of concerns is achieved, the total development cost
is significantly reduced.

Second, with regards to system evolution, the layered architecture is especially resilient
to system changes - the vital characteristic of open systems. The changes can arise in
the form of either providing new functions/services to or removing some parts from the
system. Even so, the system architecture still keeps its layering quality. If each service is
encapsulated within a layer, any new service can be positioned into the proper position
in the layering hierarchy. On the contrary, a service can be disabled from the system
by removing the associated layer from the architecture. The key issue is then about
whether system consistency among layers is maintained after some layers are inserted to
or removed from the architecture. This issue is in essence about the consistency among
components mentioned in Sections 4.1 and 7.1.

In brief, with inherent advantages such as the separation of concerns and the resilience
to changes, the layered architecture is regarded as a candidate for open systems design in
general and feature-oriented software design specifically, at least in terms of architectural
abstraction.

7.3 Transforming Formal Feature Model to Codes

Software industry is witnessing the shift from traditional application-specific development
approach to model-based software development. The most obvious evidence is the birth
of OMG’s MDA (Model-Driven Architecture). The MDA provides an open, vendor-
neutral approach to the challenge of business and technology change. Based on OMG’s
established standards, the MDA separates business and application logic from underlying
platform technology. No longer tied to each other, the business and technical aspects
of an application or integrated system can each evolve at its own pace - business logic
responding to business need, and technology taking advantage of new developments -
as the business requires. Functional features mentioned in the thesis mainly belong to
business and application logic. They can be specified in platform-independent models
separate from the technology-specific implementation code. Depending on the specific
target platform, from OMG MDA’s perspective, the corresponding codes of features can
be generated from the associated models.

Currently, in the software industry, there are several automatic tools supporting the
transformation from text-based or graphical-based software entity description into a par-
ticular programming language. Notably, with the appearance of UML - a general purpose
visual modeling language, there are many works on graphical-based code transformation.
For instance, many tools support the transformation of UML diagrams such as class,

78



collaboration [9] and sequence [34, 39] diagrams into their respective programs. The key
principle of graphical-based transformation is on mapping the source UML diagrams into
UML meta model. The derived output is a meta model for the source UML diagram type
[8, 30]. For example, when transforming sequence diagrams, through this mapping, a meta
model for sequence diagram is derived. On this meta model, some pattern-based meta
rules are then established according to some patterns within this model. Depending on the
pattern, each meta rule is specified separately. Continuing the above code transformation
of sequence diagrams, a possible simple rule is about constructing a method declaration
within a class. Another rule is about conditional method invocation and branching. The
common characteristic of these meta rules is context-free. Once the rules are completed,
the semantic mapping from meta model and codes are ready. They can be well applied
to transform diagrams into a specific programming language, e.g. Java [39].

Unlike graphic-based approach, in our opinion, text-based approach is simpler since the
mapping between a text-based specification into a programming language does not require
a meta model. Instead, it is simply a relation mapping between two languages. Hence, the
transformation from a specification language like that in Section 7.1 and a programming
language, e.g. Java, is rather direct. Essentially, the mapping is also context-free.

Because the formal specification model of feature-oriented software can be described
in both equivalent forms: state-charts (graphical-based) or pseudo language (text-based)
as in Section 7.1, the approach to transforming specification of features into codes can
take either way.

7.4 Composing/Weaving Features via Hyper/J and

AspectJ

Based on the proposed specification in Section 7.1, components are usually implemented as
classes in typical object-oriented languages. Component composition is then done via class
aggregation/merging. Aggregation plays a central role in this component implementation
style. All members of the class implementing the base component in Figure 7.2a are
aggregated with the refinement of Figure 7.2b; and the newly formed class is in turn
united with the refinement of Figure 7.2c.

There are possibly many approaches to implement components from their specifica-
tions. For example, traditional object-oriented implementation techniques, mixin layer
[35] or aspect-oriented programming (AOP) [17, 36] etc. This dissertation recommends the
use of AOP. Aspect-oriented programming currently attracts a great deal of research from
the community for its advantage in handling cross-cutting concerns. In fact, AOP out-
performs object-oriented programming in capturing software concerns in modular way.
As previously discussed, there could be several dimensions of concerns in any system.
Object-oriented technology focuses on its dominant class dimension. From the layered
architecture’s perspective, every layer is associated to exactly a unique class. If concerns
crosscut multiple objects as they usually do, the class dimension does not capture system
variations well. As a result, corresponding codes for those concerns are scattered among
objects (or layers in the class dimension). The objects are highly coupled so the evolution
cost is certainly high, i.e. a change in any concern will trigger simultaneous updates at
cross-cut objects. The OO approach is bad in such a case. Moreover, AOP is selected
because of the transparency between layers in the layered design with hyperslices [36, 37]

79



so that the traceability among design and implementation stages is much improved.
The most notable AOP languages are AspectJ [38] and Hyper/J [36]. Their common

approach is to capture multi-object crosscutting concerns of a system in separate modules.
Each concern corresponds to a module. As their codes are centralized, the cost to handle
changes to concerns is significantly improved. The job of the AOP languages is to weave
the codes of such concerns into existing object-oriented classes of the system at appropriate
places, e.g. joint points [38]. The overall result of the approach is the absence of code-
tangling among objects. This approach is clearly different to the OO approach in which
related codes of a concern are left scattering in objects.

After generating Java codes for each feature as briefed in Section 7.3, the corresponding
entities among features such as classes, functions etc are mapped together accordingly.
The mapping mechanisms are different between tools. In Hyper/J [36], this mapping is
done via a hypermodule definition file. This definition file allows a feature entity to merge,
to interleave and even to override the respective entity in another feature.

Unlike Hyper/J viewing features as layering on top of each other rather independently,
i.e. features are on the peer-to-peer relation, AspectJ [38] views a pointcut as a subordinate
feature to the system (main feature). Hence, pointcut features usually do not arrange in
parallel with each other and with the main feature. Rather, they interleave or weave into
it. Weaving features via AspectJ then requires a different mapping from that of Hyper/J.

7.5 NuSMV2

To our knowledge so far, all the current well-known model checkers such as SPIN [15],
SMV [21, 22, 23] etc. do not support assumption model checking directly. The assumption
aspect is the essential part of OIMC. To put OIMC into practice, it is necessary to adapt
a current model checker with the assumption model checking mechanism. Among those,
NuSMV [3, 4] is selected because several reasons.

1. NuSMV is a derived product of SMV. It inherits all the merits of SMV. Further, it
re-engineers SMV for a much better design, documentation and comprehensibility.

2. It is an open-source and on-going project. So there is a great possibility to change
the existing codes to deal with assumption verification.

The work on adapting NuSMV with assumption model checking is not yet finished.
Further results will be provided in the future work.

80



Chapter 8

Related Work and Conclusion

A rigorous mathematical foundation of open incremental model checking (OIMC) is pro-
posed. It starts by presenting a formal model for feature-based software together with the
composition definition. Each feature is separately specified by a state transition model.
Later, the fundamental issues of OIMC are suggested. Subsequent parts of the work de-
vote mainly to the effort to answer the fundamental issues of handling software change:
consistency, scalability and soundness.

This thesis is actually a detailed and improved combination of the earlier works [10,
26, 27]. Compared with those works, it contains several significant advantages. They are:

1. A precise and generalized formal model of feature-based software is proposed. In
particular, the formal interface consisting of multi exit, reentry and dual states is
considered. In addition, base behavior overriding is possible within the model and
it can be permitted to a great extent.

2. Sound mathematical proofs for CTL properties verification are given. In fact, an
uniform preservation constraint at exit states are required to guarantee consistent
composition between B and E. That constraint is the conformance of B and E at
all exit states, i.e. VB(ex, cl(p)) = VE(ex, cl(p)).

3. An algorithm is presented to carry out the incremental model checking process in
the extension in which some extra loop-checking care is required to ensure the strict
conformance condition.

4. The soundness issue concerning with the reliability of OIMC is also investigated. We
prove that under additive and non-critical overriding composition, results delivered
by the incremental verification is sound, whereas it may not be in some critical-
overriding cases with circular dependency structure.

5. The scalability of Theorem 17 is also discussed. The incremental model checking
procedure maintains its scalability as it only depends on the size of the extension
for any subsequent modules to be added to the newly found model C, as long as
the extensions and their respective bases pair-wise conform.

6. A systematic procedure to transform a multi-object feature models into a global
model suitable for the OIMC algorithm. Some principles such as external/internal
exit and reentry events, base invariants, interaction scenarios and compatible-interface

81



conditions are introduced to deal with the problem of state explosion due to taking
cross-product of object states.

7. Some attempts to improve the existing theoretical foundation of OIMC. Specifi-
cally, a relaxed conformance condition between features actually helps to overcome
the soundness failures in extreme cases of circular dependency structure mentioned
above. By seeding the truth values in model B′ instead of those in B, the assump-
tion function As during OIMC is certainly proper. As a consequence, the result
delivered by OIMC is sound. Another attempt is to parallelize the OIMC algorithm
in the context of general component-based software.

8. Some important applications based on the foundation are suggested. Notably, the
results can be applied to deal the most challenging issue in component-based soft-
ware, namely component composition. The work advocates the inclusion of dy-
namic behavior and inter-component consistency as the semantic constraints to
each component interface. The proposed specification style is particularly useful
for component-based software in general, especially feature-oriented software dur-
ing system evolution.

OIMC is indeed based on two fundamental theorems 17 and 21 under the conformance
between base and extension. The former is about properties preservation at base states,
while the latter is for the counterpart at extension states.

Modular model checking is rooted at assume-guarantee model checking [18, 31]. How-
ever, unlike the counterpart in hardware verification [13, 18], software modular verification
[20] is restricted by its sequential execution nature. Therefore, properties at the inter-
face states are required to be stricter. Incremental model checking inspires verification
techniques and the theoretical foundation further. “Separation of concerns” aims to an
ideal software paradigm that is open to other software modules, one module per concern,
to be plugged in or removed at will without the expense of modules’ mutual consistency
and validity. Under such an open software paradigm, the interfaces between modules are
critical for modules to work properly. The formal interface model between the base and
the extension features as well as the preservation constraints at those interface states pro-
posed in this thesis are a part of the effort towards that goal. In a reference to the existing
programming tools in AOSD paradigm, a foremost advantage of our model in facilitating
downstream programming tools like Hyper/J [36] or AspectJ [38] is the ability to verify
consistency and to check for behavioral correctness among concerns within this formal
model. Ensuring consistency among concerns is one of the most challenging questions for
AOSD nowadays. Bridging the formal specification in this thesis and those programming
tools is an important topic within AOSD area.

Regarding the assumption aspect in component verification, [12] presents a framework
for generating assumption on environments in which the component satisfies its required
property. This work differs OIMC in some key points. First, the constraints in OIMC are
explicitly fixed at VB(ex, cl(p)) for any exit state ex, whereas based on a fully specified
component model including error states, [12] generates assumption about operation calls
by which the environment does not lead the component to any error state. Second, the
approach in [12] is viewed from a static perspective, i.e. the component and the external
environment do not evolve. If the component changes after adapting some refinements,
the assumption-generating approach is re-run on the whole component, i.e. the compo-

82



nent model has to be re-constructed; and the assumption about the environment is then
generated from that model.

Comparing to the modular verification work such as [13, 18, 31], there is a fundamental
difference in characteristic between those and the work of both [10] and ours. Modular
verification in those work are rather closed. Even though it is based on component-based
modular model checking, it is not prepared for component addition. If a component is
added, the whole system of many existing components and the new component is re-
checked altogether. On the contrary, the approach in [10] and this work is incrementally
modular and hence more open. We only check the new system partially in terms of new
component and its interface with the rest of the system. Certainly, this merit comes
at the cost of “fixed” conditions at exit states. This “fixed” constraint can deliver a
false negative of conformance to legal extensions. One of the future work is to reuse the
assumption model checking within the extension E to check the base B, even if the two
do not conform at all exit states.

It is essential to consider the effectiveness and complexity of modular model checking
of the extension only with respect to the complete model checking of both the base
and extension. There is a relationship between these two factors. If the extension and
the base are very lowly coupled, i.e. the features offered by these two collaborations
are quite orthogonal, then the interface will be very small and the collaboration-based
model checking is significantly more effective. On the contrary, if the extension and the
base communicate to each other via a large interface, the modular verification is quite
complicated then. Under such a case, it might be better to check the complete composition
of the two instead of each collaboration separately.

At this stage, well-known existing model checkers such as SPIN [15] or SMV [21, 22, 23]
do not support this incrementally modular verification technique. Constructing a front-
end preprocessor transforming a partial model into a suitable form for SPIN or SMV is
very essential. Assumption model checking is quite new to the field of model checking.
Thus, current model checkers does not support this checking style yet. To enable OIMC,
the capability to provide assumption model checking is critical. So adapting such a
checker, for instance NuSMV [3, 4], to handle this model checking style is the next step
in the research direction.

Finally, like the proposal about encapsulating dynamic behavior model into compo-
nent interface, i.e. state-full interface, two closely related works [5, 7] also advocate the
use of light-weight formalism to capture temporal aspects of software component inter-
faces. More specifically, this paper simply relies on state transition model in the most
general sense, while the approach in [5, 7] presents a finer realization of state-full model
in which states are represented by control points in operations of components; and edges
are actually operation calls. That approach focuses on the order of operation calls in a
component 1. By formalizing a component through a set of input, output and internal
operations, the compatibility between component interfaces with regards to the structure
of component operations is defined and checked. In addition, the two approaches target
different aspects of consistency. This paper is concerned with component consistency in
terms of CTL properties, whereas the approach in [5, 7] is involved with the correctness
and completeness of operation declarations within components. Instead of substituting
each other, the two approaches are hence more about complement to each other.

1In [5], operations are named as methods.

83



Bibliography

[1] F. Armour and G. Miller. Advanced Use Case Modeling: Software Systems. Addison-
Wesley, 2001.

[2] D. Batory, C. Johnson, B. MacDonald, and D. V. Heeder. Achieving extensibility
through product-lines and domain-specific languages: A case study. In Proc. Inter-
national Conference on Software Reuse, July 2000.

[3] R. Cavada, A. Cimatti, G. Keighren, et al. NuSMV 2.2 Tutorial. CMU and ITC-irst,
nusmv@irst.itc.it, 2004.

[4] R. Cavada, A. Cimatti, E. Olivetti, et al. NuSMV 2.2 User Manual. CMU and
ITC-irst, nusmv@irst.itc.it, 2004.

[5] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, M. Jurdzinski, and F. Y. C. Mang. In-
terface compatibility checking for software modules. In Proceedings of the Computer-
Aided Verification - CAV. LNCS Springer-Verlag, 2002.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.

[7] L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the Sympo-
sium on Foundations of Software Engineering. ACM Press, 2001.

[8] G. Engels, R. Heckel, and J. M. Kuster. Rule-based specification of behavioral con-
sistency based on the UML meta-model. In International Conference on the Unified
Modeling Language, UML’01, pages 272–286, 2001.

[9] G. Engels, R. Hucking, S. Sauer, and A. Wagner. UML collaboration diagrams and
their transformation to Java. In International Conference on the Unified Modeling
Language, UML’99, pages 437–488, 1999.

[10] K. Fisler and S. Krishnamurthi. Modular verification of collaboration-based software
designs. In Proc. Symposium on the Foundations of Software Engineering, September
2001.

[11] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so
hard. IEEE Software, 12(6):17–26, 1995.

[12] D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption generation for
software component verification. In Proceedings of the International Conference on
Automated Software Engineering, 2002.

84



[13] O. Grumberg and D. E. Long. Model checking and modular verification. In Interna-
tional Conference on Concurrency Theory, volume 527 of Lecture Notes of Computer
Science. Springer-Verlag, 1991.

[14] J. Han. An approach to software component specification. In Proceedings of Inter-
national Workshop on Component Based Software Engineering, 1999.

[15] G. J. Holzmann. Basic Spin Manual. AT&T Bell Laboratories, http://spinroot.com/
spin/ Man/ Manual.html, 2004.

[16] T. Katayama. Evolutionary domains: A basis for sound software evolution. In Proc.
IWPSE, 2001.

[17] G. Kiczales, J. Lamping, et al. Aspect-oriented programming. In Proc. European
Conference on Object-Oriented Programming - ECOOP’97, pages 220–242. Springer,
1997.

[18] O. Kupferman and M. Y. Vardi. Modular model checking. In Compositionality: The
Significant Difference, volume 1536 of Lecture Notes in Computer Science. Springer-
Verlag, 1998.

[19] L. Lamport. LATEX- A Document Preparation System. Addison-Wesley Publishing
Co., 1986.

[20] K. Laster and O. Grumberg. Modular model checking of software. In Conference on
Tools and Algorithms for the Constructions and Analysis of Systems, 1998.

[21] K. L. McMillan. The SMV System. CMU, http://www.cs.cmu.edu/ modelcheck/
smv/ smvmanual.r2.2.ps, 1992.

[22] K. L. McMillan. Getting Started with SMV. Cadence Berkeley Labs, Cadence Design
Systems, 1999.

[23] K. L. McMillan. The SMV Language. Cadence Berkeley Labs, Cadence Design
Systems, 1999.

[24] B. Meyer. Object-oriented Software Construction. Prentice Hall, 1997.

[25] T. T. Nguyen. Formalization and evolution of collaboration-based object-oriented
methodology. Master’s thesis, Japan Advanced Institute of Science and Technology
- JAIST, August 2002.

[26] T. T. Nguyen and T. Katayama. Dynamic behavior and protocol models for incre-
mental changes among a set of collaborative objects. In Proc. IWPSE, pages 45–50,
2003.

[27] T. T. Nguyen and T. Katayama. Towards a sound modular model checking of
collaboration-based software designs. In Proc. Asia-Pacific Software Engineering
Conference (APSEC), pages 88–97, 2003.

[28] T. T. Nguyen and T. Katayama. Handling consistency of software evolution in an
efficient way. In Proc. IWPSE, pages 121–130, 2004.

85



[29] T. T. Nguyen and T. Katayama. Open incremental model checking. In Proc. SAVCBS
- Specification and Verification of Component-Based Systems, pages 134–137, 2004.

[30] D. H. Park and S. D. Kim. XML rule-based source code generator for UML case tool.
In Asia-Pacific Software Engineering Conference, APSEC’01, pages 53–60, 2001.

[31] C. S. Pasareanu, M. B. Dwyer, and M. Huth. Assume-guarantee model checking of
software: A comparative case study. In Theoretical and Practical Aspects of SPIN
Model Checking, volume 1680 of Lecture Notes of Computer Science. Springer-Verlag,
1999.

[32] D. Rosenberg and K. Scott. Use Case Driven Object Modeling With UML: A Practical
Approach. Addison-Wesley, 1999.

[33] J. Rumbaughm, I. Jacobson, and G. Booch. The Unified Modeling Language - Ref-
erence Manual. Addision-Wesley, 1999.

[34] N. Sangal, E. Ferrel, K. Lieberherr, and D. Lorenz. Interaction schemata: Compiling
interactions to code. In Technology of Object-Oriented Language and Systems,TOOLS
USA’99, pages 268–277, 1999.

[35] Y. Smaragdakis and D. Batory. Implementing layered designs with mixin layers. In
Proc. ECOOP, 1998.

[36] P. Tarr and H. Ossher. Hyper/J(TM) User and Installation Manual. IBM Research,
IBM Corp., 2000.

[37] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N-degrees of separation: Multi-
dimensional separation of concerns. In Proc. ICSE, pages 109 – 117, 1999.

[38] The AspectJ Team. The AspectJ(TM) Programming Guide. Xerox Corporation.,
2001.

[39] M. Thongmak and P. Muenchaisri. Design of rules for transforming UML sequence di-
agrams into Java code. In Asia-Pacific Software Engineering Conference, APSEC’02,
pages 485–494, 2002.

[40] J. Warmer and A. Kleppe. The Objects Constraint Language: Precise Modeling with
UML. Addison-Wesley, 1999.

86



Publications

[1] T.T. Nguyen and T. Katayama, “Collaboration-Based Evolvable Software Imple-
mentations: Java and Hyper/J vs. C++ Templates Composition”, ACM - Proceed-
ings IWPSE (International Workshop on Principle of Software Evolution), pp.29-34,
2002.

[2] T.T. Nguyen and T. Katayama, “A Framework for Unanticipated Software Chan-
ges”, Proceedings USE (International Workshop on Unanticipated Software Evolu-
tion), pp.114-129, 2003.

[3] T.T. Nguyen and T. Katayama, “Dynamic Behavior and Protocol Models for Incre-
mental Changes among a Set of Collaborative Objects”, IEEE - Proceedings IWPSE
(International Workshop on Principle of Software Evolution), pp.45-50, 2003.

[4] T.T. Nguyen and T. Katayama, “Towards a Sound Modular Model Checking of
Collaboration-Based Software Designs”, IEEE - Proceedings APSEC (Asia-Pacific
Software Engineering Conference), pp.88-97, 2003.

[5] T.T. Nguyen and T. Katayama, “Handling Consistency of Software Evolution in an
Efficient Way”, IEEE - Proceedings IWPSE (International Workshop on Principle
of Software Evolution), pp.121-130, 2004.

[6] T.T. Nguyen and T. Katayama, “Open Incremental Model Checking”, Microsoft Re-
search - Proceedings SAVCBS (Specification and Verification of Component-Based
Systems), pp.134-137, 2004.

[7] T.T. Nguyen and T. Katayama, “A Formal Approach Facilitating the Evolution of
Component-Based Software”, IEEE - Proceedings IWPSE (International Workshop
on Principle of Software Evolution), pp.49-52, 2005.

[8] T.T. Nguyen and T. Katayama, “Constructing Open Systems via Consistent Com-
ponents”, International Colloquium on Theoretical Aspects of Computing (ICTAC),
Springer-Verlag LNCS 2005.

[9] T.T. Nguyen and T. Katayama, “Specification and Verification of Inter-Component
Constraints in CTL”, Microsoft Research - Proceedings SAVCBS (Specification and
Verification of Component-Based Systems), pp.15-22, 2005.

87


