
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Sequential Bitwise Sanitizable Signature Schemes

Author(s)

HANAOKA, Goichiro; HIROSE, Shoichi; MIYAJI,

Atsuko; MIYAZAKI, Kunihiko; SANTOSO, Bagus; YANG,

Peng

Citation

IEICE Transactions on Fundamentals of

Electronics, Communications and Computer

Sciences, E94-A(1): 392-404

Issue Date 2011-01-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/9845

Rights

Copyright (C)2011 IEICE. Goichiro HANAOKA,

Shoichi HIROSE, Atsuko MIYAJI, Kunihiko MIYAZAKI,

Bagus SANTOSO and Peng YANG, IEICE Transactions

on Fundamentals of Electronics, Communications

and Computer Sciences, E94-A(1), 2011, 392-404.

http://www.ieice.org/jpn/trans_online/

Description



392
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.1 JANUARY 2011

PAPER

Sequential Bitwise Sanitizable Signature Schemes

Goichiro HANAOKA†, Shoichi HIROSE††, Atsuko MIYAJI†††, Kunihiko MIYAZAKI††††,
Bagus SANTOSO†a), Members, and Peng YANG†††††, Nonmember

SUMMARY A sanitizable signature scheme is a signature scheme
which, after the signer generates a valid signature of a message, allows
a specific entity (sanitizer) to modify the message for hiding several parts.
Existing sanitizable signature schemes require the message to be divided
into pre-defined blocks before signing so that each block can be sanitized
independently. However, there are cases where the parts of the message
which are needed to be sanitized can not be determined in the time of sign-
ing. Thus, it is difficult to decide the partition of the blocks in such cases.
Since the length of the signature is usually proportional to the number of
blocks, signing every bit independently will make the signature too long.
In this paper, we propose a solution by introducing a new concept called
sequential bitwise sanitizable signature schemes, where any sequence of
bits of the signed document can be made sanitizable without pre-defining
them, and without increasing the length of signature. We also show that a
one-way permutation suffices to get a secure construction, which is theo-
retically interesting in its own right, since all the other existing schemes are
constructed using stronger assumptions.
key words: sanitizable signature, bitwise control, one-way permutation,
pseudorandom generator

1. Introduction

1.1 Background

1.1.1 Sanitizable Signatures

The digital signatures are widely employed to provide au-
thentication and integrity of the associated messages, and
such messages could be considered to range from daily
emails sent between friends to highly classified documents
confidentially stored by the government. Research around
digital signatures has never stopped and has become an im-
portant fundamental part of cryptology. Especially, digital
signature schemes with various high functionalities are al-
ways attracting much attention of both society and scien-
tists.
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Sanitizable signature schemes are introduced to solve
the following problem: we want a document to be properly
signed by an authorized signer, but afterward we need cer-
tain parts of the signed document to be hidden or masked
(sanitized) to protect sensitive information without harm-
ing the validity of the signed document. The most attractive
feature of sanitizable signature schemes is that the sanitiz-
ing process can be done without requiring the signer to sign
again the sanitized document in order to guarantee its valid-
ity. This feature is very essential in many cases where the
signer is not always available.

Here, we give a typical scenario in which sanitizable
signatures are effectively used. Suppose a situation where
the president of a country signs an official document and
the government office keeps this signed document. When
a citizen requests to disclose it and this request is partially
approved by a trial, the judge orders the government office
to partially disclose the document. If the utilized signature
is a standard one, the citizen cannot verify validity of the
disclosed part of the document (or the government office
has to disclose the whole document). By using a sanitiz-
able signature, this problem can be easily solved. Namely,
the government office can sanitize a part of the document
which is not required to disclose, and the citizen can ver-
ify the disclosed part without revealing the remaining part.
In this scenario, the president, the government office, and
the citizen play the roles of the signer, the sanitizer, and the
verifier, respectively.

Other interesting examples of applications of sanitiz-
able signature schemes are also introduced in [1], [2].

1.1.2 Necessity for Bitwise Control

Sanitizable signature schemes proposed in previous works
[1], [2], [6]–[11] usually require a message to be divided into
fixed blocks of different sensitive information and require
the signer to sign each block separately so that each block
can be sanitized later independently. If the message is a
“pre-formatted” document such as driver licenses or birth
certificate, the partition of blocks are clear, since the loca-
tions of sensitive information to hide and be made saniti-
zable are clear. However, there are cases where the parts
of the message which are needed to be sanitized can not be
determined in the time of signing. A typical scenario is if
the disclosed part is determined by a third person (e.g. the
judge) who is independent of the signer and the sanitizer.

Copyright© 2011 The Institute of Electronics, Information and Communication Engineers
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As a trivial solution, the signer can divide the message
into very small blocks, e.g., one bit as one block, so that any
bit can be sanitized independently. But, this trivial approach
will certainly make the size of signature too large, since it
usually grows in proportional to the number of blocks.

To give a more clear picture on how our proposed
scheme can be useful in practice, we show the following
examples.

1.1.3 Examples of Practical Application

First, consider the following situation. In a trial, a prose-
cutor presents a document as an evidence which is signed
by a witness, say “Michael Jackson”. Because he does not
want to reveal the whole name of the witness to protect the
privacy of the witness, he masked the document using a san-
itizable signature scheme. In order to confirm that the pros-
ecutor really knows the signer of the document, the judge
may ask the prosecutor to mention an arbitrary character of
the name of the witness, for example, the third character of
the last name (“c”). Then, the judge ask the prosecutor to
disclose the third character of the last name to verify that
the document is truly signed by someone whose last name
has “c” as its third character. This is a problem if the prose-
cutor is using a standard sanitizable signature scheme since
he does not know which character is asked by the judge (un-
less he sign each character independently), but our proposed
scheme can solve this problem easily and efficiently.

Another example is as follows. Suppose that in a public
investigation toward a government of a country, the govern-
ment has to reveal an official signed document which con-
tains all names of its secret intelligence agents. Also sup-
pose that the public investigator only needs to know whether
an agent A is related to the document but the investigator
also does not want the government to know which agent is
before hand. Thus, the government can sign and mask the
document using our proposed scheme and then reveal the
part which contains the name of agent A without revealing
other part of the documents.

1.2 Our Contribution

In this paper, we propose a new sanitizable signature scheme
which enables the sanitizer to disclose an arbitrary bit se-
quence in the document without losing verifiability of the
(fixed) given signature. Our scheme yields fairly short sig-
natures. Namely, message overhead (i.e. length of signed
document minus length of the plain document) of our
scheme is only O(λ) where λ is the security parameter. Sur-
prisingly, our proposed scheme can be generically obtained
from any one-way permutation while previous schemes with
similar functionality, i.e. [3], [4], require the (significantly
stronger) RSA function. Furthermore, [3] also requires ran-
dom oracles (which do not exist in the real world [12]).
However, we should also mention that the schemes in [3]
and [4] allow more flexible control of disclosure: an arbi-
trary set of bits (not only a bit sequence) can be disclosed.

Our main idea is to combine a standard signature
scheme and a special type of pseudorandom generator
which, can be constructed from any one-way permutation.
Below, we give an overview of a more basic form of se-
quential bitwise signature scheme, where any j last bits of a
sanitized document can be disclosed.

1.2.1 Idea of Construction

Consider a signature scheme S , and a pseudorandom gener-
ator PG which has the following properties: for any positive
integer i, (1) the i-th random bit ci can be generated using
the i-th seed si, and (2) the i-th seed si can be efficiently
generated using the (i− 1)-th seed si−1. The signer holds the
secret signing key and the first seed s1. The signing process
of an n bits message m = m1m2 . . .mn (mi ∈ {0, 1}), is as
follows. First, the signer uses PG with s1 to obtain n more
seeds s2, . . . , sn, sn+1, and then generates a random sequence
c = c1c2 . . . cn, ci ∈ {0, 1}. Then, it signs 〈m̃ = m ⊕ c, sn+1〉
using S . Finally, the signer submits (σ, m̃, s1) to the sani-
tizer, where σ is the valid signature of 〈m̃, sn+1〉. When the
sanitizer gets a request to disclose j last bits of m̃ with signa-
ture σ, it sends a response (σ, m̃, sn− j+1) which is generated
from (σ, m̃, s1). Note that sn− j+1 can be generated from s1.
The validity of the response (σ, m̃, sn− j+1) is guaranteed by
the fact that σ is a valid signature of 〈m̃, sn+1〉, and that sn+1

can be generated from sn− j+1. To disclose j last bits of m̃,
one can use PG with sn− j+1 to get the last j bits of c, i.e.,
cn− j+1 . . . cn (property (1) of PG) and then unmask the last j
bits of m̃.

The basic form shown above can be extended easily
into a full-fledge sequential bitwise signature scheme such
that, instead of only any j last bits of the sanitized docu-
ment can be disclosed, any sequence of bits from j1-th bit
to j2-th bit can be disclosed. The main trick is that instead
of using one pseudorandom generator, we employ two pseu-
dorandom generators and then apply the generated two se-
quences of random bits in opposite directions, i.e., one is
from the starting bit to the ending bit of the message, and
the other one is from the ending bit to the starting bit of the
message. See the detailed construction in Sect. 6.

It turns out that an ordinary signature scheme S which
is existentially unforgeable against chosen message attack
and a Blum-Micali(-Yao) pseudorandom generator [13],
[14] are sufficient to instantiate the construction above.
Since such a signature scheme and the pseudorandom gen-
erator can be constructed by only using a one-way permu-
tation, one-way permutation is sufficient to instantiate our
scheme.

1.3 Comparison with Other Proposed Bitwise Signature
Schemes

Johnson et al. [3] and Nojima et al. [4] have also proposed
sanitizable signature schemes which allow efficient bitwise
sanitization, i.e., the message overhead is only O(λ), where
λ is the security parameters. Both schemes allow the san-
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Table 1 Comparison between bitwise sanitizable signature schemes.

Sanitizing Security Signature
ability assumption overhead(∗)

Johnson et al. [3] any set of bits RSA with random oracle 1024 bits
Nojima et al. [4] any set of bits RSA without random oracle 2048 bits

Our scheme any sequence of bits any one way permutation 320 bits (∗∗)

(*)Here we assume the standard 80 bits security.†
(**) Using one way permutation construction on elliptic curve proposed by Kaliski[5].††

itizer to sanitize any set of bits in the document, while our
scheme only allows the sanitizer to sanitize any sequence of
bits in the document. In spite of this fact, our scheme still
has advantages in terms of security and the signature length.
The comparison is illustrated in Table 1.

1.4 Related Works

The first technique to solve the digital document sanitizing
problem is introduced by Steinfeld et al. [15] in 2001 in the
name of content extraction signature. Similarly, Miyazaki
et al. [1] also proposed SUMI-4, where the signer generates
random numbers for all subdocuments, and then calculates
hash values for all subdocuments with corresponding ran-
dom numbers and generates a signature for the concatena-
tion of those hash values.

On other research aspects, Miyazaki et al. [6] and Izu
et al. [7] addressed sanitizable signature schemes with dis-
closure condition control. And based on bilinear maps,
Miyazaki et al. [8] proposed a sanitizable signature scheme
with invisibility. Izu et al. [9] improved this work against
stronger attacker. Another scheme with aggregation was
proposed in [10].

By replacing a conventional hash function with a
strongly unforgeable chameleon hash function, Ateniese
et al. [2] achieved a sanitizable signature scheme which al-
lows semi-trusted sanitizers to erase or even modify parts
of a signed document without interacting with the original
signer. This work was extended by Klonowski et al. [16].

By employing an identity based chameleon hash func-
tion [17], Canard et al. [11] expanded the flexibility of des-
ignating power of sanitizing in such a way that the power
can be designated to plural parties even after the original
document is signed.

In the above schemes, it is not easy to flexibly deter-
mine the disclosed part since the partition which divides the
disclosed and the sanitized parts has to be pre-defined at the
signing phase. For this issue, Johnson et al. [3] proposed
the first sanitizable signature scheme which allows efficient
bitwise sanitizing (i.e. its message overhead is only O(λ)
for the security parameter λ) under the RSA assumption in
the random oracle model. Nojima et al. [4] presented an-
other scheme with message overhead O(λ) under the RSA
assumption without using random oracles. It should be no-
ticed that as mentioned in [4], the scheme of Nojima et al. is
in fact based on the preliminary versions of our proposed
scheme [18], [19] which have been announced before [4]
was published. Both [3] and [4] yields full bitwise sani-

tizing where the sanitizer can sanitize any set of bits in the
document. However, in many practical applications, the dis-
closed part is usually a sequence of bits in the document, and
sequential bitwise sanitizing (which our proposed scheme
provides) is sufficient.

1.5 Roadmap

The rest of the paper is constructed as follows. In Sect. 2, we
give an overview of several important concepts. In Sect. 3,
the notation and several important definitions are described.
In Sect. 4, we formalize the definition of sequential bitwise
sanitizable signature, and define the security notions. In
Sect. 5, we propose our basic construction. In Sect. 6, we
show the extension of our basic scheme into a full-fledge
sequential bitwise signature scheme and a concrete instanti-
ation. Finally, we draw a concluding remark. The detailed
proofs of lemmas and theorems are put in the appendix.

2. Intuition of the Model and Security Definition

Before going into rigorous definitions of the model and se-
curity requirements, here we give intuitions on them (since
these are significantly different from those of standard digi-
tal signature schemes).

2.1 Model

The model of a sequential bitwise sanitizable signature
scheme is formed by three parties: (1) the signer who has a
signing key and is only able to generate valid signatures, (2)
the sanitizer who keeps clear signed messages of the signer
and sanitizes them according to the request, and (3) the veri-
fier(s) who verifies validity of sanitized signed messages. In
our model, neither the sanitizer nor the verifier(s) have se-
cret keys. Namely, for a given (sanitized) signed message,
everyone can (further) sanitize and publicly verify it by us-
ing only public data. When applying the typical scenario in
the previous section, the signer, the sanitizer, and the ver-
ifier(s) correspond to the president, the government office,
and the citizen(s), respectively (as mentioned above).

For simplicity, we only consider the following set-
ting: the signer publishes a signed message (σ,m) where

†All schemes in Table 1 are constructed based on a traditional
signature scheme. The signature overhead here is defined as the
difference between the size of the sanitizable signature and the size
of the underlying traditional signature.
††See Appendix E for the detailed construction.
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m ∈ {0, 1}n is the message to be signed and σ is the valid
signature of m by the signer. For this signed message, the
verifier can ask the sanitizer to sanitize only the i first suc-
cessive bits of m where the verifier can choose any i such
that 0 ≤ i ≤ n. According to this request, the sanitizer mod-
ifies (σ,m) to another signed message (σ̃, m̃) such that m̃ is
the n − i last bits of m and σ̃ is the valid signature of m̃ of
the signer.

We stress that this simplified setting can be easily ex-
tended to the general one where the verifier can ask to dis-
close any sequence of bits in m. See Sect. 6 for this exten-
sion. For the rest of the paper, unless noted otherwise, the
term “sequential bitwise signature scheme” refers to one in
the above simplified setting rather than full-fledged one.

2.1.1 Security Requirements

In the above model, the adversary would try (1) forgery of
a signed message which is accepted as the signer’s, or (2)
recovery of a sanitized part of a signed message which the
sanitizer does not disclose.

Specifically, the forgery is considered successful if the
adversary generates a valid signature σ′ of a message m′
where

• (σ′,m′) is never been publicized by the sanitizer, and
• (σ′,m′) cannot be obtained by trivially sanitizing a

signed message which has been publicized by the san-
itizer.

It should be noticed that forgery of (σ′,m′) such that
(σ′,m′) is actually generated by the signer is considered
successful if (σ′,m′) is never publicized by the sanitizer
(since the adversary indeed succeeds in generating a valid
signed message which has never publicized). If for any ad-
versary, the probability of succeeding in the above forgery
is negligible, we say the scheme satisfies unforgeability.

On the other hand, the recovery of a sanitized part is
considered successful if the adversary wins the following
game. The adversary chooses a pair of messages (m(0),m(1))
and i (0 ≤ i ≤ n) such that the i last bits of m(0) and m(1) are
identical, and submits them to the signer. The signer flips
a random coin r ∈ {0, 1} and signs m(b) with his signing
key, and gives the signed message (σ,m(b), i) to the sanitizer
where σ is the signature for m(b). The sanitizer sanitizes
m(b) except for the i last bits, and gives (σ�,m�) to the ad-
versary where (σ�,m�) is the sanitized signature derived
from (σ,m(b)) (i.e. m� is the i last bits of m(b)). The adver-
sary wins the game if it correctly outputs b. If for any adver-
sary, the probability of winning the above game is negligibly
close to 1/2, we say the scheme satisfies data confidentiality.

3. Preliminaries

Notations. Let [x]y denote the y-bit prefix of a string x and
[x]z denote the z bit suffix of a string x. Both [x]0 and [x]0

represent an empty string. [x]yz denotes the z − y + 1 bits of
a string x from the y-th bit to the z-th bit, where z ≥ y. The

length of string x in bits is denoted by |x|. If f is a function or
an algorithm, let x ← f (0)(x) and let f (i)( f (x)) ← f (i+1)(x),
where i ≥ 0. Unless noted otherwise, any algorithm in this
paper is a probabilistic polynomial-time Turing machine.

Definition 1 (One-way Permutation): We say a bijective
mapping f : {0, 1}λ → {0, 1}λ is a one-way permutation
if f is efficiently computable, but for any algorithm A,
Pr[x ←R {0, 1}λ; y ← f (x) : A(y) = x] ≤ ε, where ε is
negligible in λ.

Definition 2 (Hard-core Predicate): We say a function h :
{0, 1}λ → {0, 1} is a hard-core predicate of another func-
tion f : {0, 1}λ → {0, 1}λ if h is efficiently computable, and
for any predicator P, | Pr[x ←R {0, 1}λ; y ← f (x) : P(y) =
h(x)] − 1/2| ≤ ε, where ε is negligible in λ. It is known that
any one-way function has a hard-core predicate [20].

Definition 3 (Blum-Micali-Yao PRNG): It is known that a
pseudorandom number generator (PRNG) can be generi-
cally derived from any one-way permutation [13], [14]. Let
f : {0, 1}λ → {0, 1}λ and h : {0, 1}λ → {0, 1} be a one-
way permutation and its hard-core predicate, respectively.
Let G(s, n) be (h( f (0)(s))‖h( f (1)(s))‖ · · · ‖h( f (n−1)(s))). Then,
(G(s, n)‖ f (n)(s))) is indistinguishable from a random (n+λ)-
bit string. Formally, we have the following lemma:

Lemma 1: For any distinguisher D, | Pr[s ←R {0, 1}λ;
D(G(s, n)‖ f (n)(s)) = 1] − Pr[z←R {0, 1}n+λ : D(z) = 1]| ≤ ε,
where ε is negligible in λ.

The proof of the above lemma is given in [14]. We call
G(s, n) “Blum-Micali-Yao pseudorandom number genera-
tor” (BMY-PRNG)†.
Definition 4 (Digital Signature): A (conventional) digital
signature scheme S = (gen, sig, ver) is specified by the fol-
lowing three polynomial-time algorithms: (1) The key gen-
eration algorithm gen takes a security parameter λ and out-
puts a verification key vk and the corresponding signing key
sk. We denote this by (vk, sk) ← gen(1λ). (2) The signing
algorithm sig takes sk and a message m from some mes-
sage space, and outputs a signature σ. We denote this by
σ ← sig(sk,m). (3) The verification algorithm ver which
takes vk, σ and m, and outputs 0 or 1. We denote this by
0/1 ← ver(vk, σ,m). Here “0” and “1” indicate that σ is
rejected and accepted, respectively, on m.

The standard security notion for (conventional) digital
signature schemes is existential unforgeability against cho-
sen message attack (EUF-CMA). The scheme is said to sat-
isfy EUF-CMA, if any algorithm (forger) F wins the follow-
ing game with only negligible probability: F interacts with
a signing oracle O to obtain signatures of any message as
many times as F wants, and finally outputs a valid signature
σ′ on a message m′ that was never explicitly queried to O.

†Lemma 1 means that whole bits in (G(s, n)‖ f (n)(s)) are pseu-
dorandom rather than only G(s, n). However, dividing “G(s, n)”
part and “ f (n)(s)” part significantly simplifies description of our
schemes.
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4. Formal Security Definitions

In this section, we discuss the formal security definitions
of sequential bitwise sanitizable signature (SBSS) schemes.
We first define the algorithms in a sequential sanitizable sig-
nature scheme, then the necessary building blocks to con-
struct formal security definitions, and finally the formal se-
curity notions which capture the goal and attack models
of unforgeability and data-confidentiality, as introduced in
Sect. 2.
Conventions. As shown in the ‘idea of construction’ of
Sect. 1.2, for simplicity, we consider the case where mes-
sages are sanitized sequentially in a left-to-right order. For
any n-bit message m = m1 . . .mn, mi ∈ {0, 1}, m j denotes
j-bits-sanitized m, i.e., m with its first j bits being sanitized
( j ∈ [0, n]). Accordingly, m0 means m without sanitizing
or an open message m (m0 = m), and mn means a fully
sanitized m. m j′ is said to be more sanitized (resp. less san-
itized) than m j if j′ > j (resp. j′ < j). Particularly, m j′ is
said to be one-bit-more sanitized than m j if j′ = j + 1, and
one-bit-less sanitized than m j if j′ = j − 1. Obtaining m j−1
from m j is called rewinding m j. For simplicity, unless noted
otherwise, the length of any message is n bits.

4.1 Algorithms of Sequential Bitwise Sanitizable Signa-
ture Schemes

Formally, a SBSS schemeSBSS = (GEN,SIG,SAN,VER)
is specified by the following four algorithms.

• The key generation algorithm GEN takes a security
parameter and randomly outputs a signing key and
the corresponding verification key. We denote this by
(vk, sk)← GEN(1λ).
• The signing algorithm SIG takes the secret signing key

and a message from some message space, and outputs a
signature. We denote this by σ0 ← SIG(sk,m0), where
m0 ← {0, 1}n and |m0| = n.
• The sanitizing algorithm SAN takes a signature-

message pair (σk−1,mk−1) and outputs another signature-
message pair (σk,mk), such that the output message
is one-bit-more sanitized than the input message. We
denote this by (σk,mk) ← SAN(σk−1,mk−1), where
1 ≤ k ≤ n†.
• The verification algorithm VER takes the verification

key, a signature and a message, and output 1 or 0. We
denote this by {0, 1} ← VER(vk, σk,mk).

In order to formalize the goal and attack models, next,
we define the oracles to which an adversary can access ac-
cording to the corresponding goal and attack model.

4.2 Signing-Sanitizing-Oracle (O1)

The oracleO1 is to provide an interface for “chosen message
attack”, analogous to the one in ordinary signature schemes.
By accessing this oracle (O1), the adversary can specify an

open message or the disclosed part of a partially sanitized
message and obtain the corresponding signature. The oracle
generates randomly the prefix of the message to get a full n
bits message if the length of the specified disclosed part is
less than n bits. Formally, the execution of O1 is written as
(σk,mk)← O1(x), where [mk]|x| = x holds. If x is an empty
string, O1 generates a random message and its correspond-
ing signature.
Remark on O1.

In the framework of SBSS described in the previous
subsection, one can see that O1(x, k) can be realized by a
single access to SIG (when k = 0) or simultaneous accesses
to SIG and SAN (when k > 0) combined with a random bit
generator. Note that here the adversary can not control or
specify any bit of the sanitized part, since the sanitized part
is generated randomly by O1. One can verify that instead of
weakening the level of security notions described in the next
subsections, this “restriction” actually gives more freedom
to the adversary to achieve its adversarial goal compared to
the previous works [3], [4]. See Appendix F for the detailed
discussion.

4.3 Rewinding-Oracle (O2)

By accessing this oracle, the adversary can obtain a one-
bit-less version of a valid sanitized message (rewind a valid
sanitized message) and also obtain the corresponding sig-
nature, with the condition that a signature of a less sani-
tized version of it has ever been retrieved from the signing-
sanitizing oracle (O1). Formally, the execution of O2 is writ-
ten as (σk−1,mk−1)← O2(σk,mk), with the condition that at
least one (σk′ ,m

′
k′) such that k′ < k and [m

′
k′ ]n−k = [mk]n−k

hold has been output by O1. We can simply say that O2 re-
sponds to the query only if the outputs of O1 are queried.

4.4 Security Notions of Sequential Bitwise Sanitizable
Signature Schemes

Here we give the formal definition of security notions of
SBSS in the sense of unforgeability and data-confidentiality.
We will formalize the goal and attack model of the adversary
by utilizing oracles described in previous subsections.

4.4.1 Formal Definition of Unforgeability (UF)

Intuitively, this security notion is to guarantee that no adver-
sary can perform forgery described in Sect. 2. In this attack
model, the adversary can specify an open message or the
disclosed part of a partially sanitized message and obtain the
corresponding signature. If the adversary specifies nothing,

†Although instead of accepting the request of sanitizing the last
sequence of bits of a sanitized message with any length we only let
the sanitizer to sanitize one more bit of the input message, this
representation does not decrease the functionality of the sanitizer
at all, since one, who wants a signature of mk (k > 0) given a
signature of m0, can query SAN k times to get it.
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i.e., an empty string, then he will be answered with a signa-
ture on a randomly chosen message. Here, the adversary is
allowed to access O1 and O2 as described above.

Definition 5: Let SBSS = (GEN,SIG,SAN,VER) be
a sequential bitwise sanitizable signature scheme, O =
{O1,O2}, and A be an adversary. For λ ∈ N, let

AdvUF
SBSS,A(λ) = Pr[ExpUF

SBSS,A(λ) = 1], (1)
where, for n = |m∗k | and 0 ≤ k ≤ n,

ExpUF
SBSS,A(λ)

de f
=

(vk, sk)← GEN(1λ); (σ∗k,m
∗
k)← AO(vk);

return VER(vk, σ∗k,m
∗
k).

We say that SBSS is secure in the sense of unforgeability
(UF), if AdvUF

SBSS,F(λ) is negligible for any adversary A.

At the end of the UF game, A outputs a signature σ∗k
along with an (open or partially) sanitized message m∗k,
where 0 ≤ k ≤ |m∗k |. The restriction is that this pair
〈σ∗k,m∗k〉 should not appear in the answers of O1, and is not
straightforwardly computable from any answer of O1, i.e.,
(σ∗k,m

∗
k) � {SAN(i)(σ j,m j)}1≤i≤n−k, where (σ j,m j) is one of

the outputs of O1. We say that the adversary wins UF game
if (σ∗k,m

∗
k) is a valid pair with the above restriction.

4.4.2 Formal Definition of Data Confidentiality (DC)

Intuitively, this security notion captures the sense of protect-
ing the SBSS scheme from sanitization leakage. The adver-
sary cannot learn any information about the sanitized part
from any sanitized signature-message pair.

Let A denote the adversary. A interacts with the chal-
lenger in a two-stage DC game. At the first stage, after given
vk, A can query O1 and O2 to obtain polynomial numbers of
signature-message pairs.

At the end of the first stage, A outputs (m0
0,m

1
0, k, st),

such that m0
0,m

1
0 are two different messages at the same

length n, k is an integer, and st is state information (pos-
sibly including vk). Here the (n − k) right-most bits of the
two messages should be identical.

During the challenge phase, the challenger randomly
picks one message from (m0

0,m
1
0) beyond A’s view, signs

this message mb
0 with the secret signing key sk, and executes

sanitization until the k-th bit of mb
0. The output pair 〈σ∗k,m∗k〉

is sent to A as the challenge.
At the second stage, A tries to distinguish which mes-

sage has been signed and sanitized, i.e., he tries to compute
b which was randomly flipped by the challenger. Besides
O1-queries†, he can query to O2 with the restrictions that O2

rejects the query (σ∗i ,m
∗
i ), such that [m0

0]i−1
i−1 � [m1

0]i−1
i−1. At

the end of the second stage, the adversary outputs a bit b′.
We say the adversary wins DC game if b′ is identical with
b.

Definition 6: Let SBSS = (GEN,SIG,SAN,VER) be a
sequential bitwise sanitizable signature scheme and let A =
(A1, A2) be an adversary. For λ ∈ N, let

AdvDC
SBSS,A(λ) = Pr[ExpDC-1

SBSS,A(λ) = 1]

− Pr[ExpDC-0
SBSS,A(λ) = 1] (2)

where for m0
0 � m1

0, 0 ≤ k ≤ n, and [m0
0]n−k = [m1

0]n−k,

ExpDC-b
SBSS,A(λ)

def
= (vk, sk)← GEN(1λ);

(m0
0,m

1
0, k, st)← AO1 (vk);

σ∗0 ← SIG(sk,mb
0); m∗0 ← mb

0;
(σ∗k,m

∗
k)← SAN(k)(σ∗0,m

∗
0);

b′ ← AO2 (st, σ∗k,m
∗
k);

return b′

We say that SBSS is secure in the sense of data confiden-
tiality (DC), if AdvDC

SBSS,A(λ) is negligible for any A.

5. Our Construction and Its Security

Here, we show the construction of our (basic) sanitizable
signature scheme and its security proofs.

5.1 Construction

Our sequential bitwise sanitizable signature scheme is de-
noted by BASIC = (GEN,SIG,SAN,VER). Let λ be the
security parameter, and {0, 1}n be the message space. Let
G be the Blum-Micali-Yao pseudorandom number genera-
tor (BMY-PRNG; see Definition 3) where f : {0, 1}λ →
{0, 1}λ is the underlying one-way permutation. Let S =
(gen, sig, ver) be the underlying (conventional) digital sig-
nature secure in the sense of EUF-CMA. The four algo-
rithms of BASIC are described below.

• GEN(1λ): Given a security parameter λ, the algorithm
calls gen (the key generation algorithm of the under-
lying conventional signature scheme) by passing λ to
gen, obtains (vk, sk), and outputs them as a key pair.
• SIG(sk,m0): Given the signing key sk and a mes-

sage m0 with length n, the algorithm works as fol-
lows: (1) picks a random s0 ← {0, 1}λ, (2) computes
mn ← m0 ⊕ G(s0, n), (3) calls sig (the signing algo-
rithm of the underlying conventional signature scheme)
to generate a signature σ on mn‖ f (n)(s0), (4) composes
the signature σ0 with σ‖s0, (5) outputs σ0.
• SAN(σk−1,mk−1): Given a signature-message pair, the

algorithm sequentially sanitizes the input with one bit
as follows: (1) parses σk−1 as 〈σ, sk−1〉, (2) com-
putes ck ← [mk−1]k

k ⊕ G(sk−1, 1) and assigns mk ←
[mk−1]k−1‖ck‖[mk−1]n−k, (3) computes the one-way per-
mutation sk ← f (sk−1), (4) sets σk = (σ‖sk), (5) out-
puts (σk,mk).
• VER(vk, σk,mk): Given a signature-message pair, the

algorithm verifies the validity as follows: (1) parses
σk as 〈σ, sk〉, (2) computes mn ← [mk]k‖([mk]n−k ⊕
G(sk, n − k)), (3) calls ver (the verifying algorithm of
the underlying conventional signature scheme) in the
way that b← ver(vk, σ,mn‖ f (n−k)(sk)).

†We note here that by querying m0
0 or m1

0 to O1, the adversary
can not increase his success probability because the signing algo-
rithm is a probabilistic one.
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Fig. 1 The signing in proposed full-fledge sequential bitwise sanitizable signature scheme.

5.2 Unforgeability

Theorem 2: BASIC is secure in the sense of UF if S is
an EUF-CMA secure signature scheme and f is a one-way
permutation.

Proof An adversary A may achieve several types of forgery
as follows.

Type 1. A outputs a signature on a message which is differ-
ent from any queried messages.

Type 2. A outputs a signature on a message m∗k−1 which is
a one bit less sanitized version of a retrieved sanitized
message mk.

Type 3. A outputs a signature on a message m∗k such that
m∗0 � m0 but m∗n = mn, where mn can be easily com-
puted from a queried message.

We denote the A’s advantages with corresponding types
by AdvUF-1

SBSS,A(λ), AdvUF-2
SBSS,A(λ) and AdvUF-3

SBSS,A(λ), respec-
tively. We then evaluate them individually. The detailed
proof is in Appendix A. �

5.3 Data Confidentiality

Theorem 3: BASIC is secure in the sense of DC if f is a
one-way permutation.

Proof Toward contradiction, we first assume that there ex-
ists an adversary A who can break BASIC in the DC game,
then we construct a distinguisher D who can distinguish the
output of BMY-PRNG from uniform string by using A as a
subroutine, which contradicts Lemma 1. The detailed proof
is in Appendix D. �

6. Extension of Basic Sequential Bitwise Signature
Scheme

In this section, we show the extension of BASIC to a full-
fledge sequential bitwise signature scheme. We stress here
that the security of the extension can also be proven on the

weak assumption that a one-way permutation exists.

6.1 A Full-Fledge Sequential Sanitizable Signature Scheme

Now, instead of only any j last bits of the sanitized docu-
ment, any sequence of bits from j1-th bit to j2-th bit of the
sanitized document can be disclosed, where j1 and j2 are
specified in the request to the sanitizer. We will explain our
extension in the manner of ‘idea of construction’ described
in Sect. 1.2. The main trick is that instead of one pseudoran-
dom generator, here we employ two pseudorandom genera-
tors and then apply the resulting two sequences of random
bits in opposite directions, i.e., one is from the starting bit
to the ending bit of the message, and the other one is from
the ending bit to the starting bit of the message. Similar to
the description in ‘idea of construction’, let S be a signature
scheme S , and PG1, PG2 be pseudorandom generators with
the same features as PG or Blum-Micali-Yao pseudorandom
generators as defined in Definition 3.

The signer holds the secret signing key and two first
seeds: s(1)

1 of PG1 and s(2)
1 of PG2. The signing process of

an n-bit message m = m1m2 . . .mn (mi ∈ {0, 1}), is as fol-
lows. First, for each � = {1, 2}, the signer uses PG� with s(�)

1

to obtain n more seeds s(�)
2 , . . . , s

(�)
n , s

(�)
n+1, and then generates

a random sequence c(�)
1 c(�)

2 . . . c
(�)
n , c(�)

i ∈ {0, 1}. Remember
here that each c(�)

i is generated from si and each si is gener-
ated from si−1. Let c(1) denote c(1)

1 c(1)
2 . . . c

(1)
n , and c(2) denote

c(2)
n c(2)

n−1 . . . c
(2)
1 . Then, it signs 〈m̃ = m⊕c(1)⊕c(2), s(1)

n+1, s
(2)
n+1〉

using S . Finally, the signer submits (σ, m̃, s(1)
1 , s(2)

1 ) to the
sanitizer, where σ is the valid signature of 〈m̃, s(1)

n+1, s
(2)
n+1〉.

For illustration, see Fig. 1.
When the sanitizer gets a request to disclose j1-th bit

to j2-th bits of m̃ with signature σ, it sends a response (σ,
m̃, s(1)

j1
, s(2)

n− j2+1) which can be generated easily from (σ, m̃,

s(1)
1 , s(2)

1 ). Note that for each � ∈ {1, 2}, any s(�)
j with j > 1

is generatable from s(�)
1 . The validity of the response (σ, m̃,

s(1)
j1

, s(2)
n− j2+1) is guaranteed by the fact that σ is a valid sig-
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nature of 〈m̃, s(1)
n+1, s

(2)
n+1〉, while s(1)

n+1 can be generated easily

from s(1)
j1

and s(2)
n+1 can be generated easily from s(2)

n− j2+1.
To disclose the j1-th bit to j2-th bit of m̃, one can

use PG1 with s(1)
j1

to get all the bits of c(1) from j1-th

bit, i.e., c(1)
j1
. . . c(1)

n , and use PG2 with s(2)
n− j2+1 to get the

first j2 bits of c(2), i.e., c(2)
n . . . c

(2)
n− j2+1, and then finally

unmask the j1-th bit to j2-th bit of m̃. Remember that
m̃ = m1 ⊕ c(1)

1 ⊕ c(2)
n ||m2 ⊕ c(1)

2 ⊕ c(2)
n−1||. . .||mn ⊕ c(1)

n ⊕ c(2)
1 .

Using c(1)
j1
. . . c(1)

n and c(2)
n . . . c

(2)
n− j2+1, we can obtain

m1 ⊕ c(1)
1 ||. . .||mj1−1 ⊕ c(1)

j1−1||mj1 . . .mj2 ||mj2+1 ⊕ c(2)
n− j2
||

. . .||mn ⊕ c(2)
1 .

6.2 A Concrete Instantiation of Sequential Bitwise Signa-
ture Scheme

Here we show a concrete instantiation of a full-fledge se-
quential bitwise signature scheme based on elliptic curves,
by combining a one way permutation proposed by Kaliski
[5] and an EUF-CMA secure signature scheme proposed by
Waters [21]. Let p be a sufficiently large prime†. For sim-
plicity, we assume that the length of any message is n bits.

Setup Parameters for Pseudorandom Generators Let f :
[0, 2p+1]→ [0, 2p+1] be a one-way permutation con-
structed from two twist elliptic curves using Kaliski’s
method (see Appendix E for the detailed construction).
Let h : [0, 2p + 1]→ {0, 1} be defined as the hard-core
of f ††. Then by using the one-way permutation f and
its hard-core predicate h, two PRNGs PG(k)

1 and PG(k)
2

from [0, 2p + 1] to {0, 1}k are defined as follows:

PG(k)
1 (s) = h( f (0)(s)) ‖ h( f (1)(s)) ‖ · · ·

‖ h( f (k−2)(s)) ‖ h( f (k−1)(s)),

PG(k)
2 (s) = h( f (k−1)(s)) ‖ h( f (k−2)(s)) ‖ · · ·

h( f (1)(s)) ‖ h( f (0)(s)).

Setup Parameters for the Signature Scheme Let G, G1

be cyclic groups of order p generated from group of
points on an elliptic curve††† E and let e : G×G→ G1

be a non-degenerate and computable bilinear map, that
is, e satisfies the followings: (1) for all a, b we have
e(ga, gb) = e(g, g)ab, (2) e(g, g) � 1, where g is a gen-
erator of G. For the detailed concrete construction of
such groups, see [22]. Finally let H : {0, 1}∗ → {0, 1}n
denote a collision-resistant hash function.

Key Generation Choose randomly a secret signing key α ∈
Zp and set g1 = g

α. Also choose randomly g2, u′ ∈ G.
Also generate n-length vector U = (ui), where all ui’s
are chosen randomly from G. The public verification
key is (g, g1, g2, u′,U).

Signing Upon receiving an input n-bit open message m,
the signer chooses randomly s(1)

1 , s
(2)
1 ∈ [0, 2p + 1],

and computes m̃ = m ⊕ PG(n)
1 (s(1)

1 ) ⊕ PG(n)
2 (s(2)

1 ). Let
M = H(m̃||s(1)

n+1||s(2)
n+1), where s(1)

n+1 = f (n)(s(1)
1 ) and

s(2)
n+1 = f (n)(s(2)

1 ). LetM ⊆ {1, . . . , n} be the set of all i

such that Mi = 1, where Mi is the i-th bit of M. Then
the signer chooses randomly r ∈ Zp and constructs the
signature σM as follows.

σM =

⎛⎜⎜⎜⎜⎜⎜⎝gα2
⎛⎜⎜⎜⎜⎜⎜⎝u′∏

i∈M
ui

⎞⎟⎟⎟⎟⎟⎟⎠
r

, gr

⎞⎟⎟⎟⎟⎟⎟⎠
The signer submits

(
σM, m̃, s

(1)
1 , s

(2)
1

)
to the sanitizer.

Sanitizing To produce a sanitized signature of m corre-
sponding to

(
σM, m̃, s

(1)
1 , s

(2)
1

)
such that the first ( j1 −1)

bits and the last (n − j2) bits of m are sanitized, the
sanitizer computes s(1)

j1
= f ( j1−1)(s(1)

1 ) and s(2)
n− j2+1 =

f (n− j2)(s(2)
1 ), where j1, j2 ∈ [1, n]. The sanitizer outputs(

σM , m̃, s
(1)
j1
, s(2)

n− j2+1, j1, j2
)
.

Verification To verify whether a sanitized signature(
σM , m̃, s

(1)
j1
, s(2)

n− j2+1, j1, j2
)

is valid, first, the veri-

fier computes s(1)
n+1 = f (n− j1+1)(s(1)

j1
) and s(2)

n+1 =

f ( j2)(s(2)
n− j2+1), then it parses σM = (σ1, σ2) into σ1,σ2

and verifies whether the following holds.

e(σ1, g)
e(σ2, u′

∏
i∈M ui)

= e(g1, g2),

where M is defined corresponding to M =

H(m̃||s(1)
n+1||s(2)

n+1) as in the Signing step. To disclose the
j1-th bit until j2-th bit of m̃, the verifier computes the
following.

m̃′ = m̃ ⊕ 0 · · · 0︸︷︷︸
( j1−1)bits

||PG(n− j1+1)
1 (s(1)

j1
)⊕

PG( j2)
2 (s(2)

n− j2+1)|| 0 · · · 0︸︷︷︸
(n− j2)bits

.

7. Conclusions

In this paper, we have proposed a new concept of sequential
bitwise sanitizable signature schemes and its security model.
We have shown a concrete construction, and the scheme has
been proved secure based on a weak security assumption
that a one-way permutation exists. We have shown that our
scheme increases the flexibility of sanitization scope control
without increasing the length of signature. Currently, one-
way permutation is the weakest cryptographic assumption
on which sanitizable signature schemes rely.

†To provide the standard 80 bit security, one needs to select
|p| = 160 bits.
††A generic construction of a hard-core predicate for any one-

way function has been shown in [20].
†††The notation p used in the set up for pseudorandom genera-

tors corresponds to the definition field Fp of 2 twist elliptic curves.
On the other hand, the notation p used in the set up for signature
scheme corresponds to the order of an elliptic curve, denoted by G,
whose definition field is not equal to Fp.
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Appendix A: Proof of Theorem 2

A.1 Proof of Type 1

For Type 1, the adversary is explicitly given the public ver-
ification key vk. He can query O1 and O2 to gain informa-
tion. After the query phase, the adversary outputs a sig-
nature σ∗n along with a completely sanitized message m∗n,
where n = |m∗n|, with restriction that m∗n � {mi

n}, where ele-
ments of {mi

n} are completely sanitized messages whose cor-
responding open or partially sanitized messages have been
answered to the adversary by O1. We say the adversary wins
UF-1 game if σ∗n is a valid signature for m∗n.

The reason why the output message is completely sani-
tized is that, if the adversary has the ability to output a valid
signature σk for a partially sanitized message mk, then by
executing the sanitizing algorithms for n − k times, the ad-
versary can also obtain valid σn for mn. Therefore, in UF-1
game, only focusing on completely sanitized message and
its signature is sufficient to capture security.

Lemma 4: AdvUF-1
SBSS,A(λ) is negligible ifS is an EUF-CMA

secure signature scheme.

Proof The detailed proof is in Appendix B. �

A.2 Proof of Type 2

In this scenario, the adversary A is given vk and has access
to O1 and O2 as same as in strategy 1. After the query
phase, A focuses on one signature-message pair (σ∗k,m

∗
k)

and tries to rewind one bit of the sanitized message. A out-
puts (σ∗k−1,m

∗
k−1) and wins the game if this is a valid pair.

The restriction is that (σ∗k,m
∗
k) cannot be straightforwardly

computed from any query result.

Lemma 5: AdvUF-2
SBSS,F(λ) is negligible if f is a secure one-

way permutation.

Proof The detailed proof is in Appendix C. �

A.3 Proof of Type 3

In this scenario, A observes one message-signature pair
(σk,mk) that can be straightforwardly computed from a
query. A tries to find a message m∗k such that for some bit
[m∗0]i

i � [m0]i
i but m∗n = mn. Intuitively, A hopes the cor-

responding hard-core predicate h∗k = 1 − hk, so that σk is
available for both m∗k and mk.

Lemma 6: AdvUF-3
SBSS,F(λ) is zero if f is a one-way permu-

tation.

Proof. It is obvious that since f is a one-way permutation
(1-1 length-preserving), no such hard-core predicate of f
exists. We have AdvUF-3

SBSS,F(λ) = 0. This ends the proof of
Lemma 6. �
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Summing up Lemma 4, 5 and 6, we claim that if S is
an EUF-CMA secure signature scheme and f is a one-way
permutation, then BASIC scheme is secure in the sense of
UF. This ends the proof of Theorem 2. �

Appendix B: Proof of Lemma 4

Towards contradiction, we first assume there exists an ad-
versary A who can successfully break BASIC with non-
negligible advantage, then we construct an adversary F who
can successfully break S with non-negligible advantage, by
letting F act as an oracle to answer A’s all queries.

Setup. A challenger runs the key generation algorithm gen
on security parameter λ, passes the verification key vk to F,
and keeps the signing key sk to himself. After receiving vk,
F passes it to A.
Query. Since A is an adversary against UF, A will issue two
sorts of queries. F maintains a list γ-list of tuple 〈mi, si

0〉,
and this γ-list is initially empty. F answers the queries as
follows,

O1-queries. A issues (tk, k) to oracle O1. To respond these
queries, F will

1. randomly pick a message mi
0 from the message

space, such that [mi
0]n−k = tk,

2. pick a random seed si
0 ∈ {0, 1}∗, and compute ci ←

mi
0 ⊕G(si

0, n)‖ f (n)(si
0),

3. query the signing oracle assigned to himself to ob-
tain signature sign on ciphertext ci, and compose
σi

0,
4. sanitize 〈σi

0,m
i
0〉 as introduced in previous sub-

section, for k times,
5. add 〈mi

0, s
i
0〉 to γ-list and return (σi

k,m
i
k) to A.

O2-queries. A issues (σk,mk) to oracle O2. As described
previously, to respond these queries, F will investigate
γ-list. If γ-list reveals the queried message has never
been signed, O2 will clarify the queried pair is invalid
and reject the query. Or else F can easily use the in-
formation in γ-list to rewind one bit of mk and send
(σk−1,mk−1) to A.

Forgery. A outputs a forgery (σ∗n,m∗n) and wins the UF-1
game if the forgery is valid. F parses σ∗n as σ‖sn, and out-
puts (σ,m∗n) as his own output.

B.1 Reduction Evaluation

Obviously, AdvEUF-CMA
S,F (λ) ≥ AdvUF-1

SBSS,A(λ). Assuming A’s
running time is tA, it is simple to evaluate F’s running time
t1 as t1 ≤ tA + q1 · n · t f + q2 · n · t f , where q1 (respectively
q2) is the number of queries to O1 (respectively O2) and t f

is the running time to compute the one-way permutation f .
This ends the proof of Lemma 4. �

Appendix C: Proof of Lemma 5

To successfully rewind (σ∗k,m
∗
k), A has to compute the pre-

image sk−1 of sk to construct σ∗k−1, and then use the hard-
core predicate hk of f on input sk−1 to construct m∗k−1. This
means A needs the ability to break the one-wayness of f .
Thus, we have AdvUF-2

SBSS,F(λ) ≥ εow, and t2 ≤ tow, where
εow and tow denote the probability and time to break one-
wayness. This ends the proof of Lemma 5. �

Appendix D: Proof of Theorem 3

Toward contradiction, we first assume that there exists an
adversary A who can break BASIC in the DC game, then we
construct a distinguisher D who can distinguish the output
of BMY-PRNG from a uniform string by using A as a sub-
routine, which contradicts Lemma 1.

Setup. The challenger runs BMY-PRNG on input s∗0 and
passes the output sequence (h1‖h2‖ · · · ‖hn), the seed s∗n, and
a uniform sequence in {0, 1}n to D, where hi is a hard-core
predicate of f on input s∗i−1, and s∗n ← f (n)(s∗0). D tries to
tell the pseudorandom sequence from the truly random se-
quence. Thus, the advantage of D is evaluated as,

Adv(D) = P1 − P2

= Pr[z← (h1‖h2‖ · · · ‖hn) : D(z, s∗n) = 1]

− Pr[z← {0, 1}n : D(z, s∗n) = 1]

Here D outputs 1 when he guesses the input sequence is
pseudorandom. Notice D will use s∗n in the challenge phase.

We then construct such D by using A as follows. D runs
the key generation algorithm gen on security parameter λ,
passes the verification key vk to A, and keeps the signing key
sk to himself.
Query phase 1. Since A is an adversary against DC, A will
issue two sorts of queries. D maintains a list γ-list of tuple
〈mi, si

0〉, and this γ-list is initially empty. D answers the
queries as follows,

O1-queries. A issues (tk, k) to oracle O1. To respond these
queries, D will

1. randomly pick a message mi
0 from the message

space, such that [mi
0]n−k = tk,

2. pick a random seed si
0 ∈ {0, 1}∗, and compute ci ←

mi
0 ⊕G(si

0, n)‖ f (n)(si
0),

3. use sk to sign on ciphertext ci, and compose σi
0,

4. sanitize 〈σi
0,m

i
0〉 as introduced in previous sub-

section, for k times,
5. add 〈mi

0, s
i
0〉 to γ-list and return (σi

k,m
i
k) to A.

O2-queries. A issues (σk,mk) to oracle O2. As described
previously, to respond these queries, D will investigate
γ-list. If γ-list reveals the queried message has never
been signed, O2 will clarify the queried pair is invalid
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and reject the query. Or else D can easily use the in-
formation in γ-list to rewind one bit of mk and send
(σk−1,mk−1) to A.

Challenge. At the challenge phase, A outputs (m0
0,m

1
0, k, st).

Without loss of generality, we assume the k-th bits of m0
0

and m1
0 are different, which means A is forbidden to issue

rewinding queries on the challenge constructed by D below.

1. D picks a random bit b← {0, 1}, and assigns m∗0 ← mb
0.

2. For every bit of the left-most k bits in m∗0, D computes
the ciphertext, such that [c∗]i

i ← [m∗0]i
i ⊕ [z]n−k+1

n−k+1, and
sets m∗k ← [c∗]k‖[m∗0]n−k, where 0 < i ≤ k, and z is
either a pseudorandom sequence or a truly random se-
quence.

3. D runs f for n− k times on s∗n. The final seed s∗2n−k will
be used as commitment. D uses the n − k output hard-
core predicate {hn+1, · · · , h2n−k} to encrypt the right-
most n − k bits in m∗0, such that [c∗]i

i ← [m∗0]i
i ⊕ hn−k+i,

where k < i ≤ n.
4. D uses the signing key sk to sign the message, such

that σ∗k ← sig(sk, c∗‖s∗2n−k)‖s∗n. D passes (σ∗k,m
∗
k) as

the challenge to the adversary A.

Query phase 2. A issues O1-queries and O2-queries as
in query phase 1, with the restriction that he cannot issue
(σ∗k,m

∗
k) to O2. D answers these queries with the same

essence as in phase 1.
Guess. A tries to guess which message of m0

0 and m1
0 has

been signed and sanitized, i.e., A outputs a bit b′ and wins
the DC game if b′ = b. If b′ = b, then D outputs 1, which
means the sequence z is pseudorandom; otherwise D outputs
0, which means z is truly random.

D.1 Reduction Evaluation

Since Adv(D) = P1−P2, we evaluate probabilities individu-
ally. To evaluate P1, we notice that in this case the left-most
k bits of sanitized message [m∗k]k is encrypted by a part of
BMY-PRNG’s output, and D tells z is pseudorandom only
when A guesses correctly. Thus

P1 ≥ 1
2

Pr[ExpDC-1
SBSS,A(λ) = 1]

+
1
2

Pr[ExpDC-0
SBSS,A(λ) = 0]

=
1
2
+

1
2

(Pr[ExpDC-1
SBSS,A(λ) = 1]

− Pr[ExpDC-0
SBSS,A(λ) = 1])

=
1
2
+

1
2
· AdvDC

SBSS,A(λ)

where ε is the advantage of A. To evaluate P2, we notice
that in this case [m∗k]k is encrypted by truly random bit, and
D outputs 1 only when A looses DC game. Because A can
gain no knowledge by observing [m∗k]k, A looses game at the
probability of 1/2 constantly. Thus, we have P2 = 1/2.

Summing up, D’s advantage is Adv(D) = P1 − P2 ≥

1/2 · AdvDC
SBSS,A(λ). Assuming A’s running time is tA, it is

simple to evaluate D’s running time tD as tD ≤ tA+q1 · (tsig+

n · t f ) + q2 · n · t f , where q1 (respectively q2) is the number
of queries to O1 (respectively O2), tsig is the running time of
the key generation algorithm and t f is the running time to
compute the one-way permutation f . This ends the proof of
Theorem 3. �

Appendix E: The Construction of One-way Permuta-
tion on Elliptic Curve [5]

Here we explain the construction of a one-way permutation
using two twist elliptic curves [5], which is used in Sect. 4.
Set two elliptic curves E1 and E2 over a finite field Fp (a
prime p > 5) with j-invariant � 0 and 1728 to twists of each
other. Two twists are given as follows.

E1 : y2 = x3 + ax + b

E2 : y2 = x3 + au2x + bu3,

where a, b, u ∈ Fp with 4a3 + 27b2 � 0 and u is a quadratic
nonresidue in Fp. In order to make a secure one way permu-
tation, we assume that both #E1(Fp) and #E2(Fp) are prime,
which are set to n1 and n2. Then, n1+n2 = 2p+2 [23] holds
from the relation between two twist elliptic curves. Let
G1 ∈ E1(Fp) be an element with order n1 and G2 ∈ E2(Fp)
be an element with order n2. The i-th multiple of an ele-
ment G = (xG, yG) is denoted by iG, where xG denotes the
x-coordinate of G and yG denotes the y-coordinate of G.

Based on the above elliptic curve parameters, the one-
way permutation f : [0, 2p + 1] → [0, 2p + 1] is con-
structed by using two maps l1 : E1(Fp) → [0, 2p + 1] and
l2 : E2(Fp)→ [0, 2p + 1] as follows.

f (i) =

{
l1(iG1) if i ∈ [0, n1 − 1]
l2(iG2) if i ∈ [n1, 2p + 1]

l1(G) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
uxG mod p if 0 ≤ yG ≤ p−1

2 ;
(uxG mod p) + p + 1 if p+1

2 ≤ yG ≤ p − 1;
p if G = O .

l2(G) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xG mod p if 0 ≤ yG ≤ p−1

2 ;
(xG mod p) + p + 1 if p+1

2 ≤ yG ≤ p − 1;
2p + 1 if G = O.

The one-wayness of f is based on the intractability of
solving ECDLP on E1 based on G1 or E2 based on G2.

Appendix F: Additional Note on Unforgeability

Compared to the previous bitwise signature schemes [3], [4],
as shown in Sect. 4, the unforgeability in this paper includes
a wider scope. In the previous works, the adversary (forger)
has to specify all bits of the message sent to the signer or the
sanitizer before hand. In this paper, the next additional sce-
nario is also included. First, the adversary asks the signer to
sign a message containing an unspecified bit sequence. The
signer chooses random bits to substitute the unspecified bit
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sequence, then sanitizes the bit sequence, before signing the
entire message. The point is that we allow the signer not to
reveal the random bits it has chosen by letting it sanitize the
bits. Thus, the adversary never sees the random bits chosen
by the signer. In fact, by this additional scenario, the ad-
versary (forger) considered in this paper has additional free-
dom on producing the valid forgery compared to the one in
previous works. For an illustration, consider the following
example.

Illustration

Let there be only one query allowed to the signing oracle
and w.l.o.g., let the length of any valid message be 4 bits.
First let us consider the case with the additional scenario.
Let the adversary ask the signer to sign “#101”. Here the
signer is free to specify a bit ‘0’ or ‘1’ for ‘#’ and then san-
itized it. The adversary then will receive the signature of
“�101”, where ‘�’ denotes a sanitized bit. Notice that the
adversary retrieves no information about the bit chosen by
the signer which has been sanitized into ‘�’. Therefore, it
becomes natural for us to allow the adversary to output the
signature of “0101” or “1101” as the valid forgery. On the
other hand, in the case where all bits of the message have
to be specified, when the adversary asks the signer to sign
“1101” and sanitize the first bit, only the forgery of “0101”
is the valid forgery.

Of course, if in this paper we put a requirement that
the signer always shows publicly the random bits which it
chooses to substitute the unspecified bit sequence before it
sanitize them, then the additional freedom in forgery men-
tioned above is disappeared. Note that in this paper we do
not put such a requirement.
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