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Abstract

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of

a problem such that all intermediate results are also feasible. We demonstrate that a host of reconfiguration problems
derived from NP-complete problems are PSPACE-complete, while some are also NP-hard to approximate. In contrast,
several reconfiguration versions of problems in P are solvable in polynomial time.

Keywords: approximation, graph algorithm, PSPACE-complete, reachability on solution space

1. Introduction

Consider the bipartite graph with weighted vertices in Figure 1(a) (both solid and dotted edges). It models a
situation in which power stations with fixed capacity (the square vertices) provide power to customers with fixed
demand (the round vertices). It can be seen as a feasible solution of a particular instance of a search problem which
we may call therower suppLy problem [8, 10]: Given a bipartite gragh = (U, V, E) with weights on the vertices, can
G be partitioned into subtrees, each of which contains exactly one vertexfr@uch that the sum of the demands
of theV vertices (customers) in each subtree is no more than the capacitydfitbreex (power station) in it?

But suppose now that we are givevo feasible solutions of this instance (the leftmost and rightmost ones in Figure
1), and we are asked: Can the solution on the left be transformed into the solution on th®ynigbting only one
customer at a time, and always remaining feasibléfts problem, which we call theower sUPPLY RECONFIGURATION
problem, is an exemplar of the kind of problems we discuss in this paper. (In this particular instance, it turns out
that the answer is “yes”; see Figure 1.) As one may have expected, the most basic reconfiguration problem is the
SATISFIABILITY RECONFIGURATION problem: Given a CNF formula and two satisfying truth assignmentnds;, are
these connected in the subgraph of the hypercube induced by the satisfying truth assignments? This problem has been
shown PSPACE-complete [3].

In more generalityreconfiguration problembave the following structure: Fix a search probl&rfa polynomial-
time algorithm which, on instandeand candidate solutiop of length polynomial in that of, determines whether
y is a feasible solution of); and fix a polynomially-testable symmetidaljacency relation Aon the set of feasible
solutions, that is, a polynomial-time algorithm such that, given an insta€es and two feasible solutiong and
y” of |, it determines whethey andy” are adjacent. (In almost all problems discussed in this paper, the feasible
solutions can be considered as sets of elements, and two solutions are adjacent if their syntieetmcelihas size
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Figure 1: A sequence of feasible solutions for theer suppLy problem.

1.) TherECONFIGURATION PROBLEM FOR S aND A is the following computational problem: Given instaragf S and two
feasible solutiongp andy; of I, is there a sequence of feasible solutignsy, ..., V: of | such thaty,_; andy; are
adjacentfoi =1,2,...,t?

Reconfiguration problems can also arise from optimization problems, if one turns the optimization problem into
a search problem by giving a threshold. For examplecthg@e rReconriGuraTiON problem is the following: Given a
graphG, an integek, and two cligue£, andC; of G, both of size at lead, is there a way to transfor@, into C; via
cliques, each of which results from the previous one by adding or subtracting a single ri@deitifout ever going
through a clique of size less than- 1?

Reconfiguration problems are useful and entertaining, have been coming up in recent literature [1, 3, 6, 9], and
are interesting for a variety of reasons. First, they may reflect, as ith& suppLYy RECONFIGURATION problem above,

a situation where we actually seek to implement such a sequence of elementary changes in order to transform the
current configuration to a more desirable one, in a context in which intermediate steps must also be fully feasible,
and only restricted changes can occur — in our example, no two customers can change providers simultaneously,
and we certainly do not wish customers to be without power. In a complex, dynamic environment in which changing
circumstancesfiect the feasible solution of choice, determining whether such adaptation is possible may be crucial.
Reconfiguration problems also model questionsvaflvability. Can genotyp#g evolve into genotypg via individual

mutations which are each of adequate fitness? Here a genotype is considered feasible if its fitness is above a threshold,
and two genotypes are considered adjacent if one is a simple mutation of the other. Finally, reconfiguration versions
of constraint satisfaction problems (the first kind studied in the literature [3]) yield insights into the structure of the
solution space, which may help in understanding heuristics, such as survey propagation, whose performance depends
crucially on connectivity and other properties of the solution space.

In this paper, we embark on a systematic investigation of the complexity of reconfiguration problems. Our main
focus is showing that a host of reconfiguration problems (including all those mentioned above and many more) are
PSPACE-complete. The proof for thewer suppLy RECONFIGURATION Problem and those for certain other problems are
explained in Section 2. We then point out in Section 3 that certain reconfiguration problems arising from problems
in P (such asnNivMuM SPANNING TREE andmarcHING) can be solved in polynomial time. In Section 4 we show certain
approximability and inapproximability results for reconfiguration problems. An extended abstract of the paper has
been presented in [7].

2. PSPACE-completeness

In this section we show that a host of reconfiguration problems are PSPACE-complete. In Section 2.1 we first
give a proof for theeower suppLY RECONFIGURATION problem, and in Section 2.2 we then give proof sketches for certain
other reconfiguration problems.

2.1. POWER SUPPLY RECONFIGURATION

The power suPPLY RECONFIGURATION problem was defined informally in the Introduction. An instance is given in
terms of a bipartite grap® = (U, V, E), where each vertex ib) is called asupply vertexand each vertex iV is
called ademand vertexEach supply vertex € U is assigned a positive integer sup(called thesupply of ywhile
each demand vertexe V is assigned a positive integer desy(called thedemand of vWe wish to partitiorns into
subtrees, by deleting edges fr@ such that each subtr8ehas exactly one supply vertex whose supply is at least
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the sum of demands of all demand vertice3 inWe call an assignmerit: V — U aconfiguration of Gf there is an
edge(v, f(v)) € E for each demand vertaxe V. A configurationf of G is feasibleif the following condition holds:
for each supply vertem € U,

supf) > Z{dem@) | v eV such thatf (v) = u}.

Theadjacency relatioron the set of feasible configurations is defined as follows: two feasible configurétaoresf’
areadjacentif |{v eV:f(v)# f’(v)}| =1, that is,f’ can be obtained fromi by changing the assignment of a single
demand vertex. Given a bipartite grah= (U, V, E) and two feasible configuratiorfs and f; of G, thepower suppLy
RECONFIGURATION pProblem is to determine whether there is a sequence of feasible configuritions. ., f; of G such
that fi_; and f; are adjacent for= 1,2, ...,t. Note thatrower SUPPLY RECONFIGURATION, @S Well as any reconfiguration
problem defined in this paper, does not ask an actual reconfiguration sequence.

Figure 1 illustrates three feasible configurations of a bipartite gaptvhere each supply vertex is drawn as
a square, each demand vertex as a circle, and the supply or demand is written inside. Figure 1 also illustrates an
example of a transformation from the feasible configuration in Figure 1(a) to one in Figure 1(c), where the demand
vertex whose assignment was changed from the previous one is depicted by a thick circle.

We have the following theorem.

Theorem 1. Power SUPPLY RECONFIGURATION iS PSPACEcomplete.

Proor. It is easy to see that this problem, as well as any reconfiguration version of a prShieMP, can be solved

in polynomial space, as follows. Sin¢eis in NP, we can enumerate all feasible solutionsSah nondeterministic
polynomial time. Since NE PSPACE [11, p. 148], this enumeration can be done in PSPACE. We then nondetermin-
istically traverse the solutions that are adjacent with the current solution. (By the assumption, the adjacency can be
checked in polynomial time for each enumerated solution.) Savitch’s Theorem [12] says that this NPSPACE algorithm
can be converted into a PSPACE algorithm.

We give a polynomial-time reduction from tRerisriaBiLITY RECONFIGURATION problem to this problem. In that
problem we are given a Boolean formupain conjunctive normal form, say with variablesxs, xo, ..., X, andm
clause<;,C,,...,Cy, and two satisfying truth assignmergsands; of . Then, we are asked whether there is a
sequence of satisfying truth assignments, starting sind ending irs, and each diering from the previous one
in only one variable. This problem is known to be PSPACE-complete [3]. One may assume without loss of generality
that the formulap has no clause which contains both positive and negative literals of the same variahidel tbie
maximum number of occurrences of a literal in the clauses, and hence each literal appears ircataness inp.

Given such an instance ®fTISFIABILITY RECONFIGURATION, We CONStruct an instance sfwer SUPPLY RECONFIGURA-

TioN as follows. We first make wariable gadget G for each variable, 1 < i < n; Gy is a binary tree with three
vertices as illustrated in Figure 2(a); the rdgtis a demand vertex of demarmrgdand the two leaveg andx; are
supply vertices of supplg. Then the bipartite grapB, corresponding to the formulgis constructed as follows. For

=

()
Xi fi

(a) Gy, (b) Gy

Figure 2: (a) Variable gadg@&y, and (b) bipartite grapks, corresponding to a Boolean formufawith three clause€; = (x1 V x2), C2 =
(X1 V X2 V x3) andCs3 = (X2 V X3), and hence = 2.



each variable, 1 < i < n, add the variable gadg€i to the graph; and, for each clausg 1 < j < m, add a demand
vertexC; of demand 1 to the graph. Finally, join a supply verigXor x) in Gy, 1 < i < n, with the clause demand
vertexCj, 1 < j <m, if and only if the literalx (respectivelyx) is in the claus€;. (See Figure 2(b) as an example.)
Clearly,G, is a bipartite graph.

Consider a feasible configuration Gf,. Then each demand vertéx, 1 < i < n, must be assigned to one of
X andx;; a literal is considered false if {Hs assigned to its corresponding supply vertdiatice that, since supply
vertices have supplg and theF;'s have demand, a false-literal supply vertex cannot provide power to any of the
other demand vertices. Hence, all clause demand vef@ige$ < j < m, must be assigned to true-literal supply
vertices that occur in them. Since each litegafor x;), 1 < i < n, appears in at mostclauses inp, the corresponding
supply vertexx; (respectivelyx) in Gy can provide power to all clause demand verti€gsvhose corresponding
clauses have; (respectivelyx).

To complete the reduction, we now create two feasible configurafipasd f; of G, corresponding to the sat-
isfying truth assignments, ands; of ¢, respectively. Each demand vertex 1 < i < n, is assigned to the supply
vertex whose corresponding literal is false, while each clause demand Ggrtéx< j < m, is assigned to an arbi-
trary true-literal supply vertex adjacent@. Sincesy ands; are satisfying truth assignments @f both fo and f;
are feasible configurations &f;. This completes the construction of the corresponding instance ebts suppLy
RECONFIGURATION problem.

We know that a feasible configuration @j, corresponds to a satisfying truth assignment pfus an assignment
of each clause to a true literal. It is easy to see that this correspondence goes backwards: every satisfying truth
assignment op can be mapped to at least one (in general, to exponentially many) feasible configuratgns of

How about adjacent configurations — defined to be configuratidferidig in the assignment of just one demand
vertex? One can easily observe that there are only two types of reassignments to go from a feasible configuration of
G, to an adjacent one, as follows:

(1) One could change the assignment of a demand véttdsom X; to X, or vice versajf no clause demand

vertex is currently assigned to supply verticesixx.
(2) Alternatively, if a clause demand vert€s is adjacent to more than one true-literal supply vertex, then one
could change the assignment@ffrom the current one to another.

Therefore, any sequence of adjacent feasible configuratidBg cdn be broken down to subsequences, intermittently
with a reassignment of type (1) above; in each subsequence, every two adjacent configurations can go from one to
another via a reassignment of type (2) above. Therefore, all feasible configurations in each subsequence correspond to
the same satisfying truth assignmenyofvhile any two consecutive subsequences correspond to adjacent satisfying
truth assignments (namelyfidiring in only one variable).

Conversely, for given any sequence of adjacent satisfying truth assignmentberfe is a corresponding sequence
of adjacent feasible configurations®§, obtained as follows: Consider a flip of a variakjérom true to false. (A flip
of x; from false to true is similar.) Then we wish to change the assignment of the demandMéiriam the supply
vertexx; to x;. (Remember that the literal to whi¢h is assigned is considered false.) We first change the assignments
of all clause demand vertices, which are currently assignegl to another true-literal supply vertex: since we are
about to flip the variable; and we know that the truth assignmentgoffter the flip will be also satisfiable, there
must be a “second” true-literal supply vertex for every clause demand vertex currently assigneéfter all such
reassignments, we finally change the assignmeft &fom X; to x;.

It is now easy to see that there is a sequence of adjacent satisfying truth assignmpeintsnod, to s if and only
if there is a sequence of adjacent feasible configuratiof@, dfom fo to f. This completes the proof of Theorem 1.
([l

2.2. Other intractable reconfiguration problems

There is a wealth of reconfiguration versions of NP-complete problems which can be shown PSPACE-complete
via extensions, often quite sophisticated, of the original NP-completeness proofs; in this subsection we only sample
the realm of possibilities.

We have already defined theiQue ReconFiGURATION problem in the Introduction as an example of a general scheme
whereby any optimization problem can be transformed into a reconfiguration problem by giving a threshold (upper
bound for minimization problems, lower bound for maximization problems) for the allowed values of the objective
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Figure 3: Graphp(¢) corresponding to a 3SAT formutawith three clause€1 = (x1 V X2), C2 = (X1 V X2 V X3) andC3 = (X2 V X3).

function of the intermediate feasible solutions; t®:PENDENT SET RECONFIGURATION aNUVERTEX COVER RECONFIGURATION
problems are defined similarly. In thRTEGER PROGRAMMING RECONFIGURATION problem, we are given a 0-1 linear
program seeking to maximizex subject toAx < b, and we consider two solutions adjacent if they onl§ietiin one
variable.

Theorem 2. The following problems ar® SPACEcomplete INDEPENDENT SET RECONFIGURATION, CLIQUE RECONFIGURA-
TION, VERTEX COVER RECONFIGURATION, SET COVER RECONFIGURATION, INTEGER PROGRAMMING RECONFIGURATION.

Proof sketch We sketch a proof for thewepENDENT SET RECONFIGURATION problem. The reduction can be obtained by
extending the well-known reduction from the 3SAT problem tortiderenpenT set problem [11]. We construct a graph
p(¢) from a given 3SAT formula with n variables andn clauses, as follows. (As in the proof of Theorem 1, we may
assume without loss of generality that the formgilaas no clause which contains both positive and negative literals
of the same variable.) For each variaklm ¢, we add an edge, to the graph; its two endpoints are labebedndx.
Then, for each clauge in ¢, we add a clique of siZ€| to the graph; each node in the clique corresponds to a literal in
the clauseC. Finally, we add an edge between two nodes ifedent components if and only if the nodes correspond
to opposite literals. (See Figure 3 as an example.) Then, it is easy to seéghhts a maximum independent set
of sizek = n+ mif and only if ¢ is satisfiable;n nodes are chosen from the endpointsxafdges corresponding
to the variablesa literal is considered true if the corresponding endpoint is chogeansider all independent sets
of sizek = n+ min p(¢); they can be partitioned into subclasses of the fp(g) corresponding to the satisfying
truth assignmentsof ¢ (the various independent sets in the subctdsscorrespond to the fiierent possible ways to
satisfy each clause 1g). It is easy to see that all independent sets(B) are connected via intermediate independent
sets of size at leakt— 1. Therefore, by similar arguments in the proof of Theorem 1, itis easy to observe that deciding
whether two independent sets of sz p(¢) can be transformed into one another via intermediate independent sets
of size at leask — 1 is PSPACE-complete.

It is easy to see that a subdet V of vertices in a grapl® = (V, E) is an independent set & if and only if |
induces a clique in the complement®f Also, | is an independent set & if and only if V \ | is a vertex cover of
G [2, Lemma 3.1]. Thus, the result forpEPENDENT SET RECONFIGURATION Yields those fokLiQuE REcoNFIGURATION and
VERTEX COVER RECONFIGURATION. Then, the result fo$er cover RECONFIGURATION IS immediate since it is a generalization
Of VERTEX COVER RECONFIGURATION. INTEGER PROGRAMMING RECONFIGURATION genera"ZESLIQUE RECONFIGURATION via the
well-known integer program far.iQue. O

One might compare OUKDEPENDENT SET RECONFIGURATION problem with thestiping Token problem, which is also
known to be PSPACE-complete [6]. Boken configuration T of a graph i& an independent set Gfsuch that a Token
is placed on each vertex if. In thesLibing Token problem, we are given a grajh and two Token configurations
(independent set3) andT; of G, both have the same number of Tokens, and we are asked whether there is a sequence
of Token configurations 0B, starting withTy and ending inl;, and each resulting from the previous one by sliding
only one Token from one vertan an adjacent vertexTherefore, the two problems have slightlyfdirent adjacency
relations: in OUNNDEPENDENT SET RECONFIGURATION problem, a Token can “jump” from one vertex to any other vertex
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I I

(a) (b)
Figure 4: (a) Initial independent set (Token configuration) and (b) target independent set (Token configuration).

if it results in an independent set & while, in thesLibing Token problem, we can just slide a Tokatong an edge

of G. Consider the instance in Figure 4, where the vertices in independent sets (or Token configurations) are colored
with black. Then, this is an Yes-instance f@bepENDENT SET RECONFIGURATION With k = 2, but a No-instance for

sLIDING Token. However, the PSPACE-completeness proofstasing Token by [6] indeed works to prove our result

for INDEPENDENT SET RECONFIGURATION. Then, we can prove th@&UDEPENDENT SET RECONFIGURATION and VERTEX COVER
RECONFIGURATION remain PSPACE-complete even for planar graphs of maximum degree 3.

3. Reconfiguration Problems in P

Reconfiguration problems arise in relation to problems in P as well. For example, ifi@m SPANNING TREE
RECONFIGURATION problem, we are given an edge-weighted gré&ph threshold, and two spanning trees & both of
weight at mosk, and wish to transform one tree into another via edge exchanges, without ever getting into a tree with
weight> k. ThemarcHING RECONFIGURATION pProblem is defined similarly (the formal definition will be given later). We
show in this section that both problems can be solved in polynomial time.

The result for theviniMuM SPANNING TREE RECONFIGURATION problem can be obtained from the following more
general proposition.

Proposition 1. LetM = (S, 8) be a matroid, and letw S — R be a weight function on S. LepyBnd B be two
bases inB such thatmaxw(By), w(B;)} < k. Then, there always exists a sequendBef, B;| (= |B; \ By|) exchanges
that transforms one into the other, without ever exceeding weight k, and maintaining a base at each step.

Proor. Since the adjacency relation is symmetric, we may assume without loss of generaliy(Bopt< w(B).
SinceBy andB; are basegBy| = |B| and hence lein = |By \ Bi| = |B; \ Bo|. The proposition trivially holds ifn = 1.
Therefore, by applying induction, it fices to prove the following claim: there exists By \ B; andz € B; \ By such
thatBy —y+ zis a base irB andw(By — y + 2) < wW(B), where we use the shorthand notat®ny+z = (B\ {y}) U{z.
Observe thal(Bo -y +2) \ By| = |B; \ (Bo -y + 2)| = m— 1 andw(Bo — y + 2) < kif the claim holds.

By Brualdi's exchange property [14, Corollary 39.12a], we can always Bgitd3; = {y1,V>,...,Ym} andB\ By =
{z1,2,...,Zn} such thaBy — V; + 7 is a base irB for every index, 1 < i < m. Suppose for a contradiction that

W(Bo — Vi + z) = W(Bo) — W(yi) +W(z) > W(B)

for all indicesi = 1,2,...,m. Thenw(z) — w(y;) > w(B;) — w(Byp), and hence

W(Bo) + _ (W(z) - W)

1<i<m

w(By)

> W(Bo)+ | (W(BY) - w(Bo))

1<ism
= W(Bo) + M- (W(BY) — W(Bo))
w(Bo) + (W(Bt) - W(Bo))
= W(By),

a contradiction. Therefore, there must exist some indeich thatv(By — i + z) < w(By), as required. O
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In the MATCHING RECONFIGURATION problem, we are given an unweighted gr&aha thresholdk, and two matchings
Mo andM; of G, both of size at leadt, and we are asked whether there is a sequence of matchi@gstfrting with
Mo and ending inM;, and each resulting from the previous one by either addition or deletion of a single e@ge in
without ever going through a matching of size less tkal.

Proposition 2. MATCHING RECONFIGURATION Can be solved in polynomial time.

In the remainder of this section, as a proof of Proposition 2, we give a polynomial-time algorithm which solves
MATCHING RECONFIGURATION.

We first introduce some terms. Lkt be a matching of a grapB. A vertexv is calledM-coveredf v is incident
with an edge inM; otherwise,v is calledM-exposed A path (or a cycle) ofs is calledM-alternatingif the edges
along the path (respectively, along the cycle) belong alternatively t;md not toM. An M-augmenting patls an
M-alternating path whose endpoints are bbtlexposed. For two matchindd andN of G, we denote byM A N
the symmetric dierence ofM andN, that is,M A N = (M \ N) U (N \ M). A path (or a cycle) ofs is called
(M, N)-alternatingif the edges along the path (respectively, along the cycle) belong alternativiélyatal toN. The
length of a pathP in a graph is defined as the number of edgeB.in

We may assume without loss of generality tig] < |[M;|. Consider the subgragh of G induced by all edges
in Mg A M;. Then, sinceMy and M; are both matchings d&, each vertex irH has degree at most 2. Therefore,
H consists of single edgesMg, M;)-alternating paths andvy, M)-alternating cycles. Thgreedy algorithmfor
transformingMy into M is the following. Divide the components bf into the following four categories:

(1) single edges o \ My;

(2) (Mo, My)-alternating paths which start and end with edgeslpf Mo;

(3) (Mo, My)-alternating cycles; and

(4) all the rest.
In this category order, transforidg into M; by repeatedly adding edges bk \ My and deleting edges dflg \ M;
along each component &f. It is easy to see that intermediate matchings have size at|Mgst 1 (> k — 1) for
exchanging edges in Category (2). Therefore, we can always exchange the edges in Categories (1) and (2). Moreover,
since each component in Categories (1) and (2) llgiaugmenting path, the matchihgobtained by exchanging all
edges in Categories (1) and (2) has size at [d4$1(> |[Mg|). We then exchange the edges in #y(M;)-alternating
cycleC in Category (3), as follows: we first delete an arbitrary edderMy, and then exchange the remaining edges
along the obtained\y, My)-alternating path. Therefore, intermediate matchings have size afNgas® > |M| — 2
for exchanging the edges in Category (3). Similarly, the edges in Category (4) can be exchanged without ever going
through a matching of size less thiauh| — 2.

We show that the greedy algorithm correctly solvascHING RECONFIGURATION in polynomial time.

Case (a) IM¢| > k+ 1.
In this case, since the greedy algorithm transfoliggnto M; without ever going through a matching of size less
than|My| — 2, all the intermediate matchings have size at |gdgt— 2 > k — 1, as required.

Case (b) [M¢| = k, andM is nota maximum matching db.

In this case, we first transform; into a matchingM; of sizek + 1 along an arbitraryM;-augmenting pati®;
clearly, the intermediate matchings for exchanging the edgesave size at leagél;| — 1 = k— 1. Then, the greedy
algorithm can transfornvl into M; so that all intermediate matchings are of sizk — 1. Finally, we transformvi{
into M along the pathP. In this way, a desired sequence always exists for this case.

Case (c) IM¢| = k, andM; is a maximum matching d&.

Sincek < [Mg| < [My], Mg is also a maximum matching @. Then,H consists only of 1y, M;)-alternating
paths with even-length and’y, M;)-alternating cycles; otherwise, this contradicts thigtandM; are both maximum
matchings of5. ThereforeH contains components only of Categories (3) and (4).

Since every component in Category (4) is an even-lenigth ¥;)-alternating path, each path starts with an edge
of M; \ Mg and ends at an edge ™y \ M;. It is easy to see that all intermediate matchings have size at least
IM¢{| — 1 > k — 1 for exchanging edges in the path. Thereforé{ ifontains no component of Category (3), then the
greedy algorithm can transforMg into M; without ever going through a matching of size less thanl.
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Figure 5: (a) No-instance and (b) Yes-instanceM®rcHING RECONFIGURATION, WhereMg = {e1, e3}, My = {e2, &4} andk = 2 in both instances.

Suppose now that contains components of Category (3). In this case, there does not always exist a desired
sequence of matchings. (See Figure 5 as an example.) Nonetheless, existence can be determined in polynomial time
by the following lemma.

Lemma 1. Suppose that both §and M are maximum matchings of G, and leEKMp| = |M¢|. Then, there exists a
sequence of matchings which transformgiMo M so that all intermediate matchings have size at leastlkf and
only if, for every(Mo, My)-alternating cycle C, there exists angMlternating path in G starting with an pexposed
vertex and ending at a vertex in C.

For the example in Figure 5(b), th#g, My)-alternating cycldey, e;, €3, &4} has such aMp-alternating pathes}. By

Lemma 1 one can easily determine whether there exists a desired sequence for Case (c) in polynomial time; we simply
check if there exists such @Wp-alternating pathP in G, assuming that each vertex in a4, M;)-alternating cycle is

the endpoint oP.

From now on, we prove Lemma 1 to complete the proof of Proposition 2. We first show a useful fact, which is a
part of the Edmonds-Gallai decomposition [14].
For a graplG = (V, E), let

D(G) = {v e V | there exists a maximum matchihgof G in whichv is N-exposedl
For a maximum matchiniyl of G, let
EVEN(M) = {v € V | there exists an even-lenghi-alternating path from aM-exposed vertex te}.

Note that we regard aM-alternating path of length 0 as even-length path, and hence EMER@ntains allM-
exposed vertices. We have the following lemma.

Lemma 2. For every maximum matching M of a graph BYEN(M) = D(G).

Proor. We first show that EVEN{1) € D(G). Letv be an arbitrary vertex in EVENY). Then, there exists an even-
lengthM-alternating path® from anM-exposed vertex ta. Consider the matchingl’ = M A P. (Note thatM’ = M
if Pis anM-alternating path of length 0.) Since the lengthRok even,M’ is also a maximum matching & andv
is M’-exposed. We thus hawes D(G).

We then show that EVENY) 2 D(G). Letv be an arbitrary vertex iB(G). If vis M-exposed, them € EVEN(M),
of course. Suppose now thais M-covered. Since € D(G), there exists a maximum matchimgof G in which
v is N-exposed. Consider the subgradkyn of G induced by all edges iM A N. Then, sinceM andN are both
maximum matchings o6, Hyn consists only of ¥, N)-alternating paths with even-length and,(N)-alternating
cycles. Sincer is M-covered andN-exposedy must be an endpoint of an even-leng, (\)-alternating patHP.
Clearly, the other endpoint of the pafhis M-exposed (andl-covered), and hencee EVEN(M). O

Lemma 2 immediately implies the following corollary.

Corollary 1. For every two maximum matchings M and N offE¥EN(M) = EVEN(N).
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Figure 6: Exchanging the edges in avg, M;)-alternating cycleC = {vo, v1,..., vy} using anMp-alternating pathP starting with anMg-exposed
vertexx and ending at; € C, where each edge in a matching is drawn as a thick line.

We are now ready to prove Lemma 1.

[Proof of Lemma 1]

NecessitySuppose that, for everyp, M;)-alternating cycle, there exists My-alternating path iiG starting with an
Mo-exposed vertex and ending at a vertex in the cycle.flicas to show that we can exchange the edges in Category
(3) such that all intermediate matchings are of side— 1.

LetC = {vo,Vv1,...,Vy} be an Mg, My)-alternating cycle wherg; = vy, and suppose that there exists Mg-
alternating pathP starting with anMg-exposed vertex and ending a¥; in C. (See Figure 6(a).) Let be the vertex
in P adjacent withv;, as illustrated in Figure 6(a). Note that, singés in C, the edgeX, v;) is not inMg. Then, we
exchange the edges @as follows: first, exchange the edges of the gath. ., X'} alongP, and obtain a matching
M in which X" is M-exposed (see Figs. 6(a) and (b)); then, exchange the edges of tH& pativ,1, ..., V,_1} in this
order (see Figs. 6(b) and (c)); finally, exchange the edges of the{\pathv;, X, ..., x} in this order (see Figs. 6(c)
and (d)). Clearly, all intermediate matchings have size- 1.

Let M’ be the matching o6 obtained by the edge exchanges above. E(€) be the set of edges i@. Since
Mo N M’ = Mg \ E(C), we can exchange the edges of eddg,(M;)-alternating cycle independently. In this way, we
can exchange the edges of all components of Category (3) such that all intermediate matchings are bfsize
and hence there exists a way to transfdvigiinto M; without ever going through a matching of size less tkanl.

Syficiency Suppose that Category (3) contains dy(M;)-alternating cycleC such that there is nMy-alternating
path inG starting with anMg-exposed vertex and ending at a vertexdn Then, no vertex irC is contained in
EVEN(My). Suppose for a contradiction that there is a sequence of matchings which trankfginte M; such that

all intermediate matchings are of sizek — 1. Let Mg, M4, ..., M; be such a sequence of matchings whose length
(i.e. the number of intermediate matchings) is minimum. Mgtbe the first matching in the sequence for which we
remove an edgeu(v) of Mg that belongs t&C. Then, sincek is equal to the maximum size of a matchingGnhwe
clearly havegMq-1| = k, [Mg| = k-1 and

Exposediy) = Exposedig-1) U {u, v},
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where Exposed) is the set of alM-exposed vertices i6 for a matchingM of G. Since all intermediate matchings
are of size> k-1, the matchingviq,1 must be obtained frorvly by adding some edgg,@). Note thaty andz must be
both in Exposedyl). If bothy andzare also in Exposedif,-1), then this contradicts the fact thsl—; is @ maximum
matching ofG. We thus assume thgt= u. If z = v, thenMy_1 = Mg1; this contradicts thaMog, My, ..., M is a
minimum-length sequence. Thereforés some vertex in Exposell;-1). But then, the patfz, u, v} is an even-length
Mg-1-alternating path. Sinceis Mq_1-exposed andWq—1 is a maximum matching dB, v is in EVEN(Mq_1). By
Corollary 1, EVENMo) = EVEN(My-1) and hencer € EVEN(Mp). This contradicts that no vertex (his contained
in EVEN(Mo). O

BesidesMATROID RECONFIGURATION and MATCHING RECONFIGURATION, it turns out that all polynomial-time solvable
special cases ofatisriaBiLiTY, as characterized by Schaefer [13], give rise to polynomially solvable reconfiguration
problems:

Theorem 3 ([3]). SarisriaBiLITY RECONFIGURATION fOr linear, Horn, dual Horn and 2-literal clauses are all i

4. Approximation

We have seen that an optimization problem gives rise to a reconfiguration problem by bounding the objective of
intermediate configurations. In turn, we can get a natural optimization problem if wedpfitoize the worst objective
among all configurationm the reconfiguration sequence. For example, in the problem that we calktivex cLiQue
RECONFIGURATION problem, we are given a graph and two clig@gsendC;, and we are asked to maximize the minimum
size of any clique in a sequence which transfo@pinto C; by additions and removals of single nodes. In this section,
we give some inapproximability and approximability results for such optimization problems.

4.1. Inapproximability

In this subsection, we show inapproximability results for two max-min type reconfiguration problems.
We first give the following theorem for th@axMIN CLIQUE RECONFIGURATION problem.

Theorem 4. MAXMIN CLIQUE RECONFIGURATION cannot be approximated within any constant factor unessNP.

Proor. We give a polynomial-time reduction in an approximation-preserving manner from the (ordinang)prob-
lem to this problem. For a given gragwith n nodes, we construct a new graphwith 3n nodes as the corresponding
instance ofvaxMIN cLIQUE RECONFIGURATION: @ Set ofh nodes is connected & while two new sets of nodes are
connected each as a clique (these two cliques’ afre calledCy andCy); finally, there are edges @’ between each
new node and each node@

Consider any sequence of cliques@f each resulting from the previous one by insertion or deletion of a single
node, starting fronCy and ending irC;. We claim that one of them will be a clique Gf— this follows directly from
the absence of any edges betw€grandC;. Conversely, for every cliqu€ of G, there exists a sequence fr@y to
C; viaC: add the nodes o to the cliqueCy and obtain the cliqu€y, U C, then remove those &, and obtairC, then
add those o€; and obtairC U C;, and finally remove those @ and obtairC;. Since|Cy| = |C;| = nand|C| < n, the
minimum clique size in the sequence is the siz€pénd hence solving (or approximating) this instancerofmiN
CLIQUE RECONFIGURATION iS the same as solving (respectively, approximating)ctheue problem forG. Since it is
known thatcLique cannot be approximated within any constant factor unlesdN® [4], the result follows. O

In the MAXMIN MAXSAT RECONFIGURATION problem, we are given a SAT formula and two truth assignmsnénd
s (which are not necessarily satisfying), and we are asked to maximize the minimum number of clauses satisfied by
any truth assignment in a path in the hypercube betwsgands;.. Then, a similar argument establishes the following
theorem.

Theorem 5. MAxMIN MAXSAT RECONFIGURATION Cannot be approximated within a factor better th%unlessP = NP.
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Proor. We give a polynomial-time reduction in an approximation-preserving manner from the (ordinarysr
problem to this problem. Suppose that we are given an instarmafevaxsar with n variablesxy, X, ..., X, andm
clause<y, Co, ..., Cm. We construct a new formulgl in which each claus€;j, 1 < j < m, is replaced by&; VyV 2)
wherey andz are new variables, and the additional claus& &) with weight m Notice that every truth assignment
of ¢’ with z # y satisfies all n clauses, and hence the truth assignmentz =1, y=0,X = X =--- = X, = 1 and
s:z2=0,y=1x =X =--- = X, = 0 are both satisfying allr clauses.

For each truth assignmesbf the original formulag, let s’ be a truth assignment of the corresponding formula
¢’ such thatz = y (hamely, eithez =y =0orz=y = 1) and eachq, 1 < i < n,is asins. Then, itis easy to see
that there is a path in the ¢ 2)-dimensional hypercube frogg to  via s’ such thaty # zin all intermediate truth
assignments except far. Clearly, every truth assignment, except$grin the path satisfies ali2clauses, and hence
the objective value for the path is the number of clauses satisfied by

Consider now an optimal path in the € 2)-dimensional hypercube betwegynands. Since atsy : z=1,y=0
and ats : z= 0,y = 1, there must exist a truth assignmehnon this path such that=y. Since the clause/(v Z) has
weightmand the path is assumed optimal, it must be #haty = 0. Thus, the remaining variableg 1 < i < n, must
spell an optimal satisfying truth assignment of the original formulddence, from the optimal value OPTor the
corresponding instance ®fAxMIN MAXSAT RECONFIGURATION, We can compute the optimal value OPT for the original
instancep of maxsar: since ats* : z=y = 0, we have

OPT=OPT -m 1)

Suppose now that we have arapproximation fomaxmiN MAXSAT RECONFIGURATION, and hence we can compute
an approximate valud’ for the corresponding instance such that

A >a- OPT. )

One may assume without loss of generality tat- m; otherwise there must exist at least one truth assignment such
thatz = y = 1 in the path; but, by replacing all such truth assignments withy = 0, we can easily obtain a better
objective> m. Thus, there exists a truth assignment for the original formpuldich satisfies a numbeA( — m) of
clauses. LeA = A’ — m. By Egs. (1) and (2) we have

A = A-m2a-OPT-m=a-OPT+ (a-1)m 3)

Sincem > OPT, by Eq. (3) we havA > (2a—1)-OPT. Therefore, we can obtain a2 1)-approximation fomaxsar,
from ana-approximation fomaxmiN MAXSAT RECONFIGURATION. Since it is known thatiaxsar cannot be approximated
within a factor better tharé unless P= NP [5], the result follows. O

4.2. Approximability

In this subsection, we show approximability results for two min-max type reconfiguration problems.

In the MINMAX SET COVER RECONFIGURATION problem, we are given an universal &bta family S of subsets ofJ,
each of subsets has a nonnegative cost, and two cByarsdC; of U, where acoverC of U is a subfamily ofS whose
union isU. Then, we are asked to minimize the maximum total cost of any cover in a sequence which traggforms
into C; via covers ofUJ, each of which results from the previous one by adding or deleting a singleSet in

Theorem 6. There is a linear-tim@-approximation algorithm foMINMAX SET COVER RECONFIGURATION.

Proor. For a coverC of U, we denote byu(C) the sum of costs of all subsetsdh Consider an optimal sequence
Co,C1,...,Ct for an instance ofinmax seT cOVER RECONFIGURATION. Let OPT be the objective value for the sequence,
and hence OPE maXw(C;) | 0 <i < t}. Therefore, we clearly have

maxw(Co), w(Ct)} < OPT. 4)

As our approximation solution, we consider the following sequence of covers: (i) add the suliget{inone
by one toCy, and obtain the coveary U C; of U; (ii) delete the subsets i@y \ C; one by one fronCy U Ct, and obtain
C:. Clearly, our approximate valukis A = w(Co U Cy), and hence by Eq. (4) we have

A= w(Co U Ct) < w(Co) + w(Cr) < 2-maXxw(Co), w(Cy)} <2-OPT.
This completes the proof of Theorem 6. O
11



Returning to therower suppLy problem, there is a natural optimization version of the problem, in which the
constraint that the total demand of all demand vertices in each subtreawvithin the supply of the supply vertex in
T is replaced by a “soft” criterion: we allow that the total demand iexceeds the supply ifi, but wish to minimize
the sum of the “deficient power” of all supply vertices in the graph.
We now define themnmax PowER sUPPLY RECONFIGURATION pProblem. For a configuratiof of a bipartite graph
G = (U,V, E) and a supply vertex € U, thedeficient power (i, u) of u on fis defined as follows:

d(f,u) = Z{dem@ | v € V such thatf (v) = u} - sup().

If f is infeasible, then there is at least one supply veutexch thad(f,u) > 0. On the other hand, if is feasible,
thend(f,u) < O for all supply verticess € U; in fact, a nonpositive deficient powd(f, u) represents thenarginal
powerof u on f. Thecost €f) of a configuration fis defined as follows:

o(f) = > ld(f, u).
ueU

Note thatc(f) contains the marginal power of supply vertices, because iffi€uli to change the supplies quickly
and hence we waste the marginal power. Clea(lf) = >, ., supl) — Xy demg) for every feasible configuration
f of G. In the problem that we call théinvax POWER SUPPLY RECONFIGURATION pProblem, we are given a bipartite graph
G = (U, V, E) and two feasible configuratiorfg and f; of G, and we are asked to minimize the maximum cost of any
configuration in a sequence which transforfgsnto f; by reassignments of single demand vertices. Then, we have
the following observation.

Observation 1. The objective value for a sequence which transforgnatb f; is Y,y supll) — Xy demg) if and
only if all configurations in the sequence are feasible. Moreover, such a sequence is optimal if it exists.

In the remainder of this subsection, we give a linear-time 2-approximation algorithm famthex power suppLY
RECONFIGURATION problem if a given bipartite grapB has exactly two supply vertices. We first show that the problem
is strongly NP-hard even for more restricted instances.

Lemma 3. MINMAX POWER SUPPLY RECONFIGURATION iS stronglyNP-hard, even for the restricted problem consisting of
instances on a complete bipartite graph with exactly two supply vertices.

Proor. We give a polynomial-time reduction from thergrtiTion problem [2] to this problem for a complete bipartite
graph with exactly two supply vertices. Ine8rriTioN, We are given a positive integer bouhdand a sefA of 3m
elementsy, ay, . . ., agm; €ach elemerd; € A has a positive integer sizég;) such thab/4 < s(a) < b/2 and such that
> aea S(@) = mh Then, the 3artiTion problem is to determine whethércan be partitioned inte disjoint subsets
Ay A, ..., Ansuch thali,a S(@) = bfor eachj, 1 < j < m. 3-parmiTion is known to be strongly NP-complete [2].

For a given instance of Bsrrition, we first construct a complete bipartite graph= (U, V, E) with |U| = 2, as
follows: U consists of two supply verticeg andu, such that supf) = mband supg,) = (m+ 1)b; andV consists of
4mdemand verticesy, Vy, . . ., Vam andby, by, . . ., by such that den¥) = (&) for eachi, 1 <i < 3m, and demif;) = b
for eachj, 1 < j < m. We then give two feasible configuratiofisand f; of G, as follows:

fw if Xx=v;,1<i<3m,
fO(X)_{uz if x=hj,1<j<m

and
Uo if x=v;,1<i<3m;

ft(x)z{ U ifx=bjl<j<m
Clearly,d(fo, us) = d(f;, u;) = 0 andd(fo, ux) = d(f;, uz) = —b (that is, only the supply vertex, has an amourt of
marginal power), and henaéfy) = c(f;) = b.

It is easy to see that there exists a desired partithanA,, ..., An} for a given instance of 8arrrrion if and
only if there exists a sequence which consists of only feasible configuratigh$avfthe corresponding instance of
MINMAX POWER SUPPLY RECONFIGURATION. Therefore, by Observation 1 we can answer whether thA bes a desired
partition by determining whether the optimal valudiar not for the corresponding instancemfmax POWER SUPPLY
RECONFIGURATION. O
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By Lemma 3 it is very unlikely that themnmax POWER SUPPLY RECONFIGURATION problem can be solved even in
pseudo-polynomial time. However, the problem can be solved in linear time for the following special case.
Suppose in the remainder of this subsection that we are given a bipartite@ragl, V, E) having exactly two
supply verticesl; andu,. (Note thaiG is not necessarily complete.) For two given feasible configuratipasd f; of
G, letW = {ve V| fo(v) # fi(v)}, thatis,W is the set of demand vertices which must be reassigned to the other supply
vertex. Notice that all (demand) verticeswhare adjacent to both the two supply vertices. Vdbe a demand vertex
in W having the maximum demand, that is, deth maxdemg) | v e W}. Then, we have the following lemma.

Lemma 4. If c(fp) = 2- dem{), then an optimal sequence for the instance consists of only feasible configurations
of G, and it can be found in linear time.

Proor. Suppose without loss of generality that+ 0. If all demand vertices iW are assigned to the same supply
vertexu on fp, then we just reassign the demand verticeSMrfrom u to the other one by one. Notice that all
intermediate configurations are feasible since Hgthnd f; are feasible. Therefore, we may assume in the following
that each of the two supply vertices has at least one demand vehéx in

Sincefy is feasiblec(fo) = sup{) + supli) — Xy dem§) and the cost(fy) denotes the sum of marginal power
of the two supply vertices. Moreover, since the sum is at leadeéh{*), one of the two supply vertices has marginal
power of at least der(). Therefore, we can change the assignment of at least one demandweriakfrom the
initial supply vertex to the target one, since dejn dem{*). Clearly, the resulting configuratiofy is also feasible,
and hence it satisfief;) = c(fp) = 2- dem{*). In this way, by reassigning the demand verticeS\rone by one,
we can obtain a desired sequerfgefy, . .., f; which consists of only feasible configurations. By Observation 1 the
sequence is an optimal solution. The length of the sequen®d i& |V|) since each demand vertex W moves
exactly once and any of the other demand vertices does not move in the sequence. We can thus find an optimal
solution in linear time. O

Using Lemma 4, we have the following theorem.

Theorem 7. There is a linear-tim&-approximation algorithm fomiNnmMAaXx POWER SUPPLY RECONFIGURATION if @ given
bipartite graph has exactly two supply vertices.

Proor. Let OPT be the optimal value for a given instanceipfiax POWER SUPPLY RECONFIGURATION. Since the demand
vertexv* having the maximum demand W must be reassigned at least once in any sequenceffroof;, it is easy
to observe that

OPT > dem{). (5)

By Lemma 4 it stffices to consider the cas€fy) < 2-dem§*). Note that, sincdy is feasible, sup() + sup{i;) <
2 -dem{*) + Xy demg) in this case. Consider a slightly modified instance in which the supplies of the two supply
vertices are increased by the same ameatusd that the total supply is equal to @em{*) + X,y demg), that is, the
supplysup() of a supply vertex in the modified instance sup() = sup{) + € where

o= %(2 -dem¢*) + Z dem¢{) — sup(i) - SUp@Z))‘

veV

In the modified instance, both the configuratidgsand f; remain feasible and(f;) = c(f)) = 2 - dem{*), where

c(f) denotes the cost of a configurationn the modified instance. Therefore, by Lemma 4 we can find in linear time

a sequence which consists of only feasible configurations for the modified instance; by Observation 1, the objective
value is 2- dem{*). Note that some configurations in the sequence may be infeasible for the original instance.
Consider an arbitrary configuratidnin the sequence which is infeasible for the original instafete/; C V be the

set of demand vertices such tHgt) = u;, and letV, = V '\ V. Sincef is feasible for the modified instance, we have

(1) = (SUPE) - ), dem()) + (SUpE) - ) demf)) = 2- dem). ®)

veVy veVs
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On the other hand, sinckis infeasible for the original instance, exactly oned6f, u;) andd(f, u,) is positive, say
up; otherwise, eithef is feasible orfy would be infeasible in the original instancehen, we have

o(f) = () demt) - sup@u)) + (supt) - " dem))
VeV, VeV,
= (> dem() - sUPE) + &) + (sTPL) £ - ), dem)
VeV veVs
< SUp(p) - ) demg)
veV,

since}, .y, dem{) — supi1) < 0. Then, by Eq. (6) we havg(f) < c(f) = 2- dem{*). By Eq. (5) we thus have
c(f) < 2-OPT. Since the cost of a feasible configuration is smaller than the cost of an infeasible configuration, the
objective value of this sequence in the original instance is at mo®&X, as required. O

5. Open Problems

There are many open problems raised by this work, and we mention some of these below:

e Can themarcHiNG RECONFIGURATION problem for edge-weighted graphs be solved also in polynomial time? We
conjecture that the answer is positive.

e |s the TRAVELING SALESMAN RECONFIGURATION problem (where two tours are adjacent if theffeli in two edges)
PSPACE-complete?

e Are there better approximation algorithms for thiemax POWER SUPPLY RECONFIGURATION problem? Lower
bounds?

e Are the problems in Section 4 PSPACE-hard to approximate (not just NP-hard)?
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