
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
観察対象への適応性的異常型侵入検査：モデル化、分

析及び評価

Author(s) 張, 宗華

Citation

Issue Date 2006-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/986

Rights

Description Supervisor:Hong　Shen, 情報科学研究科, 博士

Adaptive Observation-Centric Anomaly-Based

Intrusion Detection: Modeling, Analysis and

Evaluation

by

Zonghua Zhang

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Hong Shen

School of Information Science
Japan Advanced Institute of Science and Technology

March, 2006

1

Abstract

Anomaly-based intrusion detection is to discern malicious and legitimate patterns of
behavior in the variables characterizing the normality of information systems. As the
system normality is constructed only from an observed sample of normally occurring pat-
terns, despite systems are dynamic in nature (or user-driven) and becoming increasingly
complex, anomaly detectors often suffer from excessive false alerts. This dissertation
presents our work on the development of effective and efficient models, methods and tech-
niques for anomaly-based intrusion detection with the main concern of adaptability. Our
work generally involves three parts, which can be summarized as follows:

The first part of our work is motivated by the observation that the fundamental
understanding of the computing environments is an initial but essential step in the process
of developing an effective anomaly detection model. Based on the similarity between
anomaly detection and induction reference problems, we present a statistical framework
for analyzing the general behavior of anomaly detectors from the perspective of their
observable subjects. The objective is to lay a theoretical foundation for the modeling and
developing of our specific anomaly detectors in the next stage of our work. To enrich
the framework, we examine some challenging issues currently exist and present potential
solutions, including host-based and network-based normality characterization, evaluation
of anomaly detectors, etc.; The framework also involves some case studies and comparative
analysis on several typical anomaly detectors, for the sake of presenting a formal way for
the understanding and development of anomaly detectors’ operational characteristics, and
therefore bring them to broader applications.

Taking the constructed framework as starting point, and with the objective to cap-
ture the normality drifts of computer systems behavior driven by users or system itself,
we develop three versions of SVM-based anomaly detectors, which employ three modified
Support Vector Machines as the kernel detection scheme. Our modification aims to break
the traditional assumption that anomaly detectors are always fed with training data that
are readily available with desired quality in batch, and thus enable them to be trained
online periodically for the sake of adapting to the new computing environments without
triggering excessive false alerts. To validate those anomaly detector’s performance, we
implement the experiments by reforming 1998 DARPA BSM data set collected at MIT’s
Lincoln Labs, and conduct the comparative studies with the original algorithms. The ex-
perimental results verify that our new designed anomaly detectors outperform the original
ones with fewer support vectors (SVs) and less training time without sacrificing detection
accuracy.

Based on the observations and conclusions of the first part of work, we present another
framework for the correlation of several observation-specific anomaly detectors. Our hope
is that a collection of simple surrogates based on specific operating environments can
cooperate well and evolve into generic models with broader anomaly detection coverage
and less false alerts. As the specific implementation of the framework, we develop an
integrated anomaly detection model named Autonomic Detection Coordinator (ADC) to
defend against host-based intrusive anomalies. The cooperation between four host-based

i

anomaly detectors is formulated as a multi-agent partially observable markov decision
process. A policy-gradient reinforcement learning algorithm is then employed to search in
an optimal cooperation manner, with a set of parameters controlling individual anomaly
detector’s behavior. The generic behavior of the coordinator can be adjusted easily by
setting a reward signal to adapt to changing system environments. A host-based exper-
imental scenario is developed for implementation, and the experimental results show its
satisfactory performance. The model is also extended as the basic framework for the
modeling and analysis of multi-stage coordinated attacks in computer networks. The
definitions and properties derived from the models (both defender-centric and attacker-
centric) present us a formal way for the development of countermeasures to thwart or
mitigate such attacks. Taking into account the specific concerns of attackers and defend-
ers, two algorithms called Attackers Nondeterministic Trail Searching algorithm (ANTS)
and Attacker’s Pivots Discovery by Backward Searching algorithm (APD-BS) are devel-
oped respectively. The former one aims to search for the most efficient concurrent actions
for attackers, and the latter one intends to discover the attacker’s significant observations
for defenders.

ii

Acknowledgments

I wish to first express my sincere gratitude to my supervisor Professor Hong Shen for
his constant encouragement and kind guidance during my work. His dedication, devotion
to the research, and his passion and enthusiasm for the life deeply inspired me, not only
for work, but also for life.

I would like to thank Associate Professor Xavier Defago, the advisor of my sub-theme,
for his valuable suggestions and helpful comments on my sub-thesis research.

I devote my sincere thanks to all of the members of Shen Laboratory, especially to
Dr. Xiaohong Jiang, Dr. Haibin Kan, and other friends from JAIST, who gave me a lot
of help on my research and life. They are Dr. Keqiu Li, Dr. Gui Xie, Ms. Wenyu Qu,
Ms. Hui Tian, Mr. Chao Peng, Mr. Yingpeng Sang, Ms. Wen He, Mr. Haibo Zhang,
Ms. Yawen Chen.

My special thanks goes to the Graduate Research Program (GRP) offered by JAIST,
which is conducted as a program for the ”Fostering Talent in Emergent Research Fields”
in Special Coordination Funds for promoting Science and Technology by Ministry of
Education, Culture, Sports, Science and Technology. Thanks also goes to the Foundation
for C&C Promotion and the Telecommunications Advancement Foundation (TAF), which
supported me to attend and present our work at some international conferences.

Finally, and importantly, I am very grateful to my parents, my brother, and my sister,
for their full support and constant encouragement, without which, it is impossible for me
to accomplish this work.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 2
1.1 Background . 2
1.2 Challenges and Contributions . 3
1.3 Thesis Organization . 6

2 Observation-Centric Analysis on the Modeling of Anomaly-based Intru-
sion Detection 7
2.1 Introduction . 7
2.2 A General Statistical Description . 8

2.2.1 Frequency-based analysis . 9
2.2.2 Sequence-based analysis . 11

2.3 Normality Characterization . 14
2.3.1 Host-based Normality . 15
2.3.2 Network-based Normality . 18

2.4 Case Studies . 20
2.4.1 STIDE Detector . 21
2.4.2 MCE: Cross Entropy-Based Anomaly Detector 22
2.4.3 Probabilistic Anomaly Detectors 22
2.4.4 Comparative Analysis . 25

2.5 Evaluation of the Anomaly Detectors . 26
2.6 Concluding Remarks . 27

3 Online Training of SVM-Based Anomaly Detectors for Adaptive Intru-
sion Detection 28
3.1 Introduction . 28
3.2 Related Work . 30
3.3 Anomaly Detectors and Their Failure Curses 31
3.4 Observation-Centric Modelling . 32

3.4.1 Original Data Model . 33
3.4.2 A New Data Model . 34

3.5 SVM-Based Adaptive Anomaly Detectors 36
3.5.1 Three SVMs with Different Assumptions 37
3.5.2 Modified SVMs for Online Training 39
3.5.3 Convergence of the Modified SVMs 40

iv

3.6 Performance Evaluation and Comparison 42
3.6.1 Training Data and Testing Data . 42
3.6.2 Results and Discussion . 45

3.7 Conclusion and Future Work . 48

4 Constructing Multi-Layered Boundary to Defend Against Intrusive Anoma-
lies: An Autonomic Detection Coordinator 50
4.1 Introduction . 50
4.2 Related Work . 52
4.3 ADC Modeling . 53

4.3.1 Technical Rational and Model Formulation 53
4.3.2 A Specific Solution . 56
4.3.3 Practical Considerations . 60

4.4 Experimental Scenario−A Host-based ADC 61
4.4.1 ADC Setting . 62
4.4.2 Scenario Description and Data Collection 62
4.4.3 Structural Specification and Parameter Setting 64

4.5 Experimental Results and Analysis . 65
4.5.1 Training Procedure . 66
4.5.2 Testing of False Alarms . 67
4.5.3 Detection of Common Exploits . 68
4.5.4 Further Discussion . 71

4.6 Concluding Remarks and Future Work . 72

5 Janus: Modeling and Analysis of Multi-Stage Coordinated Attacks in
Computer Networks 73
5.1 Introduction . 73
5.2 Attacker’s Basic Behavior . 74
5.3 A Formal Framework . 76

5.3.1 Model Formulation . 77
5.3.2 Basic Properties . 78

5.4 Janus: a Two-Sided Analytical Model . 79
5.4.1 Attacker-Centric Analysis . 79
5.4.2 Defender-Centric Analysis . 82

5.5 Implementation Issues and Concluding Remarks 86

6 Conclusions 88
6.1 Summarization . 88
6.2 Future Work . 89

References 90

Publications 98

v

Chapter 1

Introduction

1.1 Background

As computer systems play an increasingly vital role in modern society with rapid increases
in the functionality, connectivity and accessibility, more and more efforts are being put to
their security, because a major attack can significantly reduce the capability of informa-
tion systems, and any exploitable weakness of networks that can be used by hackers and
criminals can potentially cause great losses to people. As backup measures for intrusion
prevention, such as user authentication, system authorization, encryption, etc., intrusion
detection techniques are attracting increasingly attention. So far, many commercial in-
trusion detection systems (IDSs) have been applied in practice, however, their limited
performance, the increasingly open and interconnected nature of today’s networks, and
more strict security concerns of people present us compelling mission to develop more
effective and efficient intrusion detection techniques.

General speaking, intrusion detection is about discriminating malicious attacks (a more
general term is anomalies) that might threaten the security from the normal activities
of information systems. Existing intrusion detection techniques fall into two general
categories: anomaly (or profile-based) intrusion detection and misuse (or signature-based)
intrusion detection, and those two categories of intrusion detection techniques essentially
have the nearly complementary concerns. Misuse intrusion detection aim to describe
the behavior of known attacks, and then detects the patterns which match closely to
activity that is typical of the known intrusion; anomaly intrusion detection relies on
models of the intended behavior of users and applications in terms of specific observable
variables and their operating environments, the deviation between an ongoing activity
and the predefined normality patterns/rules interprets whether an intrusion is happening
or already happened. Due to the inherent complexity of information systems, neither
of those two kinds of techniques provides perfect intrusion detection performance. For
those anomaly-based intrusion detectors (for simplicity, we call anomaly detector in this
thesis), since the system/user normality is constructed only from an observed sample of
occurring normal patterns, despite systems are dynamic in nature (or normality drift)
and becoming increasingly complex, they often suffer from excessive false alerts. Whereas
misuse intrusion detection methods are always criticized for their ineffective detection
of novel attacks due to the incomplete characterized intrusive patterns, although they
seldom report false alerts. From the technical standpoint, misuse intrusion detection
is easier to implement thereby have been widely adopted in commercial IDSs, whereas

2

anomaly intrusion detection brings more challenges due to the difficult characterization
of system normality. In addition to the taxonomy based on modeling methods, from
the perspective of the sources of observable variables (observations latter for simplicity),
intrusion detection can also be classified as host-based intrusion detection (HID) and
network-based intrusion detection (NID). Since the hosts and communications links are
always integrated as two major elements of networks, no matter what techniques are
developed, in most cases, they are both of concern. In another sense, although detecting
attacks against systems has, in practice, largely been delegated to sensors (such as NIDS),
due to the inherent limits of those available NIDSs and the increasing application of
encryption in communication, such as IPSec, SSL, intrusion detection and prevention
have once again moved back to the host systems themselves. General speaking, most of
our work presented in this thesis belongs to host-based anomaly intrusion detection.

Careful analysis on the available literature of intrusion detection shows us that two
elements are essential to anomaly intrusion detection, namely, data models of the observ-
able subjects or events, and the specific techniques employed to characterize and analyze
the data model. Specifically, several concerns need to be considered well in the process
of anomaly detection modeling: what observable subjects, and what attributes of those
obtained subjects should be taken into account to characterize the normal activities; what
existing approaches or novel methods can be employed to analyze and detect intrusive
anomalies based on the detection targets and corresponding characterized observations?
The selected observations (e.g., log files, system calls traces, network packets, command
line strings) are used to characterize normal behavior and hence construct anomaly de-
tectors’ operating environment. Due to the diverse characteristics, different observations
have different capabilities for describing system normality, and thus the formulated oper-
ating environment might limit their ability to discover some hidden intrusive attempts.
For instance, some attacks might be detected in system call stacks, whilst escaping from
system call traces [27], and these phenomena also exist even for the same anomaly de-
tector. From this point of view, a preliminary analysis of the observation’s property and
fundamental understanding of the anomaly detector’s operating environment would sig-
nificantly facilitate their design and performance improvement [46]. Therefore, in our
work, we always firstly conduct observation-centric analysis before the development of
specific anomaly detection models.

1.2 Challenges and Contributions

A general recognized criterion for the evaluation of anomaly detection is the trade-off
between the capability of detecting attacks and the ability of suppressing false alerts.
In another word, the anomaly detectors are expected to detect malicious anomalies as
accurate as possible, meanwhile suppress false positive rate (the ratio of normal patterns
that is being detected as anomalous ones and the total number of normal ones) as low as
possible. While accuracy is the essential requirement of an anomaly detector, its capability
of handling false alerts attracts more concerns. Actually, evaluating anomaly detection
alerts and conceiving an appropriate responses has posed as a challenging task in intrusion
detection community for a long history. Both practitioners [12, 56] and researchers [3, 9,
41,65] have observed that IDSs can easily trigger thousands of alarms per day, up to 99%
of which are false alerts, and this flood of mostly false alarms might distract the intrusion

3

detection analyst from spotting real attack, which tend to be more subtle. The manual
investigation of alerts just like the pick up of needles from shock, which has been found to
be labor intensive and error prone. Tools and techniques to automate alert investigation
are being developed, however, there is currently no silver-bullet solution to this problem.

So far, two general means have been developed to cope with the excessive false alerts.
The first kind of approach is to design adaptive anomaly detectors that are capable of
capturing normality drifts, i.e., concept drifts of normal behavior [4, 51, 55]. Another
countermeasure is to conduct post-analysis on the alerts clusters by the abstraction and
correlation of numerous detectors’ reports [18, 40, 65, 80]. Usually, host-based anomaly
detectors take the former means, while network-based anomaly detectors takes the latter
one, since the post-analysis always needs some additional analytical models and extra
computational overheads, such burdens can be shared by networks while not individual
hosts. From another point of view, the former means attempts to eliminate the curses
of false alerts, while the latter one intends to mitigate the aggregation effects of the false
alerts flood that have been triggered by finding predominant and persistent root causes.

An initial but important stage for the modeling of anomaly detectors is to preprocess
and analyze their operating environment in terms of specific observable variables, which
is so called “Normality Characterization”. However, due to the inherent nature of the
anomaly detection, whose basic assumption is that attackers’ behavior are significantly
deviate from those of normal users, and because of the increasing complexity of modern
computer systems and the diversity of the networks, it is generally agreed that there is
no such thing as a typical and perfect “system normality description”. A possible way,
which is also the trend of current anomaly detection research, is to develop methods for
characterizing a given operating environment sufficiently well so that optimal detectors
for that environment can be designed. The cost must be paid of such work is to allow
the limits of detectors, in terms of expected false alert rate, to be predicted. Along the
line, most of the available anomaly detectors employ specific subjects with manageable
properties as observation, and modeling the subjects as they need. Although many attacks
can be identified using these models, unperfect description of the normality and the novel
legitimate activities make them suffer from uncontrollable false alerts.

Promoted by the observations that we mentioned above, and motivated by the ad-
dressed problems, our work are mainly focused on the modeling and development of
effective and efficient anomaly detectors, with the emphasis on their adaptable behavior
in those changing computing environments. Our main contributions in the thesis are
fourfold, which can be generalized as follows:

• To insight into the operational capabilities and limits of anomaly detectors, and eval-
uate them in convincing manners, we need analyze both anomaly detection models
themselves and their operating environments. Rather than limit our attention to
the analysis and design of specific anomaly detection techniques, we give a general
investigation with perspective on the observable variables. Based on the similarity
with induction problem, we cast anomaly-based intrusion detection in a statistical
framework, which facilitates the analysis of their anticipated behavior at a high
level. Existing problems and corresponding solutions about the characterization of
system normality for the observable variables that from hosts and network have
been discussed respectively, together with the case studies about the operational
characteristics of several typical anomaly detection models. Moreover, the evalua-
tion of anomaly detectors are also discussed based on some existing achievements.

4

Our studies show that the fundamental understanding of the observable subjects is
the elementary but essential stage in the process of building an effective anomaly
detection model, which therefore worth deep exploration, especially when we face
the dilemma between anomaly detection performance and the computational cost.

• As intrusion detection essentially can be formulated as a binary classification prob-
lem, it thus can be solved by an effective classification technique – Support Vector
Machine (SVM). In addition, some text processing techniques can also be employed
for intrusion detection, based on the characterization of the frequencies of the system
calls executed by the privileged programs in Solaris OS. We developed three adap-
tive anomaly detectors by modifying conventional SVM, Robust SVM and One-Class
SVM respectively. The modification is based on the idea from Online SVM, and
thus enables those anomaly detectors to be trained online by breaking the strong
traditional assumption that training data are readily available with high quality
in batch. The main characteristic of those SVM-based anomaly detectors is able
to capture the “normality drifts” of normal behavior traces so as to adapt to the
changing computing environments. Both the theoretical analyse and experimental
evaluation indicate that our SVM-based anomaly detectors can be trained online
and outperform the original algorithms with fewer support vectors (SVs) and less
training time without sacrificing detection accuracy.

• We developed an integrated anomaly detection model whose core component is an
Autonomic Detection Coordinator (or ADC), with the objective to correlate a set
of parametric anomaly detectors working in different computing environments. The
model’s formulation is prompted by two key observations, first, anomaly detectors
work with different observations and have different detection coverage and blind
spots; second, different observations might provide different information to reveal
intrusive anomalies. In the model, the cooperation between individual detectors are
formulated as a Partially Observable Markov Decision Process (POMDP). A policy-
gradient reinforcement learning algorithm is applied to search in an optimal coopera-
tion strategy, in order to achieve broader detection coverage with fewer false alerts.
ADC’s distributed architecture enables its scalability to more complex situations
and the dependability to tolerate the failure of basic detectors. Moreover, ADC’s
behavior can be adjusted easily by setting a global reward signal function, to meet
the diverse demands of changing system situations, allowing it to be trained period-
ically to capture the drifts of system normality. We have implemented this model as
a multi-layered host-based defense system to defend against intrusive anomalies by
correlating four parameterized host-based observation-specific anomaly detectors.

• As the multi-stage coordinated attacks bring many challenging issues to the security
analysts due to their stealthy characteristics in temporal and spacial spans, based
on the understanding of the basic properties of multi-stage coordinated attacks, we
extend MPOMDP as a two-sided model for the characterization and analysis of
both defender’s and attacker’s behavior. Firstly, users behavior (both defender and
their adversaries) are cast in a general framework laying theoretical foundation for
the latter modeling and analysis, behavior of both attackers and defenders are then
specialized according to their particular concerns. From attacker’s point of view, an
ANTS algorithm is developed to search for such attack schemes (in terms of concur-

5

rent actions) with the minimum cost; from the defender’s standpoint, a backward
searching algorithm APD-BS is designed for discovering the key observations of the
attackers in order to effectively countermine the attacking attempts by removing
such key observations.

1.3 Thesis Organization

For the easy understanding of this thesis, chapters are organized in accordance with
the claimed contributions, and presented as self-contained format, whereas sharing some
common concepts, definitions, and notions.

Chapter 2 addresses the constructed framework for the analysis of anomaly-based
intrusion detection. We first constructs a formal framework for the characterization of
anomaly detectors’ anticipated behavior; a general description of some particular observ-
able subjects’ normality is given; we then investigate several typical anomaly detectors’
operating environments, with emphasis on their operational limits; some other issues
associated with evaluation metrics are also discussed.

Chapter 3 is about the development of SVM-based anomaly detectors. First, we
address the problem to be solved and describe the data source that is used in our work
together with the data modeling; second, we introduce the effective binary classifier SVM,
and modify three SVMs as online training detectors, which have different assumptions, for
real time intrusion detection; Finally, experiments are implemented to validate the per-
formance of our proposed methods, the comparative studies with the original algorithms
are also conducted.

Chapter 4 presents our developed autonomic detection coordinator. We firstly con-
struct a formal framework for the correlation of multiple anomaly detectors based on
partially observable markov decision process, and cast the posed problems in the frame-
work with detailed formulation, together with specific solutions. We then set a host-based
experimental scenario conduct comparative studies to validate our model.

Chapter 5 extends the model of last chapter for the modeling and analysis of multi-
stage coordinated attacks in computer networks. We first present the formal definition
and basic properties of multi-stage coordinated attacks by casting the users’ behavior in
POMDP framework. Both attacker’s and defender’s behavior are then further character-
ized by taking into account their special observations and properties, and two algorithms
drawn from ACO (Ant Colony Optimization) algorithm family are then developed with
attacker’s and defender’s concerns respectively.

Chapter 6 summarizes our work that have been presented in this thesis, and discusses
the future work.

6

Chapter 2

Observation-Centric Analysis on the
Modeling of Anomaly-based
Intrusion Detection

2.1 Introduction

The existing literature show that during the development of IDS, two elements worth
careful consideration, namely, selection and modeling of the observable subjects and the
techniques for characterizing and analyzing the data model. As we have known, network
can be logically classified into two major components, hosts and communication links
among the hosts. In those two kinds of computing environments, the behavior of a
subject is observed via the available audit data log. For instance, network traffic data,
which capture data packets traveling on the communicate links, and audit data, which
record the sequence of events on the hosts can be selected as observable subjects. Those
two domains actually can be further exploited for seeking more particular and effective
observation, such as command line strings, system call traces, and resource consumption
patterns in the host audit data, or the intrinsic features, traffic features and content
features of the network packets. Based on the characterization of the data model, all
the techniques that are capable of distinguishing malicious and normal behaviors worth
consideration.

As we know, the basic assumption for anomaly detection is that the intrinsic charac-
teristic or regularity of the normal observable subjects deviate significantly from that of
anomalies, therefore, the preprocess and analysis of the operating environment, which is
composed of specific observations, is an initial but important stage for the modeling of
anomaly detectors. In another intuitive explanation, characterization of the system nor-
mality is the key concerning the anomaly detector’s trade-off between the capability of
detecting anomalies and the ability of suppressing false alarm rate. A possible way, which
is also the trend of current anomaly detection research, is to develop models for charac-
terizing a given operating environment sufficiently well so that optimal detectors for that
environment can be designed. However, due to the lack of the critical understandings and
useful tools for characterizing observable subjects, most anomaly detectors are developed
based solely on “expert” knowledge or intuition, which is often imprecise and incomplete
given the increasing complexity of modern computer systems and the diverse nature of to-
day’s networking environments. The cost must be paid of such work is to allow the limits

7

of anomaly detectors, in terms of expected false alarm rate, to be predicted. More seri-
ously, most existing anomaly detectors pay more attention to the technique itself, rather
than the fundamental understanding of the working environments, which limits their con-
tribution to this research field, and restricts them to a broader application. Another
serious problem is the anomaly detectors’ evaluation, which is deficient and unconvincing
due to the limits of so-called benchmark data set, especially for those researches that have
been focused on a specific method for a particular operating environment. To date, the
most comprehensive evaluation of research on intrusion detection systems that has been
performed is an ongoing effort by MIT’s Lincoln Laboratory, performed under DARPA
sponsorship. It does provide a basis of making a rough comparison of existing systems un-
der a common set of circumstances and assumptions, however, many criticism and review
have pointed out its shortcoming and flaws involving problems in determining appropriate
units of analysis, bias towards possible unrealistic detection approaches, and questionable
presentations of false alarm data [62]. Most anomaly detector’s evaluation relatively little
concerning some of the more critical aspects of their work, such as validation of their
testing data, detailed characterization of their operational procedure and environments,
etc. In this sense, concrete observation-centric analysis would facilitate the understanding
and evaluation of diverse anomaly detectors’s working mechanism.

With the introduced problems in mind, we intend to explore the fundamental at-
tributes of some observable subjects, and analyze the operating environment of several
typical anomaly detectors that drawn from different research fields, based on a general
description of their anticipated behavior [92]. General speaking, this chapter presents our
contributions as following:

• Casting the anomaly-based intrusion detection in a statistical modeling framework,
and characterize the system normality in a general way by selecting several spe-
cific observable subjects that have been applied to some existing typical anomaly
detectors;

• Conducting a careful analysis on the operating environments that some anomaly
detectors work with (mainly the ordering property and frequency property), as well
as the comparative studies in terms of their operational capabilities/limits;

• Concluding the current evaluation methodologies, and propose our idea for better
measurement metrics based on some critical analysis.

The rest of this chapter is organized as follows. Section 2 establishes a statistical
framework to describe the behavior of anomaly detectors from an overall view. In section
3, we give a general description of the selected observation’s normality. Section 4 char-
acterizes the operating environment of several typical anomaly detectors, together with
the analysis of operational limits. In section 5, we propose our idea for better anomaly
detection metrics based on some existing conclusions. Finally, we give a general discussion
in section 6.

2.2 A General Statistical Description

A general statistical formulation of the computer misuse detection have been discussed
in [33], which is generally regarded as a theoretical framework for the latter development of

8

intrusion detection models. With the similar formulation, while pay more attention to the
anomaly detectors’ operating environments, i.e., the properties of observable subjects, in
this section, we give another statistical description for the anomaly detectors’ anticipated
behavior from a more general viewpoint. The description is based on the analogy between
anomaly detection and induction reference problem. A general statistical framework can
be utilized to describe the AD’s behavior:

Notations:
H(t): a hidden stochastic process which maps the activities of legitimate users and

attackers to a finite space S in terms of discrete time step “t”; at time step t, if H(t) = 0,
means legitimate user traces is generated, if H(t) = 1, means attacker traces is generated,
and it is transparent to the anomaly detectors.

h(x): a hidden stochastic process for generating event x.
Ot: observation that is captured at time interval t, it can represent a single event or a

group of events according to the specific detection model, and its generation is governed
by the hidden process H;

Set(Ot, w): a set of observation Oi (i depends on the specific anomaly detection model)
with window w at time step t.

N(t): a legitimate stochastic process that is generated at time unit t, i.e., H(t) = 0;
n(Ot): the probability that the subject to be generated by N(t) at time step t is Ot,

i.e., Pr{Ot|H(t) = 0};
M(t): a malicious stochastic process that is generated at time unit t, i.e., H(t) = 1;
m(Ot): the probability that generated malicious subject at time step t is Ot, i.e.,

Pr{Ot|H(t) = 1};
φi, 0 ≤ i ≤ Num: a pattern (or a probability measure) for legitimate activity that is

stored in the normal dataset Φ with size Num;
ÃD(·): the probabilistic anomaly detector with input Ot or Set(Ot) and output is the

probability that input is determined as malicious;
AD(·): the deterministic anomaly detector with input Ot or Set(Ot) and output is the

binary determination whether input is malicious.
λ: a priori probability that current observable subject is normal, i.e., λ = Pr{H(t) =

0}, and λ is close to 1 due to the fact that the number of malicious process is much smaller
than that of normal process.

As we know, the objective of anomaly detectors is to capture any malicious subjects
that generated by the hidden stochastic process H(t), and what they depend on is a
collection of normality characterization of available subjects. Since Num, the size of the
samples of the normal patterns Φ is limited, naturally, the most effective observations
(or characterized patterns) are desirable. Generally, two properties of the observable
subjects, that is, ordering property and frequency property, can be taken advantage of to
construct the system normality according to the correlation of individual observed events
Ot. Although some anomaly detectors drawn from machine learning (or specification-
based techniques) do not take those two properties as their main concern, our analysis is
mainly based on this basic taxonomy.

2.2.1 Frequency-based analysis

Property 1 Assume that at time interval [t− 1, t], an AD observes an unordered set of
events et

1, e
t
2, ...e

t
n, which is generated by H(t). The frequency of those events F (et

1, e
t
2, ...e

t
n)

9

can be taken as a measurement to characterize the system normality, i.e., Ot = F (et
1, e

t
2, ...e

t
n).

If Ot is taken independently (here Ot is considered as a unit of events), the available
observation can be viewed as an unordered collection of subjects in a particular unit,
and the consideration of temporal patterns that the observation may contain is excepted.
Helman et al. [33] ever gave a thorough analysis for the statistical foundations of computers
audit trail with such property, and in such cases, the probability that current subject Ot

is malicious can be determined according to Bayes theorem,

Pr{H(t) = 1|Ot} =
Pr{Ot|H(t) = 1} · Pr{H(t) = 1}

Pr{Ot|H(t) = 1} · Pr{H(t) = 1}+ Pr{Ot|H(t) = 0} · Pr{H(t) = 0}
=

Pr{Ot|H(t) = 1} · (1− λ)

Pr{Ot|H(t) = 1} · (1− λ) + Pr{Ot|H(t) = 0} · λ
=

m(Ot) · (1− λ)

m(Ot) · (1− λ) + n(Ot) · λ
=

c(Ot)

c(Ot) + λ/(1− λ)

where c(Ot) = m(Ot)/n(Ot), and Pr{H(t) = 1|Ot} > α iff c(Ot) > αλ/(1 − α)(1 − λ).
Thus it is easy to find that the performance of anomaly detectors is related directly with
the value of Pr{H(t) = 1|Ot}, and it increases with the value of c(Ot). Based on the
equation, a simple anomaly detection model can be defined as:

ÃD(Ot) = c(Ot), AD(Ot) =

{
0 if ÃD(Ot) < α
1 otherwise

A series of optimality conditions for the above detection model have been discussed
in [33], and as they pointed, due to the lack of prior knowledge about λ, m(Ot), and
n(Ot), it is almost impossible to carry it out into practice. Specifically, a good estimates
of λ and a thorough understanding of distributions of the processes N(t) and M(t), which
we call system normality, are not readily available, which thus make the detection task
deem to be NP -hard.

Actually, anomaly detection can be regarded as an induction problem in some sense.
Assume that we have an unordered set of n finite description of observable events (strings
of symbols), O1, O2, O3, ..., On. Given a new event at time t, Ot, what is the probability
that it belongs to the set? A well fitting anomaly detector with good description for
the known set of events is expected. The universal distribution [73] gives a criterion for
goodness of fit of such description. According to our definition, the universal distribution
DÃD for anomaly detector ÃD can be regarded as a weighted sum of all finitely describable
probability measures on finite events:

DÃD([Oi]) =
∑

j

βj

t∏
i=1

pj(Oi) (2.1)

t is the time step representing the number of available observation set [Oi], βj can
be taken as the weight of the jth probability distribution on finite observations, and its
definition based on the particular detection model, for example, for an anomaly detector
using string match method, βj = 1, if ongoing events match the exact pattern φ that

10

stored in normal pattern set Φ. Suppose that [Oi], i = 1, 2, ...t is a set of t observations
generated by stochastic process h(x), the probability that DÃD([Oi]) assigns to a new
observation Ot+1 is

Pr(Ot+1) = DÃD([Oi]
⋃

Ot+1)/DÃD([Oi]) (2.2)

The probability assigned to [Oi] by stochastic generator h(x) is

h([Oi]) =
t∏

i=1

h(Oi) (2.3)

In an effective anomaly detection model, for a suitable set of observations [Oi] that
used for characterizing system normality, the probability assigned by DÃD in (2.1) should
be very close to those generated by hidden stochastic process h(x) in (2.3), that is, a
maximal prior information an anomaly detector can posses is the exact knowledge of λ,
but in many cases the true generating process h(·) is not known, what we expect is that
an anomaly detector based on D(·) performs well with small expected errors between D(·)
and λ. For such two probability distributions on finite number of observations, a corollary
derived from Hutter [38] can be given as:

Corollary 1 (Difference Bound) The expected value of the sum of the squares of the
differences in probabilities assigned by the stochastic generator h(·), and anomaly detector
D(·) to the elements of the observation are less than a certain value, and the expected
error in probability estimate might decrease rapidly with the growing size of the normal
data set.

The corollary guarantees theoretically that predictions based on D(·) are asymptoti-
cally as good as predictions based on λ with rapid convergence. Any a priori information
that can be insert into D(·) to obtain less errors, and we believe that if all of the needed
a priori information is put into D(·), then (1) is likely to be the best probability estimate
possible to h(·), and thus anomaly detector could achieve one hundred percent accuracy.
So far, neither modeling approaches, which aim to estimate c, N(·),M(·), nor nonmodeling
approaches, which deduce and generate normal behavior rules using heuristic, clustering
algorithms, data mining techniques and statistical measures, have given a thorough solu-
tion. Actually, the limited samples we can obtain, together with corresponding sampling
errors, determine what we can do is just estimate and predict system normality in an
approximate way.

2.2.2 Sequence-based analysis

Property 2 Assume that at time instant [t − 1, t], an AD observes an ordered set of
events et

1, e
t
2, ...e

t
n, which is generated by H(t). The ordering of this observed event sequence

S(et
1, e

t
2, ...e

t
n) can be taken as a measurement to characterize the system normality, i.e.,

Ot = S(et
1, e

t
2, ...e

t
n).

In many cases, the ordering property rather than the frequency property dominates the
characteristic of observable subjects, the pattern of Set(Ot, w) rather than the individual
event Ot is thus of potential interest, and the ongoing events should be considered in

11

a consecutive manner instead of independently. Based on the assumption that current
event Ot is related with previous events, hidden generation process, and time instant t, a
pair of probability distribution can be given as following:

Pr{Ot|H(t) = 1, Ot−1Ot−2...O1, t}
Pr{Ot|H(t) = 0, Ot−1Ot−2...O1, t}

for most problems, the ultimate goal is just to identify a short temporal pattern of anoma-
lous events, therefore, the sequence Ot−1Ot−2...O1 can be replaced by Set(Ot, w),

Pr{Ot|H(t) = 1, Set(Ot, w), t}
Pr{Ot|H(t) = 0, Set(Ot, w), t}

Similar to the analysis for unordered event set, a posterior probability of anomaly
detection based on temporal-related events can be given as:

Pr{H(t) = 1|Ot, Set(Ot, w), t}

=
Pr{Ot|H(t) = 1, Set(Ot, w), t} · (1− λ

′
)

Pr{Ot|H(t) = 1, Set(Ot, w), t} · (1− λ′) + Pr{Ot|H(t) = 0, Set(Ot, w), t} · λ′

=
c · (1− λ

′
)

c · (1− λ′) + λ′

Where λ
′
= Pr{H(t) = 0, Set(Ot, w), t} is similar with λ, represents a priori probabil-

ity of the legitimate pattern which contains w consecutive events that has been generated
by h(x), and an unknown constant

c =
Pr{Ot|H(t) = 1, Set(Ot, w), t}
Pr{Ot|H(t) = 0, Set(Ot, w), t}

From the above formulation, we do not know with certainty the generation of Set(Ot, w)
by mixture process h(x), nor do we know the distribution of M(t) and N(t). The ongoing
event Ot may depend on the current time step t, as well as the temporal pattern of events
generated at time steps prior to t, which allows the possibility that M(t) and N(t) are
non-stationary. Furthermore, instead of restricting our attention on Set(Ot, w) whether
and which its subsequence is generated by M(t) or N(t), we regard it as a whole dynamic
temporal pattern, therefore, the detection problem of interest is to decide whether the
appearance of ongoing event reveal the temporal pattern includes w events as anomalous,
rather than concern the individual Ot, however, we do not exclude the possibility that
the sudden appearance of anomalous event uncover any previous potential anomalies at
once.

Similarly, the estimation of Pr{Ot|H(t) = 1, Set(Ot, w), t} and Pr{Ot|H(t) = 0, Set(Ot, w), t}
can also be roughly considered as a simple inductive inference problem: Given a string
O<t (denote O1, O2, ...Ot−1), take a guess at its continuation Ot. Specially, the generation
of the event sequence O1, O2, ...Ot−1 is governed by a hidden stochastic process h(·), and
µ is unknown probability distribution for taking Ot at particular time instant t based on
the available event O1, O2, ...Ot−1, i.e. µ(Ot|O<t), while ρ is a guess probability distribu-
tion close to µ or converges, in a sense, to µ, and we expect that an anomaly detector
based on ρ performs well. Taking into account the specific property of anomaly detection

12

and keeping the consistence with the former analysis, here we assume µ ≈ λ. Suppose
P := {p1, p2, ...pn} is a countable set of candidate probability distributions on event se-
quences, a universal probability distribution π related to P (in essence O) hence can be
defined as:

π(et
1:n) :=

∑
p

wpp(et
1:n),

∑
p∈P

wp = 1, wp > 0. (2.4)

As the above notations, the normal observation set O or P is known and might contain the
true distribution λ = pi if O or P is sufficiently large or with well characterization. Based
on those assumptions, two corollaries therefore can be deduced from theorems of [38] in
following to describe the general behavior of sequence-based anomaly detection models:

Corollary 2 (Convergence) Assume a hidden stochastic process h(·) generates an event
sequence et

1, e
t
2...e

t
n over a finite space S with probability λ(et

1:n). An AD observers the first
i events, the universal conditional probability π(et

1|et
<i) of the next symbol et

i given et
<i is

related to the true conditional probability λ(et
i|et

<i) in the following way:

n∑
i=1

E<i

∑

et
i

(λ(et
i|et

<i)− π(λ(et
i|et

<i))
2 ≤ ln w−1

λ

where E<i[..] :=
∑

et
<i∈P i−1

λ(et
<i)[..] is the expectation and wλ is the weight of λ in π.

which shows that the predication accuracy of anticipated anomaly detectors are asymp-
totically as good as predications based on the stochastic generator h(·) with rapid conver-
gence. However, in practice, ongoing observation might not have exact matching pattern
in P , i.e., λ /∈ P , in such case, a “nearby” distribution λ̂ with weight w(λ̂) is expected,
and the distance between λ̂ and λ is bounded by a constant. The convergence of anomaly
detectors determines the amount of training time or data required to have a stable model,
and the detector converges well when most of the “anticipated” patterns appear repeat-
edly and are extracted well.

Corollary 3 (Error Bound) Assume a hidden stochastic process h(·) generates an event
sequence et

1, e
t
2...e

t
n over a finite space S with probability λ(et

1:n) at time instant t. Θπ is
the universal prediction scheme (used by a probabilistic ÃD to determine the deviation
between normal sequence and abnormal ones) based on the universal prior π, Θλ is the
optimal prediction scheme based on the stochastic generator h(·). The total u-expected
number of prediction errors EΘπ

n and EΘλ
n of Θπ and Θλ are bounded by:

0 ≤ EΘπ
n − EΘλ

n ≤
√

2QnSn ≤ 2Sn + 2

√
EΘλ

n Sn

where Qn =
∑n

i=1 E<i is the expected number of non-optimal predictions made by Θπ, and
Sn :=

∑n
i=1 E<i

∑
et
i
(λ(et

i|et
<i) − π(et

i|et
<i))

2 is the squared Euclidian distance between λ
and π.

The corollary actually gives the upper bound of the false alert rate of an ideal sequence-
based anomaly detector. We usually pay our attention to the lower bound of the false
alert rate of anomaly detectors, but in fact, all the possible detection schemes also have
a upper bound to some extent. Although it makes little sense on designing an anomaly

13

detection system with near zero false alert rate, it really gives us an impression that any
anomaly detection schemes based on sequence prediction would never perform too badly.
And obviously, how to select a universal probability distribution π, specifically, pi ∈ P
and wi, is always the key to design an ideal sequence-based anomaly detection system.

Rather than considering the specific design of anomaly detectors, here we just attempt
to show that anomaly detection problem essentially is also a prediction problem in some
sense. Related proof of those two corollaries can be found in [38], which provides theoretic
foundation for any anomaly detection scheme, and shows that probability distribution of
the expected controllable process converge to that of the hidden stochastic process and
limited by errors bound. Based on the historic data, the extent of the deviation between
an expected event and ongoing event thus determines whether anomaly appears.

Generally, this section casts the anomaly detection problem in a statistical framework
to describe the anticipated behavior of anomaly detectors from a high-level viewpoint,
which facilitate us to construct a basic modeling for the further discussion in our latter
work. Although the unrestricted assumption of the framework is quiet complex and
general, it is nevertheless meaningful to provide an outline for our detailed analysis. As
we know, many of subjects that anomaly detection schemes to examine are notoriously
noisy, non-stationary, and defined on extremely large alphabets, while our framework
extracts them to a comprehensible and manageable level, and based on which, we select
several typical subjects that have been widely used for analysis.

2.3 Normality Characterization

Basically, two kinds of observable subjects from computer systems can be selected as the
objects for monitoring and analyzing in order to capture the anomalous traces, namely,
hosts in the network and the communication links among the hosts. From a general
viewpoint, most of those subjects have the following characteristics:

• The amount of generated data is huge, with a large number of attributes, and each
of those values may be in a complex form. Many of the data sources to be examined
are defined on extremely large alphabets.

• Noisy data are generated randomly, mixed with normal data, which makes it difficult
or even impossible to distinguish normal data and malicious data with high accuracy.

• The process that governs the generation of subjects is non-stationary, and the con-
cept of system normality might be site-specific and drift with time.

• The profiles to be monitored are presented with unbounded data streams, being
updated frequently, dynamic, and even transient.

Consequently, several criteria worth careful examination in order to select the most
effective and efficient observable subjects for characterizing the system normality:

• Availability, the most basic condition, which means that the subject can be observed
and captured directly or with some assist tools.

• Tangibility, which means that subjects can be recorded in a specific form, and can
be recognized or dealt with in a particular way, such as user profiles or audit files.

14

• Operability, which means that although a subject might have a large number of at-
tributes, it should be possible to be managed using some data processing techniques
such as attribute projection, feature selection, or value aggregation.

• Sensitivity, which means that the subject is both robust to variations in system nor-
mality, and perturbed by intrusions, so as to reflect the normality drifts sufficiently
well.

The first three criteria are essential to the observable subjects, and all the subjects that
have been selected so far have these characteristics, such as the system calls of privilege
processes in Solaris OS, system audit events, user command lines, CPU consumption,
TCP/IP packets, etc. However, it is usually hard to define the “efficiency” of those
subjects, namely, to what extent the subjects could characterize system normalities.

2.3.1 Host-based Normality

A great number of variables could be employed to characterize the state of a host, such as
command line strings [58,59], system call traces [28], resource consumption patterns [53],
etc. The properties of all those variables could be encompassed into the framework that
we established in the last section. However, in fact, the normal behavior of many variables
does not have obvious pattern, which would be taken as “noise” of “normality”. Burgess
et al. [15] gave a careful analysis on the computer system normality, according to which,
the system can be distinguished as three scales:

• Microscopic, details exact mechanisms at the level of atomic operations, such as
the individual system calls and other atomic transactions in operating systems (in
terms of milliseconds).

• Mesoscopic, looks at small conglomerations of microscopic processes and examines
them in isolation, such as the individual process or session, or a group of processes
executed by one program (in terms of seconds).

• Macroscopic, concerns the long-term average behavior of the whole system, such as
the periodical activities of the users and their corresponding resources consuming
patterns.

All the host subjects fall into these three categories, and can be taken as the objects for
anomaly detectors, whether it aims to look for suspicious patterns or attempts to identify
the values that deviate from the acceptable distribution of values. But actually, most of
the available host-based anomaly detection methods take subjects at mesoscopic level due
to its better controllable attributes to establish anomaly detection models. For instance,
Forrest et al. [28,34] ever proposed an immunological detection model by analyzing system
calls sequences, which focus on the mesoscopic level of UNIX operating system, and
some subsequent independent works [48,50] also take system calls sequences as observable
subjects. Consequently, the motivation to analyze the normality of the mesoscopic scale
is obvious, that is, why system calls sequences can be selected as observation? What
attributes these sequences have? Whether the regularity of such computing environment
benefits the anomaly detection? Actually, Forrest et al. [28] has given an satisfied answer
for the first question, but for the last two questions, there are still some problems need
further exploration.

15

Most the work took the name of the system calls as the observable (other parameters
passed to the system calls are ignored), after sequence is established, namely, (s1, s2, ...sl),
detection methods such as Enumerating Sequences, Frequency-based methods, Data min-
ing techniques, HMM, or some text categorization methods were applied to identify
anomalies. The work of Lee et al. [48] showed that additional information to the se-
quence elements would improve detection performance without considering the trade-off
between detection accuracy and computational cost. For instance, sequence can be estab-
lished as (s1 o1, s2 o2, ...sl ol) or (s1, o1, s2, o2, ...sl, ol), where oi represent the obname of
system call i. Additionally, Lee et al. gave an analysis for the regularity of these objects
using information-theoretic measures, such as entropy, conditional entropy, relative con-
ditional entropy, information gain and information cost, which gives us a good clue for the
characterization of the system normality. Specifically, for an audit data set X where each
data item belongs to a class x ∈ Cx, y ∈ Cy, several information theoretic measures can
be used to describe its characteristics, in order to built an appropriate anomaly detection
model:

• Entropy:

H(X) =
∑

x∈CX

P (x)log
1

P (x)
,

where H(X) is the entropy of X relative to CX , and P (x) is the probability of x in
X. As we know, the amount of variability is most easily characterized by the entropy
of the signal, if the variations in data are equally distributed about some preferred
value, the the distribution over a sufficient number of instances would be normal.
H(X) thus can be used to measure the regularity of the record in audit data, and
the data set with smaller entropy would improve the detection performance due to
its purer nature and simpler structure.

• Conditional Entropy:

H(X|Y) =
∑

x,y∈CX ,CY

P (x, y)log
1

P (x|y)
,

As we explained in the last section about sequence-based anomaly detection models,
for two sequence sets,
X = (x1, x2, ...xm), xi = (ei1, ei2, ...ein−1, ein),

Y = (y1, y2, ...ym), yi = (eik, eik, ...eik−1, eik),

where eij represent the event and k < n, H(X|Y) thus can be used to measure
the regularity of sequential dependencies, and the smaller the values is, the more
deterministic of the sequence x after y is obtained, which therefore benefits the build
of anomaly detection models.

• Relative Conditional Entropy:

E(p|q) =
∑

x∈CX

p(x)log
p(x)

q(x)
,

16

where p(x) and q(x) are two probability distributions over the same x ∈ Cx, and
E(p|q) can be applied to measure the similarity of two datasets (e.g. training data
and test data). The distance (similarity) between two audit datasets could provide
us a prior knowledge to build and evaluate anomaly detection models.

• Information Gain:

Gain(X,A) = H(X)−
∑

v∈V alues(A)

|Xv|
|X| H(Xv),

where V alues(A) is the set of possible values of A and Xv is the subset of X where A
has value v. Gain(X, A) can be used as a criteria to select important attributes for
achieving better classification, and thus prediction performance, essentially, it has
the similar contribution as conditional entropy to measure regularity of sequential
dependencies.

Although there are still some details about the data normality worth consideration,
the proposed information-theoretic measures give us some fundamental understanding
about the regularity of computing environment that the anomaly detectors work. Lee
et al. [48] applied conditional entropy to determine the appropriate length used for se-
quencing the system calls to construct an anomaly detection model with the conclusion
that there is a relationship between the fall of in entropy and the appropriate window
size for probabilistically-based classifiers. But interestingly, Tan et al. [77] suggested that
conditional entropy is not a universal sequence-length selection metric, and it almost has
the same appearance in a general manner, independent of the particular datasets, which
undermines its effectiveness. However, we still believe that those information theories can
contribute to the characterization of the environment normality, and thus improve the
performance of anomaly detectors to some extent. Moreover, we have already found out
the intersection between those information-theoretic measures and the stochastic frame-
work we have discussed in the last section, especially for those sequence-based anomaly
detection models.

To measure the computer system normality from a macroscopic level, Burgess et al. [15]
applied a scaling transformation to the measured data, and the distribution of fluctuations
about the mean was approximated by a steady-state, maximum-entropy distribution with
modulation by a periodic variation. The idea can be brief described as:

Motivation for Transformation: the entropy of the collected data are computed to
gauge the variability of the signal, which indicates that signal is maximally; average and
standard deviations are computed in terms of periodicity, and the periodogram standard
deviation is itself a pseudo periodic functions of time, which shows that the system acts as
a scale of activity that varies in time; each time is re-scaled by its local standard deviation,
and the scaled distribution of measurements at a given periodic time is closely resembles
a Planck distribution.

Transformation: As the entropy to be high, processes which have “fluctuation struc-
ture” can be written in exponential form exp(−βEi) as a Boltzmann distribution with
some arbitrary set of parameters Ei, which satisfies the maximum entropy condition for
fitting the data; The probability distribution is approximately written as

p[q] = exp(−βE[q])/

∫
dqexp(−βE[q]).

17

To determine parameters E[q], a stochastic model is used:

E[q] =

∫
dt[(

dq

dt

2

) + V (q)],

As the system is moderately loaded, two simple assumptions are based on: (a) maximal
entropy of data and (b) fluctuations at no cost, therefore, V (q) = 0. Finally, Planck dis-
tribution, which is the form of the equivalent, transformed steady-state system is yielded
through computing the fluctuation spectrum for the model on a periodogram.

Burgess et al. gave a method to characterize system normality from the point of
view of macroscopic scale, which inspire us to detect host-based system anomalies from
a macro perspective, however, due to its approximate nature, any attacks with normal
pattern appearance are difficult to be identified based on such model, in addition, what in-
formation are required and effective for detecting anomalies need further exploration, and
it heavily depends on what will we do once anomalies have been discovered. Intuitively,
the normality of those observable subjects from mesoscopic and macroscopic scales could
be combined to achieve better performance, macroscopic normality is used to monitoring
the variant of system coarsely, while mesoscopic give doubtful activities further analysis
and fine-grain characterization.

2.3.2 Network-based Normality

Due to the diverse nature of the computer network, it is almost impossible to establish
an ideal mathematical model with perfect characterization of the normality of observ-
able subjects, i.e. network packets, nor it is easy to design efficient intrusion detection
techniques for networking. However, this does not only only for intrusion detection, but
also more or less for other fields, such as traffic modeling and analysis. In this sense,
the fundamental understanding of basic protocol behavior is a possible way to go. In
addition, due to the inherent limits of the available IDSs and the increasing application
of encryption in communication, such as IPSec, SSL, intrusion detection and prevention
have once again moved back to the host systems. Here, we only propose some preliminary
ideas to measure network normality, while further experimental analysis and verification
are left to our later work.

So far, tcpdump data has been widely applied to detect attacks from the protocol
scale (connection behavior). Generally, each record describes a connection using several
features: timestamp, duration, source port, source host, source bytes (outbound bytes
from source to destination), destination port, protocol type(TCP, UDP, ICMP or others),
destination host, destination bytes (inbound bytes from source to destination), and flag.
Due to the huge data amount generation everyday and the transient nature, it is really
difficult to describe the system normality in details, and therefore simplification and
preprocess is needed. Taking those features as various attributes, Lee at al. [48] used
information gain as guiding principle to partition tcpdump data based on the assumption
that the smaller the entropy is, the more regularity the dataset, and therefore benefit for
modeling and characterizing anomaly detectors, and conditional entropy was applied to
compute temporal and statistical features. Although it is true that such pre-analysis could
facilitate anomaly detection modeling, huge amount of data and transient nature make it
is time-consuming to determine the proper granularity of the subjects. Some techniques
for online analysis of continuous stream give us some clues to capture the transient nature

18

of network subjects [21, 31]. Additionally, some network traffic modeling methods also
give us some inspiration to monitor and obtain the necessary information for measuring
network normality at a macroscopic level [54].

In order to develop a traffic model which can accurately characterize the diverse sta-
tistical properties with complex temporal correlation and non-Gaussian distributions of
heterogeneous network, Ma et al. [54] proposed a wavelet domain-based models. In these
models, correlation structures of wavelet coefficients for long/short-rang dependence pro-
cesses are reduced to only a few key elements. For Gaussian traffic, Markov models can
be implemented through a linear model on wavelet coefficients to capture the short-range
dependence among wavelet coefficient, i.e.

ds =
s−1∑

l=1

as(l)dl + bsws, 1 ≤ l ≤ N

where as(l) and bs are weighting factors depending on the one-dimensional index s, and
ws is i.i.d Gaussian noise with zero mean and a unit variance. The value of s and as(l) = 0
determines the model and the relations between wavelet coefficients, for example, when
s = 1, and as(l) = 0 for all l, the model is the simplest one, i.e., an independent wavelet
model.

For non-Gaussian distribution traffic, a shaping algorithm was derived using the rela-
tionships among wavelet coefficients, scale coefficients, and the cumulative process. Specif-
ically, it includes two stages:

• Traffic Modeling: wavelet transform on a training sequence x̂ to obtain wavelet coef-
ficients and scaled coefficients, and then estimate the variance of wavelet coefficients
and the cumulative probability function of scale coefficients at each time scale.

• Synthetic Traffic Generation: generating the background wavelet coefficients by
Gaussian wavelet model and compute the shaped wavelet coefficients and scale coef-
ficients recursively for all time scales, after wavelet inverse transformation, synthetic
sequence x̃ is obtained.

Therefore, after wavelet transformation, whatever short- and long-range temporal de-
pendence traffic are all “short-range” dependent on the wavelet-domain, which facilitates
significantly the characterization of network normality and our analysis of anomalies at a
macro level.

The countermeasure to deal with the transient nature of network observable subjects is
online analysis, that is, process the data in a single pass, or a small number of passes. For
instance, under some definition of “similarity”, similar items can be clustered in the same
partition, while different items are in different partitions. Based on the existing facility
location algorithm, Guha et al. [31] modified it to produce exactly k clusters for solving
k-Median problem in one pass, their experiment on KDD-CUP 99 intrusion detection
data showed that raw tcpdump could be clustered into five clusters with 34 continuous
attributes. In addition, Cormode et al. [21] ever proposed a novel algorithm for calculating
a small summary for any data stream, i.e. lo sketch, and employed Hamming norm to
estimate the similarity of streams online, which also give us a rapid and ease method to
analyze network regularity.

Based on the available techniques we have analyzed, a framework for measuring net-
work normality can be concluded through a top-down procedure as follows (its skeleton
is shown in figure 2.1):

19

Figure 2.1: A simple framework for measuring network normality

1. Coarse-grained Level:

• Mapping network traffic into wavelet domain to discover the periodicity of the
specific network activities, which can disclose the sudden system collapse and
unrhythmic activities;

• Sketch-based techniques and clustering methods are applied to a certain doubt-
ful time-scale (or a periodicity) to have further insightful investigation.

2. Fine-grained Level:

• Information-theoretic measures are used to divide the processed network data
from coarse-grained level into more “pure” data sets with higher regularity;

• Building anomaly detection models based on the characterization of system
normality.

Actually, collection and monitor of network observable subjects in a discrete way
rather than a continuous way may not deteriorate the performance [15]. From the point
of view of the observable subjects, we envision a framework in which several levels of
data analysis are used as the basis to be combined to yield a single but effective system
normality characterization. We envision further an approach in which anomaly detection
models are built on the fundamental understanding of their operating environments, and
have the adaptability in response to changing situation. The hope is that a collection of
simple, elaborate surrogates based on specific observable subjects can evolve into generic
models without performance deterioration. From the similar motivation, a host-based
autonomic detection coordinator have been developed in [91].

2.4 Case Studies

Generally, operating environment means the working situation constructed by the observ-
able subjects that anomaly detectors working with, and most of them can be cast in the
framework we proposed in section 2. In the last section, we gave a general discussion of
normality characterization for observable subjects from hosts and network. After a broad
survey of the existing literature on anomaly detectors, we found that most work pay
more attention to the design of the anomaly detection models themselves, rather than

20

the operating environment. Here, we take two kinds of anomaly detectors (frequency-
based and sequence-based) as instances to insight their operational mechanisms from the
perspective of operating environment.

2.4.1 STIDE Detector

The stide algorithm can be described as follows [28]:
Predefinition: for two sequence X and Y ,
X = (x1, x2, ...xN), Y = (y1, y2, ...yN),
the similarity between them is defined as:

Sim(X,Y) =

{
0 if xi = yi, for all i, 0 ≤ i ≤ (N − 1)
1 otherwise

Given a set of sequences in the normal database,
{Y1, Y2, Y3, ...YM}, |Yi| = N, 1 ≤ i ≤ M , and a ordered set of sequences in test data,
{X1, X2, X3, ...XZ−(N−1)},
where Xs = (xs, xs+1, ...xs+(N−1)) for 1 ≤ s ≤ (Z − (N − 1)), and the size of test data is
Z, the similarity measure assigned the sequence XS is:

ˆSim(Xs) =

{
1 if Sim(Xs, Yj) = 1, for all j, 1 ≤ j ≤ M
0 otherwise.

Finally, locality frame count(LFC) with size L for each size N sequence in the test
data is defined as:

LFC(Xs) =

{ ∑s
l=((s−L)+1)

ˆSim(Xl) for s ≥ L∑s
l=1

ˆSim(Xl) for s < L

Based on this algorithm, a concise database containing normal sequences with length
N can be generated for detecting anomalies. The algorithm is easy and effective, some
more sophisticated models do not have significant performance improvement over the
original model [81]. In the original work, the sliding window of the STIDE detector was
set 6, Lee at al. [48] gave an analysis using conditional entropy to explain the selection of
the “magic number”, but Tan et al. [77] undermined the entropy-based analysis using a
random data set. Furthermore, they gave a thorough analysis on the selection of detector
window using a synthetic data set [77, 78]. Actually, this phenomena depends heavily on
the STIDE’s operating environment, and the detector essentially works in an exhaustive
way, its performance therefore is effected by the normal data set, any foreign elements
or sequences that unincorporated in the normal data set would be detected easily. As
Maxion et al. [58] analyzed, STIDE has a blind region under x = y in coordinate, where
x-axle represents “size of foreign-sequence anomaly” and y-axle denotes “size of detector
window”. The existence of blind region cause the detector to suffer from simple exploits
by a sophisticated attacker who have fundamental understanding with its operational
limits. Therefore, the analysis and construction of normal sequence data set is essential
to improve the performance of STIDE. The trad-off between the cost and accuracy is the
variant detector window above six.

21

2.4.2 MCE: Cross Entropy-Based Anomaly Detector

Based on the assumption that the occurrence frequencies of different observable subjects
can be measured during a certain time scale, a probability distribution can be used to
represent the occurrence pattern during this period. In this model, the sequential property
is out of consideration, which essentially is a kind of static method [89]. The method has
not been widely used because of its unsatisfactorily performance in some situation. Its
basic idea can be described as follows:

Assume P (M) denotes the probability distribution characterizing the behavior of a
normal model M and Pi(M), i = 1, 2, ...N denote the occurrence probability of event i
among a set of N events, the similarity of two distributions P and Q can be measured
using cross entropy:





C(P, Q) =
∑N

i=1(Qi − Pi)log
Qi

Pi
.

C(P, Q) ≥ 0,
C(P, Q) = 0 ⇔ P = Q.

After determining a threshold for the similarity between P and Q using training data
and validation data set, we can decide whether ongoing events set should be considered as
intrusive with respective to the normal model. Actually, the performance of this method
might be improved significant with the preprocess of data using information-theoretic
measures that we discussed in last section.

Here, we do not intend to undermine the contribution of the work [89], and we only
want to point out that a careful analysis of the operating environments that anomaly
detectors work could also obtain the same conclusion as that from expensive trial-and-
prone-to-error experiments. In their work, the anomaly detector operated with two kinds
of observable subjects, one is program profiles based on Unix system calls, another is user
profiles based on Unix shell commands. As we know, system calls executed by the same
process have certain temporal pattern, namely, system calls from a specific process have
the sequential correlation, at least the order between several system calls always keep
unchanging. While for the shell command data, although individual user has particu-
lar pattern during his/her login session, that is, the token was recorded almost always
keep the same entropy, the frequency of tokens rather than the sequential relations have
more contribution to the characterization of user behavior. Under such cases, anomaly
detectors which can capture temporal characteristics, such as HMM-based anomaly de-
tector, obviously have better performance in the system calls data set than that of in the
shell command data set. On the contrary, frequency distributions-based anomaly detector
have the inverse performance due to the properties of operating environment. Therefore,
after simply but effective analysis of the operating environments, we can get the same
conclusion that [89] ever got easily.

2.4.3 Probabilistic Anomaly Detectors

Ye et al. [86] gave a nearly thorough analysis on the probabilistic techniques-based
anomaly detectors with computer audit data, including decision tree, Hotelling’s T 2 test,
chi-square multivariate test and Markov chain. Part of conclusion they obtained was
“...unless the scalability problem of complex data models taking into account the ordering
property of activity data is solved, intrusion detection techniques based on the frequency

22

property provide a viable solution that produces good intrusion detection performance with
low computational overhead.”

Among the various probabilistic techniques-based intrusion detectors, expect Markov
chain, all the others can be regarded as static intrusion detectors due to their statistical
nature (although some ordering property of the observable subjects were also considered).
Our analysis on their operating environment is motivated by following questions:

• Whether the property of the selected observable subjects have been explored thor-
oughly?

• If not, whether complex models could discover more?otherwise, whether frequency
property is enough for their operational performance?

• Can we get a conclusion that some information will be lost when only event type of
computer audit data are used to characterize system normality?

Here, we only consider the basic data model that all the probabilistic anomaly detectors
applied. In the model, the observable subjects, namely, audit data are represented as
frequency distribution (X1, X2, X3, ...XN), where N denotes the number of different event
in the audit set, and the exponentially weighted moving average method (EWMA) was
applied to compute the value of Xi, specifically, if the current event t belongs to the ith
event type,

Xi(t) = c ∗ 1 + (1− c) ∗Xi(t− 1),

if the current event t different from the ith event type,

Xi(t) = c ∗ 0 + (1− c) ∗Xi(t− 1),

where Xi(t) is the observed value of the ith variable in the vector of an observation
(X1, X2, X3, ...XN) for the current event t, thus a M × N vector with M target values
is constructed if the observation set has M data points; c is the smoothing constant
that determines the decay rate; and 1 ≤ i ≤ N . This model can convey not only
the relative frequency distribution of N in a sequential events during a certain time
scale, but also reflect the intensity of activities. However, from the point of view of the
observable subjects, two aspects of the data modelling worth insightful consideration, i.e.,
the selection of parameter λ, and the correlation among data points. A figure below shows
the decay effect of different smoothing constants.

We can see from Fig.2 that after a certain period, the weights drops close to zero,
but the speed is different due to the various value of c. For example, when c = 0.3, the
frequency value of Xi(t) at the current event considers about the past 15 audit events
(k=0,...,14), while past 22 events (k=0,...,21) are taken into account when c = 0.2. In
work [87], c was set to 0.3−a commonly used value for the smoothing constant, other
values were not tried and compared. Although we do not expect that some unknown
c could improve the modelling performance dramatically, a comparative study should
be carried out to insight the impacts of different values, and thus select one for better
modelling. Furthermore, c might vary in different situation, due to the drifting of system
normality, a constant value thus can hardly characterize all the normal activities well.

Both the normal and intrusive training data can be represented using the frequency
distribution representation, and thus probabilistic techniques such as Hltelling′s T 2 Test,

23

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

W
ei

gh
t

k

Smoothing constant c=0.2
Smoothing constant c=0.25
Smoothing constant c=0.3
Smoothing constant c=0.35

Figure 2.2: Decay effect with different smoothing constants

Chi − Square Multivariate Test can be used to calculate the distance between testing
data and training data. An assumption to support this model is that testing data are
taken as a whole collection of audit events. Although some ordering property is carried
in the model, the knowledge of the unobservable process distribution is ignored. As we
know, each process might generate a group of audit events, and there might exist some
intervals between those groups, an underlying continuous measurement therefore should
be considered in the data model, in order to capture the process shift. Based on this fact,
a grouped data EWMA model [35], rather than variables based EWMA, might have more
contribution to the characterization of computer audit events.

Additionally, in the original data model, only the audit event type was considered,
while other attributes, such as user ID, process ID, session ID, the system object ac-
cessed, were omitted. To incorporate those necessary additional information, a multivari-
ate EWMA can be used as follows:

Xi(t) = C ∗Oi(t) + (1− C) ∗Xi(t− 1),

where Xi(t) is the ith EWMA vector, Oi(t) is the ith observation vector at time t, i =
1, 2, 3...n, C is the diag (c1, c2, ...cp) which is a diagonal matrix with c1, c2, ...cp on the
main diagonal, and p is the number of variables, i.e., the number of attributes that we are
considering. The MEWMA model takes into account all the necessary variables of audit
events, and thus can be used to capture the process shift in multi-scales. Although it is
much more complex than the univariate EWMA, a better performance is expected to be
achieved if some scalability problems are solved well.

Preliminary analysis shows that the characterization of the operational situation has
great effect on the anomaly detector’s performance. Tracing back to the problems posed in
the beginning of this subsection, we infer that more accurate/complex data models might
benefit the improvement of anomaly detector’s detection performance. However, scala-
bility problem is another obstacle, which was claimed in [88]. The work also proved that
the performance of first-order Markov chain is better than that of high-order stochastic
models, although the latter one has more complex model (means more expensive compu-
tational cost) than the former one.

24

2.4.4 Comparative Analysis

As former analysis, all the anomaly detectors are specialized by their different detection
coverage or blind spot, part of which attribute to operating environment. We hope that a
thorough comparison analysis could provide us an approach to combine anomaly detectors
together to achieve a broader detection coverage. In fact, the statistical modeling in
section 2 facilitates the comparison between those anomaly detectors, in terms of detection
capability and operational limits.

Table 2.1: A Comparison between Three Typical Anomaly Detectors

Anomaly Detector Observation Main Property Detection Cost
Frequency Ordering

STIDE [28] System calls
√

O(N · L)

MCE [89] System calls/
√

O(N · n2)
Shell Command Lines

Markov Chain [86,88] O(L · n2)
Hotelling’s T 2 [86,87] Audit Events

√ √
O(L · n2)

Chi-square [86,87] O(L · n2)

A brief compared results is shown in table 2.1 (Markov Chain, Hotelling’s T 2, Chi-
square are general called probabilistic anomaly detectors), where N is the size of normal
profiles which has different meaning in different anomaly detectors, while L is the size of
ongoing trace being detected. ’n’ is the number of unique events/states. For STIDE, w
is a predefined window size. What we compare here is only the detection cost, while the
cost of models’ construction are not considered. Note that the detection cost of STIDE
can be reduced to L∗ logN , if normal data are stored in an effect form, i.e., forest of trees.
The detection cost of probabilistic detectors are differ in specific techniques, for instance,
Hotelling′s T 2 requires a large memory to store the variance-covariance matrix and much
time to compute the matrix multiplication and inverse, its time complexity for detection
nearly O(N2) (L << N), while Markov chains or chi-squre multivariate test need less
computational overhead, i.e., O(N) or so.

Although the original detection models have their own operating environments. Care-
ful analysis allow them to be extended to a broader application field. For example, STIDE
was originally developed with system calls of privileged programs, but it can also be ap-
plied to audit events provided the scope of activities is not so wide, based on the similar
properties of those two observations. Similarly, the probabilistic anomaly detectors that
were originally operated with audit events and shell command lines can also be extended
to system calls, if enough ordering property are included during the data modeling.

Among those detectors, STIDE has the highest detection capability in general case,
because it stores all the unique system calls sequences in the normal profile. Any ongoing
traces with system call sequences that never appeared in normal profile will be detected as
anomalies (determined by LFC). According to Corollary 2, STIDE has a good convergence
due to the high average value of wµ. Generally, two elements contribute to the higher
detection capability of STIDE:

• Observable subjects, i.e., system calls. As we know, system calls of privilege pro-
cesses is a good level to reflect the user behaviors due to its limited range of actions,

25

sensitivity to changes, and stability over time. While shell user command lines and
audit events have less characteristics compared with system calls.

• Nearly exhaustive searching mode. All the available unique system calls sequences
are used to characterize system normality, which constructs a broad boundary to
encompass normal behavior.

For frequency-based anomaly detectors, less characteristics of their operating environ-
ments, e.g., unpredictable range of activities, instabilities over time, cause them to suffer
from low detection capability. According to the corollary 1, only the huge size of normal
data set provides them an opportunity to decrease expected error between probability
estimation and stochastic generator to a low level.

2.5 Evaluation of the Anomaly Detectors

Another hard stone in the anomaly detection research community is the anomaly detec-
tors’ evaluation. Most of existing IDSs take 1998 and 1999 DARPA Intrusion Detection
System Evaluations Data Set [63] as benchmark for evaluating their performance, and
most researches focus on tallying with detection accuracy and false positive rate of de-
tection methods, rather than the fundamental understanding of evaluation environment.
Therefore, the specific design of anomaly detectors based on particular situation, together
with some strong assumptions limit their application to a broader application scope.

Mchugh [62] gave a thorough analysis of so-called benchmark data set, and proposed
the essential conditions that ideal measurements should have. Briefly, it includes:

• The primary method, i.e ROC (Receiver Operating Curve), to present the results
of the evaluation provides no insights into the root-causes for IDS performance, and
the more helpful metrics should be developed.

• The curse of the false alarms generation has not been explained clearly, therefore, the
useful description of the difference between activities that are identified correctly as
an attack and those that provoke a false alarm needs more insightful investigation.

• To make sure that the false alarm rate for synthetic data has an obvious relationship
to that of real data, background traffic data characterization is needed for calibrated
artificial test data sets.

Up to now, we have not found such work that meet above requirements completely.
With the problem that whether the environment regularity has effect on the probabilistic
algorithms-based anomaly detectors, Maxion and Tan [59] provided an idea for successful
data synthesis, and the result verified their hypothesis. But their model is too simple
to interpret more complex anomaly detection models, and some additional observational
work from real data is needed. In addition, only juxtapositional anomalies was considered
in that model, while temporal anomaly detection was left.

Inspired by those former works, we have a primary idea to generate synthetic data
for the general evaluation of anomaly detectors. Although it is still during the process of
implementation and verification, we believe that it will contribute to the development of
anomaly detection evaluation to some extent.

26

Firstly, collect pure real normal data source from a real environment, and mapping
those collected data into controllable domain (for example, mapping network packets into
wavelet domain and approximate host audit data as the Planck distribution respectively).

Secondly, apply some candidate anomaly detectors to the controllable data set, and
analyze the data that ever provoked false alarms. This step should be done recursively to
prune the data as pure normal data without confused false alarms.

Thirdly, in order to ensure the regularity of processed data, information-theoretic
measures could be used to divide the data as smaller but purer ones.

Finally, artificial anomalies (such as foreign symbols or sequences, and rare sequences)
are incorporated into the data. One way to make it more effective is to add predefined
anomalies one by one, until to a determined amount.

2.6 Concluding Remarks

This work addressed the following issues and provided some potential solutions:

• The operational limits of some anomaly detectors are due to themselves or the
particular operational environments they run.

• Whether a better characterization of system normality can improve the performance
of anomaly detectors (sometimes obviously, sometimes may not).

• How to select proper anomaly detectors for a specific situation when we take into
count the trade-off between performance and cost.

• It is usually hard to find a general way to evaluate existing anomaly detector’s
performance (including those state-of-the-art ones) in terms of admitted criteria
(hits, misses, and false alerts). ROC is generally regarded as a typical but superficial
analysis tool.

Those questions have been analyzed and discussed in a general way based on the avail-
able achievements, although there are still some problems worth further consideration,
and some proposed ideas remains verification and implementation, we believe that future
work along this way could contribute additional insight for the research and application of
anomaly detectors. Someone may argue that our work are obvious and straightforward,
we believe that it is important to develop a framework for the anomaly detection field,
including characterization, identification and evaluation of their operating environment
in order to guarantee their formal and rapid development, and it seems more important
than just pruning detector itself regardless of its insightful understanding and broader ap-
plication. Obviously, our future work includes the implementation of our proposed ideas,
and the further analysis for the operating environment of several anomaly detectors from
the view of observable subjects.

27

Chapter 3

Online Training of SVM-Based
Anomaly Detectors for Adaptive
Intrusion Detection

3.1 Introduction

As introduced in the first chapter, the available approaches for anomaly detection focus
on tallying with detection accuracy and false alarms, the trade-off is always their main
concern. Given enough time, most of those anomaly detectors can achieve satisfactory
results in terms of the general recognized criteria. However, in practice, intrusion de-
tection is a real-time critical mission, that is, malicious behavior should be detected as
soon as possible or at least before the attacker eventually succeeds. In addition, there is
usually an initial training period for an anomaly detector to characterize the observable
subject’s normal patterns, and most existing methods are based on the assumption that
high quality labeled training data are readily available, which severely limits their appli-
cation in practice. As the fact, the computer systems become increasingly complex and
much more interconnected, whose collective behavior is intricate because of their inter-
acting organisms, components, and systems. More, multiple users and remote network
services are dominating external influences, make that more complicated. The lack of
predictability in operating systems and network behavior is essentially due to this com-
plexity, and therefore brings more challenges to the development of effective anomaly
detection techniques. To cope with such complexity, anomaly detectors should undergo
frequent retraining, to incorporate periodically new examples into the training data for
classifying novel attacks, and more importantly, suppressing false alerts triggered by the
drifts of those normal behaviors. In this sense, running time and training time should
also be considered in addition to detection accuracy and false alarms when designing an
adaptive anomaly detector.

In chapter 2 we have pointed out that the development of anomaly detectors usually
contains two states. The first step is to carefully investigate the observable subjects and
examine the computing environments; the second step is to design the specific detection
schemes based on the understanding of the environments, and take fully advantage of
the observation’s properties. For the first stage, complex systems can be characterized
by behavior at many levels or scales. In order to extract knowledge from a complex
system, it is necessary to focus on an appropriate scale, or several levels if possible.

28

As introduced in the previous chapters, three scales are usually distinguished in many-
component systems: the microscopic, mesoscopic, and macroscopic. Since our work in
this chapter is focused on the system calls executed by privileged processes in Solaris
Operating System, an illustrative scale separation can be examined as a case study: the
individual system calls and some other atomic transactions (on the order of milliseconds)
can be discerned as microscopic level; clusters and pattern of system calls, as well as
other process behavior such as algorithms, procedures or even malicious codes can be
abstracted as mesoscopic observations, which usually refer to a single process or to a
group of processes owned by a single user (on the order of seconds); For those activities
of a single user or a group of users in term of computing resources (Disk space, CPU,
Memory, etc.) and on the order of minutes, hours, days, and even weeks, they are usually
measured as macroscopic observations. In our work, we limit our attention to the strings
of system calls, i.e.,privileged processes, over mesoscopic intervals. The analysis of strings
of system calls originally was examined by Hofmeyr et al. [34], which intended to detect
intrusion attempts from the bottom up, using immunological ideas.

The second stage of the development of anomaly detector, also the key stage, is to
explore and utilize those properties of selected observations for the design of specific
detection scheme. To date, various methods have been introduced to detect intrusions
at the level of privileged processes in SUN OS, because of its special properties, such
as sensitivity to intrusions, stability over time, and limited range of behaviors, hence
any exploitation of vulnerabilities in privileged process can give an intruder super-user
status and thus commit further attacks. In [50], intrusion detection was formulated as
a text processing problem based on the analogy between “system calls/processes” and
“words/documents”. Here, we also take system calls executed by privileged processes as
observable subjects for analysis. Generally, the contributions of our work presented in
this chapter mainly involves:

• Based on the fact that original tf -idf (term frequency inverse document frequency)
weighting model in text categorization might cause high false alarm rate in anomaly
detection, a new weighting model based on the tf -idf method is established; this
new model considers the special information between different processes and sessions
of computer audit data.

• Based on the assumption that training data are noisy (normal data are mixed up
with anomalies or errors we do not expect) , Robust SVM [72] is employed to dis-
criminate anomalies and normal activities. Based on the assumption that anomalies
in training data are hard to attain and the number of anomalies is much smaller
than that of normal activities, One-class SVM [71] is applied to identify the few
anomalies from training data.

• Rejecting the assumption that high quality labelled training data is always readily
available, and based on the fact that training data should be frequently updated
to adapt the new normal regularity, Robust SVM and One-class SVM are modified
based on the idea from Online SVM [45]. That is, training data are provided in
sequence online, rather than in a batch.

After an elaborate theoretical analysis, we evaluated our methods using reformulated
1998 DARPA BSM data and compared their performance with the original algorithms
based on the original tf -idf weighting model. The results show that our modified SVMs

29

can significantly reduce training time with better generalization performance and fewer
support vectors while maintaining high detection accuracy; They thus require less com-
putational overhead and running time and so are more desirable for real time intrusion
detection. Furthermore, our modified weighting model based on the tf -idf weighting
method suppresses the false alarm rate to an acceptable level, thus guaranteeing the
proposed method to be applied in practice.

The rest of this chapter is organized as follows. In section 2, we review some related
work on the existing intrusion detection techniques that used host audit data as observable
subjects. Section 3 formulates the problem we solved and describes the data source that
was used in our work together with the modeling of the data. In section 4, we introduce
the effective classification method−Support Vector Machine (SVM), and modify three
SVMs, which have different assumptions, for online training. After the analysis of the
data model and the improvement of the candidate methods, experiments are implemented
to evaluate the performance of our proposed methods, which is described in section 5.
Finally, our conclusions are presented in section 6.

3.2 Related Work

As we know, intrusion detection can be treated as a binary concept on a domain consisting
of temporal sequences of discrete, unordered elements, such as system call traces, network
packet traces, and resource consumption. So far, many effective techniques have been
employed to this problem domain, including multivariate model [87], Markov process
[88], and discriminant analysis [2] from statistics; neural networks [29, 39] from pattern
recognition; support vector machines [36,64] from machine learning; and other clustering
methods and classification methods from data mining [46,47].

Forrest et al [28] proposed to build program profiles with short sequences of system
calls executed by running privileged programs for intrusion detection, based on the as-
sumption that sequences of system calls in an intrusion are noticeably different from those
of normal operations. The reason for selecting privileged programs as subjects is that it
constitutes a natural boundary for a computer, and the range of behaviors of privileged
processes is limited and relatively stable over time compared to user behavior. Subse-
quently, many researchers applied various techniques [30, 50, 81] to extend and improve
the work with increasingly better performance. Warrender et al [81] even argued that
the choice of data stream (short sequences of system calls) is more important than the
particular method of analysis, but subsequent studies did not adequately support this
conclusion. Ye et al [86] investigated the frequency and ordering properties of computer
audit data, showing that the frequency property of multiple audit event types in a se-
quence of events is necessary for intrusion detection, and that the ordering property of
multiple audit events can provide additional advantages to the frequency property. How-
ever, due to the scalability problem of complex data models (e.g. higher-order stochastic
models) [88], intrusion detection techniques based on the ordering property can hardly
provide a feasible solution that produces good performance with low computational over-
head, especially when the intrusive audit data are mixed with the white noise of normal
audit data. The frequency property, on the other hand, can provide a viable tradeoff
between computational complexity and intrusion detection performance. The motivation
of our work heavily based on this conclusion.

30

Liao et al [50] used K-Nearest Neighbor(KNN) classifier to label program behavior as
normal or intrusive. Specifically, each system call in the process was treated as a word,
and the collection of system calls over each program execution was treated as a document;
thus the system call frequencies were used as the main property to represent program be-
havior. This method can be easily implemented and in general has smaller computational
overhead than other techniques from statistics, data mining, etc. Using the same data
model, and based on the assumption that normal cases are mixed with anomalies in the
training data, Hu et al [36] applied Robust SVM [72], which can solve the over-fitting
problem effectively introduced by the noise in the training data set, to intrusion detection
over noisy audit data; in this situation, if an attack occurs during the training process, the
undesired intrusive behavior usually is regarded as normal one, undermining the intru-
sion detector’s accuracy [52]. However, their experiments showed that intrusion detection
based on the text processing model would generate an unacceptable false positive rate,
so it could hardly be applied in practice. Additionally, based on the assumption that the
number of normal instances is significantly larger than that of anomalies, Eskin et al [26]
proposed unsupervised anomaly detection methods with unlabelled data, and Nguyen [64]
employed One-class SVM [71] to identify “outliers” amongst positive examples (normal
behaviors) by treating them as negative examples(abnormal behaviors). Although detec-
tion accuracy performance was comparable to some other intrusion detection techniques,
the unchanged patterns which can not reflect concept drift limit its application. Moreover,
all the intrusion detectors we listed above are based on the strict assumption that training
data are readily available with high quality.

3.3 Anomaly Detectors and Their Failure Curses

We have conducted an analysis on the anomaly detector’s behavior based on the anal-
ogy between anomaly detection and induction reference problem. From the functional
perspective, an anomaly detector can be roughly regarded as a simple kind of inductive
inference system. In this system, an incoming observation Oi is regarded as a “question”,
while the normal behavior model M that stored in the memory is regarded as “answers”.
Given a new Oi, the system tries to find an appropriate answer Mi so that AD(Oi) ⇒ Mi.
Obviously, the aim of an AD design is to look for effective “answers” that have the
highest a priori - that has “accurate descriptions”. In generating such answers, some
primitive normal behaviors have to be previously defined. From probabilistic prediction
we can gradually to deterministic prediction, that is, whether the current “question” is
an anomalous behavior. Due to the fact that the sample size of “M” is limited but the
number of questions “Q” are infinite and long-standing, the ken and adaptability of AD
is a key to answer diverse questions successfully.

Therefore, the first objective is to train IDs to be capable of learning online to adapt
the changing situations, and thus construct or update corresponding “M”. For instance, in
practice, training sequences are usually not readily available with labels and high quality,
especially for a computer system with reconfiguration. In such case, the ID has to be
trained online with training data provided in a sequence rather than in a batch.

Furthermore, the construction and characterization of training sequences “M” is the
next objective needs to be considered well. Existing IDs mainly focus on the ordering
property (sequential property) and frequency property, which have been studied well in

31

last chapter by formulating a statistical framework.
In addition, based on the fact that the number of normal activities is several orders

of magnitude larger than that of anomalies in our daily computer activities, Axelsson [3]
gave an analysis of intrusion detector’s base-rate fallacy using Bayesian Theorem, which
points out the curses of the excessive false alerts generated by intrusion detectors. The
main idea can be described as follows:

Assume that when process M(t) is generated, intrusion alerts A is triggered. Suppose
during any time interval ∆t, detection accuracy is the probability Pr(A|M(∆t)), and
f alse alarm rate is the probability Pr(A|¬M(∆t)). According to Bayes’s theorem, we
have,

Pr(M(∆t)|A) =
Pr(A|M(∆t)) · Pr(M(∆t))

Pr(A|M(∆t)) · Pr(M(∆t)) + Pr(A|N(∆t)) · Pr(N(∆t))
(3.1)

Derive from the notions from chapter 2, M(·) and N(·) are the stochastic processes
of generating malicious operation and normal operation respectively. In the equation,
the value of Pr(M(∆t)|A) is determined by two terms which are related with detection
accuracy and f alse alerts rate respectively. In fact, the above equation show clearly that
the factor governing the detection rate is dominated by the factor governing the false alert
rate, due to the fact that Pr(M(∆t)) << Pr(N(∆t)) when ∆t is very large. Therefore,
false alert rate has more effect the equation’s value than other items due to its larger
coefficient, and thus it should be as low as possible in order to increase the value of
the equation. Otherwise, many alerts from normal operations would make the system
supervisor insensitive and intrusion detector inefficient, which is the motivation of our
work to restrain false alerts to an acceptable level.

3.4 Observation-Centric Modelling

As we know, a computer network typically includes two kinds of objects−hosts, and com-
munication links. Therefore, network traffic data and host audit trails are two main ob-
servations for capturing activities. In this study, we select the benchmark−1998 DARPA
data set [63] as our experimental data. The data is provided by the 1998 DARPA Intru-
sion Detection System Evaluation Program, and it contains a large sample of computer
attacks embedded in normal background traffic. TCPDUMP and BSM [75] (Basic Secu-
rity Module) audit data were collected on a simulation network that simulated the traffic
of an air force local area network, the set consists of seven weeks of training data and two
weeks of testing data.

TCPDUMP contains data network packets travelling over communication nets, while
BSM captures activities occurring on a host machine, based on the execution records
of system calls by all processes launched by users. Most traces of attacks are revealed
both in TCPDUMP and BSM audit data. In our study, BSM audit data from UNIX-
based host machine (SUN Solaris OS) is selected as the subject for detecting anomalies.
Based on the assumption that actions in the user space can not harm the security of the
system and the security-related activities that can impact the system only happen when
users request services from the kernel, BSM monitors the events related to the system
security and records both the instructions executed by the processor in the user space
and instructions executed in the system kernel. Actually, a full system call trace gives

32

us overwhelming information, whereas the audit trial provides a limited abstraction of
the same information, such information as memory allocation, internal semaphores, and
consecutive files reads do not appear. And in fact, there is usually a straightforward
mapping of audit events to system calls. BSM records the execution of system calls by all
processes launched by users and it also contains other detailed information about events
in the system, such as user and group login identification, file names with attributes and
full path, command line arguments, return code etc. In our study, we only use the names
of system calls and ignore other attributes. Former studies [34] showed that privileged
processes in UNIX are a good level to focus on because exploitation of vulnerabilities
in privileged process can give an intruder super-user status and thus commit further
attacks, and the range of behaviors of privileged processes is limited compared to that of
users. Therefore, we choose system calls executed by privileged processes rather than user
profiles as the observable subject. Additionally, instead of establishing privileged process
profiles by short sequences of system calls, we characterize the privileged processes using
the frequencies of system calls. Due to the fact that the number of system calls is limited,
and based on the assumption that intrusion detection can be considered as a binary
categorization problem, models and methods from the text categorization domain can be
employed in a straightforward manner.

3.4.1 Original Data Model

When the connection is established between two hosts, several sessions are generated and
then many processes are executed during the connection. The atomic element of our
observation is system calls, which are executed by privilege programs. Using the text
processing metaphor, each system call is treated as a “word” and the set of system calls
generated by a process is treated as the “document” [50]; all the training processes are
treated as a set of documents.

Based on the analogy between program processes and documents, the simple frequency
weighting method and tf -idf (term frequency inverse document frequency) weighting
method can be applied to transfer a process into a vector. The simple model is established
as follows:

Matrix A = aij, the collection of processes from different sessions, and aij is the weight
of system call i in process j.

fij, the frequency of system call i in process j.
N , the number of processes in the collection.
M , the number of distinct system calls in the collection.
ni, the number of times that system call i appears in the collection.
Thus, frequency weighting is defined as:

aij = fij (3.2)

tf -idf weighting method is defined as:

aij =
fij√∑M
l=1 f 2

lj

× log(
N

ni

) (3.3)

Based on the data model, several text categorization methods were proposed [36, 50]
for intrusion detection. Although these methods are easy to implement and effective

33

for detecting intrusive processes with satisfactory accuracy, they are still far from ready
for application in real life because of their unacceptably high false alarm rate. Careful
analysis discloses the causes of generating excessive false alters: First, a session is hastily
labelled as intrusive once one of its processes is detected as an anomaly; in such cases, any
misclassified process would cause the whole session to be misjudged as an intrusion without
discriminating other processes from the same session. Secondly, the correlations between
the processes are ignored. Since most of attacks leave their traces in several processes
and sessions, isolating processes might lose some essential information and thus decreases
the detection accuracy and generates high false alarm rate. Additionally, some necessary
time information are ignored, the incoming processes are dealt with independently, and the
training data set is not updated in time. Thus it can not reflect current novel behavior in a
timely fashion, leaving much space for intruders to commit attacks. With these problems
in mind, we attempt to establish a new data model that considers all those aspects.

3.4.2 A New Data Model

In [50], an incoming process (new document) was compared with the training processes
(existing documents) after being transformed to a vector by weighting techniques, and
then KNN was used to cluster the processes according to their distance, based on the as-
sumption that processes with similar properties will cluster together in the vector space.
The applied weighting techniques are traditional tf -idf and simple frequency weighting.
Due to the limited number of system calls, dimensionality reduction techniques are unnec-
essary. When a connection is established between two hosts, several sessions or processes
will be generated, in order to reflect the source specific differences, we add the session
information (such as Source Machine or session ID, which can be regarded as the topic
of documents) [10]. Accordingly, the tf -idf model can be improved as follows: −→p fs,t(θ)
represents the process p from session s at time t which includes system call θ, and is
updated according to the equation:

−→p fs,t(θ) = −→p fs,t−1(θ) +−→p fs,Pt(θ) (3.4)

where, −→p fPt(θ) denotes the process frequencies in the newly added set of processes Pt. The
process frequencies can be used to calculate weights for the system calls θ in the process
p. The model is based on the fact that different sessions include different processes,
and various processes have various system calls, consequently it reflects session-specific
differences. The same system call may have different weights because it belongs to different
sessions. To specify the equation (6), the weight of the system call θ in the processes p
can be calculated as follows at time t:

wt(θ,
−→p) =

(1 + log2f(θ,−→p))× log2(Nt/nθ)

Z−→p
(3.5)

where
f(θ,−→p), the frequency of system call θ in the process p;
Nt is the number of processes in the current training set;
nθ is the number of processes that include system call θ;

Z−→p =
√∑

θ∈−→p wt(θ,
−→p)2 is the 2-norm of vector −→p .

When calculating the weights of the system calls, we apply the session-specific −→p fs,θ

instead of −→p fθ. Therefore, information about the session could be included in our method.

34

If no training data is available at t = 0 for a specific session, we can set −→p fs,0 = 0 for its
all θ or identify other similar sessions s

′
, that is, −→p fs,0(θ) =

∑
s′
−→p fs

′
,0(θ), which happens

when an intrusion detector is trained online.
Additionally, based on the fact that the number of system calls in the various processes

might differ, and inspired by the work reported in [34], we divide one process into several
segments by a sliding window of fixed length w, which advances with a step s, and
can be determined experimentally. Here we note that only the process with a length
longer than w is divided into overlapping segments by the sliding window. Specifically,
< P1, P2, ...Pw >⇒< P1, P2, ...Pn > [s, w], where < Pi >1≤i≤w is a sub-episode of <

Pi >1≤i≤n, for a process with length l, m = b l − w

s
+ 1c segments can derive from it, and

we assume that minimal occurrence of some attacks can be detected in [Pi, Pi+m]. We
only take this step if the length of the process is much longer than that of the others.
After dividing, m segments from the same process are all transformed into vectors and
treated as individual “documents”.

In practice, normal processes and abnormal processes in the training data should be
updated frequently for restraining false alarms and detecting novel attacks. Therefore,
some time information should also be considered. Here, we apply a linear time model [85],
which uses a time window on the historic data. We only consider the processes within
the time window m:

N−→p = (1− time/m) ·N−→p (3.6)

The processes outside the window are not considered. Actually, at the beginning of the
training, time window m should large enough to include all the processes; with the increase
of the number of processes, m can be adjusted manually or experimentally.

A simple example is given here to illustrate the measures we proposed. Intrusive ses-
sion Eject is a buffer overflow using an eject program on Solaris OS, which might lead to
a status transition from a common user to a super user. The session consists of a series
of processes:
telnetd−login−tcsh−quota−cat−mail−cat−gcc−cpp−ccl −as−ld−ejectexploit−pwd
actually, in this session, only ejectexploit is the intrusive process, and if it executes suc-
cessfully, an attack might happen. The process contains following system calls:
close, close, close, close, open, close, close, execve, open, mmap, open, mmap, mmap, mun-
map, mmap, close, open, mmap, mmap, munmap, mmap, mmap, close, open, mmap, mmap,
munmap, mmap, close, open, mmap, close, open, mmap, mmap, munmap, mmap, close, close,
munmap, pathdonf, stat, stat, open, close, open, open, joctl, lstat, lstat, close, close, close, close,
close, exit

The weight of the system calls in the session Eject are only considered in the collection
of the processes from the same source host. If we set the sliding window at fixed length
50, and left system calls close, close, close, close, close, exit advance with step 5, we can
derive another two processes from the current process.

The final countermeasure to minimize the false positive rate is to consider the causal
relationship between different attack attempts. With such consideration, when a process
is identified as intrusive, we do not immediately treat the session it belongs to as an
intrusion. As described in [66], in a series of attacks in which the intruder launches
earlier attacks to prepare for later ones, there are usually strong connections between
the consequences of the earlier attacks and the prerequisites of the later ones, especially
in ”stealthy” attacks with multi-stages. For instance, format, the buffer overflow using

35

the fdformat UNIX system command leads to root shell, contains two stages: ftp over
files and then chmod exploit files. Thus the correlation of the attacks is formulated as
a connected DAG(directed acyclic graph), HG = (N,E), in which the set N of nodes
is a set of attacks, and for each pair of nodes n1, n2 ∈ N , there is a edge from n1 to
n2 in E iff n1 prepares for n2. Therefore, the triple (fact, prerequisite, consequence)
holds for an attack happen in the multi-session scenario. Based on this assumption, when
an intrusive process is detected, its neighbor processes or sessions are also considered
carefully instead of immediately labelling the entire session as intrusive. Suppose in a
sequence of attacks, we have 4 intrusive sessions Ipsweep, Eject, Land, Pod. Ipsweep
performs either a port sweep or ping on multiple host addresses, Land and Pod are Dos
attacks. Assuming that Ipsweep prepares for Land and Eject, Eject prepares for Pod,
the relationship correlated(Eject, HG)=precedent(Eject, HG) ∪ subsequent(Eject, HG) is
intuitively shown in Figure 3.1.

Figure 3.1: Attacks correlation graph

The intrusive session Eject is identified as an intrusion for the malicious process eject-
exploit. Actually, when obviously malicious processes appear, such as formatexpolit, ffb-
exploit, ejectexploit, the session should be interrupted as soon as possible. However, some
intrusive processes are not obvious enough; for example, the denial of service attack pro-
cess table, which consists of abuse of a legal activity, can hardly be identified because of
its normal individual process. In order to detect such attacks effectively, the correlation
between neighboring processes within a time window T and the precedent attacks should
also be considered.

3.5 SVM-Based Adaptive Anomaly Detectors

Most of the available intrusion detection techniques were evaluated using a labeled high
quality training data set, and the data set was unchanged once attained. However, in
practice, training data is not readily available, and intrusion detectors must undergo
frequent training for capturing novel attacks and adapting to changes in normal behaviors.
After transforming ongoing processes into vectors based on the data model presented in the
last section, we applied the effective binary classification method, support vector machine,
to distinguish anomalies from normal activities. In this section, we first briefly introduce
conventional SVM, RSVM, and One-class SVM that based on different assumptions, and
then modify these methods by a general algorithm drawn from Online SVM. A theoretical
analysis of the modified method is also given.

36

3.5.1 Three SVMs with Different Assumptions

SVM is an approximate implementation of the Structure Risk Minimization principle
based on statistical learning theory rather than the Empirical Risk Minimization method,
in which the classification function is derived by minimizing the Mean Square Error over
the training data set such that the maximum width of the margin between the classes can
be achieved [14]. In order to solve various problems effectively, several improved SVM
such as Robust SVM [72], One-class SVM [71], Online SVM [45] have been proposed. We
give a brief mathematical description of these SVMs here; more detailed descriptions can
be found in the corresponding reference.

Given a training sample: Dl = {xi, yi}l
i=1, xi is the ith input vector, xi ∈ Rn, yi ∈

[+1,−1], l is the total number of input vectors and n is the dimension of the input
space. Suppose the relation between x and y is y = sgn(f(x) + ε), where sgn(x) = 1, if
x ≥ 0 and sgn(x) = −1, if x < 0, the task uncovering function f is called classification.
SVC is a maximization(minimization) algorithm used to identify a set of linear separable
hyperplanes in the feature space whose formula like f(x) = 〈w, x〉+ b, and 2/‖w‖ can be
regarded as a canonical representation of the separating hyperplane. Maximization of the
margin between the positive examples and negative examples can be transferred to the
following problem: {

min 1
2
‖w‖2

s.t. yi(〈w, xi〉+ b) ≥ 1 ∀i, (3.7)

By applying the Lagrangian multiplier, the problem can be formulated as:

Lp =
1

2
‖w‖2 −

l∑
i=1

βiyi(〈w, xi〉+ b) +
l∑

i=1

βi, (3.8)

The dual objective function is given below and the optimization problem is:





min LD = 1
2

l∑
i=1

l∑
j=1

βiβjyiyj〈xi, xj〉 −
l∑

i=1

βi

s.t.

l∑
i=1

βiyi = 0, βi ≥ 0,∀i
(3.9)

Above equations only describe linear separable SVMs, and the general dual objective
function can be rewritten in a matrix form as follows [45]:

LD =
1

2
βT Kβ − 〈c, β〉, (3.10)

where c is an l × l vector, β = {β1, ..., βl} and K = {Kij}, Kij = yiyjK(xi, xj), while
K(xi, xj) is called kernel function, which can be selected such formulas as K(xi, xj) =
〈xi, xj〉d or K(xi, xj) = e‖xi−xj‖/σ. The feasible solution of Eq.(11) should satisfy the
KTT [14] conditions as follows:

{
βi = 0 ⇔ yifi > 1,

0 < βi ≤ C ⇔ yifi ≤ 1,
(3.11)

37

The hyperplane f(x) can be expanded from the kernel as follows:

f(x) = sgn

(∑
i∈SV

βiyiK(x, xi) + b
)

. (3.12)

In order to solve the over-fitting problem of a soft margin SVM due to noisy training
data, Robust SVM [72] minimizes only the margin of the weight w instead of minimizing
the margin and the sum of misclassification errors. The objective function can be written
as following:





min LD = 1
2
βT Kβ − 〈c, θ〉

s.t.

l∑
i=1

βiyi = 0, βi ≥ 0,∀i, (3.13)

where θ = 〈γ, β〉, γ = {γ1, ...γl}, and γi = 1− λD2(xi, x
∗
yi

), λ ≥ 0 is a pre-determined
regularization parameter measuring the influence of averaged information(distance to the
class center), and D2(xi, x

∗
yi

) represents the normalized distance between data point xi

and the center of the corresponding classes, (x∗yi
, yi ∈ {+1,−1}), in the feature space.

The slack variable λD2(xi, x
∗
yi

) can be justified by considering it as part of the margin.
Because of this term, the RSVM algorithm will have fewer support vectors and the decision
boundary will be smoother.

Another adapted algorithm, called one-class SVM algorithm, identifies “outliers” amongst
positive examples and uses them as negative examples. After mapping between input data
space X and high-dimensional feature space H via a kernel, origin is treated as the only
member of the second class. Then “relaxation parameters” is used to separate the point
of the first class from the origin. As a comparison with the above algorithms, we can
write the objective function as:





min LD = 1
2
βT Kβ

s.t. 0 ≤ βi ≤ 1
vl

,

l∑
i

βi = 1,
(3.14)

where v ∈ (0, 1) is a parameter that controls the trade-off between maximizing the
margin from the origin and containing most of the data in the region generated by the
hyperplane. The general decision function with kernel expansion is:

f(x) = sgn

(
l∑

i=1

βik(xi, x)− ρ

)
. (3.15)

If αi meets the subject conditions, ρ can be recovered as:

ρ =
l∑

j=1

βjk(xj, xi). (3.16)

Generally, two facts usually hold during the intrusion detection process. One is that
training data is always mixed with noisy data, which thus decreases the capability of
detectors to capture anomalies with high accuracy and increases the probability to gen-
erate false alarms. The second is that the number of anomalies is much smaller than that
of normal activities, which thus motivate us to apply robust SVM and one-class SVM
respectively.

38

3.5.2 Modified SVMs for Online Training

The SVMs mentioned above are used for the classification of input data that are supplied
and computed in batch. It is time consuming to classify a large data set and thus these
SVMs can not meet the demands of online applications, especially for intrusion detection,
which needs periodical retraining. Online SVM [45], on the other hand, have input data
supplied in sequence rather than in batch, and the experiments showed it has fewer support
vectors and faster convergence than the conventional SVC. Here we would modify SVMs
we discussed in the last section using the method from OSVM.

As we know, in the original SVMs a batch of training data are extracted as vectors and
classified by solving the quadratic programming problems Eq.(13, 16, 17). The number of
elements determines the dimensionality of the vectors. A final hyperplane can be achieved
after computing the objective functions. Now let us consider another case, that training
data can not be acquired at one time or supplied in a sequence.

For supervised SVMs, i.e., conventional SVM and Robust SVM, we can give one
example for each class, the hyperplane with a maximum margin for these two examples
can be found by solving the objective function Eq.(13, 16). When a new example becomes
available, corresponding to the KKT conditions [14], two cases need to be considered, that
is, whether or not the current optimal boundary can classify the new example correctly. If
it can be classified, then the example is not a support vector, otherwise, a new hyperplane
should be determined so that it can classify three examples. The new hyperplane can
be found by minimizing the objective function with the SVs obtained from the current
hyperplane and the new example. At the kth step, the set of SVs can be denoted as SVk,
and the existing examples are {Sxk

i , Syk
i }|SVk|

i=1 respectively. The corresponding hyperplane
is (conventional SVM):

fk(x) = sgn

(|SVi|∑
i=1

βk
i Syk

i K(x, Sxk
i) + bk

)
. (3.17)

Once the hyperplane is updated, the KKT conditions are checked for all k examples,
and the examples which violate the KKT conditions are fed to the algorithm as new
examples. With reference to Online SVM [45], we rewrote a general algorithm for the
three SVMs described above to improve the performance of their training phase:

Algorithm of online training for SVMs
void OnlineTraining()
{

set W1 = {xk, yk}, for k = 1, 2, and |E2| = 0,
// or k = n, n + 1 and |En+1| = 0
Minimize Eq.(4, 7, 8) with W1 to obtain an optimal
boundary f1.
for (int k = 3; k <= l; k + +) {
// or k = [n + 3, ..., n + l]

Obtain a new element Sk = {xk, yk};
if (Sk can be distinguished by fk−1) {

Add Sk to the corresponding class;
}
else {

39

Wk = {Sxk−1
i , Syk−1

i }|SVk−1|
i=1 ∪ Sk;

Minimize Eq.(4, 7, 8) with Wk to obtain a new
optimal boundary fk;

}
if (|Ek| = |{xi, yi|yifk(xi) violates the KKT

conditions }k
i=1| > 0){

Ek be input next step as new elements;
}

}
while (|El| > 0) {

Minimize Eq.(4, 7, 8) with Wl = SVl ∪ El to obtain
an optimal boundary fl;

}
}

As described in the algorithm, we can give more than one example for each class
(normal and anomaly) at first, that is, the process can start at any kth steps, thus some
typical attacks can be kept, meanwhile the algorithm can learn to detect novel attacks.
However, because of computational overhead, the number of SVs, n, for the existing
examples should not be too large, otherwise, this algorithm can perform little better than
the conventional training methods. Because of its unsupervised nature, One-class SVM
only takes an original point and another normal behavior at its initial training stage for
subsequent classification, while anomaly points are not necessary. Some other accelerated
training algorithms [37] and decomposition algorithms are also worth considering in order
to speed up the training phase of SVMs.

3.5.3 Convergence of the Modified SVMs

The convergence of the modified conventional SVM has been proved in Ref. [45] by com-
paring it with the decomposition algorithm(DA). Here we only prove the convergence of
modified Robust SVM and modified One-class SVM. As we know, the main idea of DA
is that instead of immediately solving the large quadratic programming problem, small
quadratic programming sub-problems are iteratively solved, and thus the iteration solu-
tion of the sub-problem brings the solution closer to the optimal solution. The training
set is decomposed into two subsets, working subset B and correcting subset N . At each
step, m elements exchange between the subset B and N . With the elements exchanged,
the sub-problem involving the new working set is solved. The exchange between B and
N repeats until no example violates the KKT conditions. Note that m is pre-determined
as a constant, and the size of B and N are arbitrarily determined. The convergence of
the DA for standard SVC and Robust SVC has been proved in Refs. [16] and [37] respec-
tively. Similarly, the dual objective function Eq.(17) of One-class SVM can be rewritten
involving the working and correcting sets as follows:





min 1
2
[βT

BKBBβB + βT
BKBNβN + βT

NKNBβB + βT
NKNNβN]

s.t. 0 ≤ βB ≤ 1
vl

, βB + βN = 1.
(3.18)

40

where

β =

(
βB

βN

)
, y =

(
yB

yN

)
, K =

(
KBB KBN

KNB KNN

)
.

All the DA of these different SVMs are based on the following two propositions.

Proposition 1 Moving a variable from B to N leaves the cost function unchanged, and
the solution is feasible in the sub-problem.

Proposition 2 Moving a variable that violates the KKT condition from N to B gives a
strict improvement in the cost function when the sub-problem is re-optimized.

Proposition 1 means that the objective functions of SVMs can be decomposed by sub-
set B and subset N , while the value of the cost function is unchanged. With proposition
2, the solution of sub-problem is improved when an element violating the KKT condi-
tions is moved from N to B. The difference between our modified SVMs and DAs is
that modified SVMs keep SV s in the working subset and move the other elements to the
correcting subset, and thus βN is a zero column vector. In addition, modified SVMs move
at least one element which violates the KKT conditions to the working subset at each
step; the element can be either a new one just obtained or moved from the correcting set.
Therefore, solving the sub-problem will make a improvement at each step. The following
corollary given by Lau et al [45] shows that keeping the SV s in the working set will not
affect the optimal solution, and we attempt to prove that it also holds for both Robust
SVM and One-class SVM.

Corollary 4 Moving an element which is not an SV from B to N leaves the cost function
unchanged and the solution is feasible in the sub-problem.

Proof. Suppose B
′
= B−{m}, N ′

= N ∪{m}, {m} ∈ B−SV , where“−”denotes set
substraction, m represents an element which is not SV .

(1)For robust SVM, we have

LD(βB
′ , βN

′)

= 1
2
[βT

B′KB
′
B
′βB

′ + βT
B′KB

′
N
′βN

′ + βT
N ′KN

′
B
′βB

′

+βT
N
′KN

′
N
′βN

′]− γ(βT
B
′ + βT

N
′)

= 1
2
[βT

B
′KB

′
B
′βB

′ + 2βT
B
′KB

′
N
′βN

′ + βT
N
′KN

′
N
′βN

′]

−γ(βT
B
′ + βT

N
′)

The optimization problem can be formulated as follows:





min LD(βB
′ , βN

′)

s.t. < yB′ , βB′ > + < yN ′ , βN ′ >= 0,

−βB′ ≤ 0.

(3.19)

41

(2)Similarly, for One-class SVM, we have

LD(βB′ , βN ′)

= 1
2
[βT

B′KB′B′βB′ + βT
B′KB′N ′βN ′ + βT

N ′KN ′B′βB′

+βT
N ′KN ′N ′βN ′]

= 1
2
[βT

B′KB
′
B
′βB

′ + 2βT
B′KB

′
N
′βN

′ + βT
N ′KN

′
N
′βN

′]

The optimization problem can be formulated as follows:





min LD(βB′ , βN ′)

s.t. 0 ≤ βB
′ ≤ 1

vl
,

βB
′ + βN

′ = 1.

(3.20)

From Proposition 1, we know that the objective function LD(βB′ , βN ′) = LD(βB, βN).
We note that N

′
does not contain any SV . Hence, βN ′ = 0, for its elements are not

SVs, and thus LD(βB,0) = LD(βB′ ,0), where 0 is a column vector whose all elements are
0. In addition, we have βT

ByB = βT
B
′yB

′ = 0 and the bound constraints of robust SVM
are unaffected, and obviously, the bound constraints of one class SVM are unaffected
also. Therefore, both the sub-problem of Robust SVM and One-class SVM have the same
solution with their corresponding proposed algorithms which modify Proposition 1 but
keep Proposition 2 of the DA. ¤

3.6 Performance Evaluation and Comparison

In section 3, we briefly described our data source. To evaluate our proposed methods,
we reformulated the training data and testing data based on the benchmark data set.
We apply our three modified SVMs to the selected data, and compare the results with
those of the original algorithms. The data are provided in sequence to SVMs as our need
instead of in batch as the raw data format. Furthermore, the modified SVMs are based
on our proposed weighting model, while the original SVMs are based on original tf -idf
weighting method. Actually, based on the same weighting method, original SVMs and
modified SVMs can be compared, but we did not do that for it has little contribution
to evaluate our new methods. The specific implementation procedure is shown in Figure
3.2.

3.6.1 Training Data and Testing Data

According to the attributes of the data source, preprocessing of the DARPA data and fea-
ture(characteristics of system calls) extraction from those data sets are necessary before
employing the data model and the techniques we proposed. Basic Security Module(BSM)
audit data collected from a victim Solaris machine in a simulation network by DARPA
Intrusion Detection System Evaluation System is used as the experiment data here, and
only the name of system calls are considered; other attributes related to them are ignored.
Each session, which consists of a number of processes, corresponds to a TCP/IP connec-
tion between two hosts, and each of them was labelled with numbers (session ID). A text

42

Figure 3.2: Evaluation procedure of the Proposed Intrusion Detectors

categorization problem based on our weighting model is formulated, and the techniques
we proposed in the previous section are applied to solve it. Any attacks or anomalies dur-
ing the execution of processes attempted to detect them immediately, thus guaranteeing
the intrusion detection in real time.

Actually, the 1998 DARPA data has been widely criticized for some hidden factors
in it [62], which might have a direct effect on the quality of the results, and thus there
is always the doubt the IDSs would well in real environments with diverse and dynamic
traffic backgrounds. Following reasons need to be claimed for our application of this
evaluation framework:

• It is usually hard to accumulate substantial intrusion detection data due to personal
privacy, considerable recourse costs, and long-term period, which is also the reason
that there are only several ID benchmark datasets are available.

• The existing 1998 DARPA data has been widely applied during past 6 years, its
structure and attributes are well known in ID community, which thus greatly sim-
plify the data preprocessing stage.

• Although the construction of synthetic data is a possible evaluation approach, the
results can not be compared with other methods that use different data sets, and
hence undermine its credibility.

• Although the amount of data is limited, after preprocessing and reformulation as
experimental demands, it is general enough to evaluate our proposed methods, and
actually, it is not such a good witness that can vindicate the merits of our methods
adequately. On the other hand, however, as all the other methods, we cannot
rule out the probability that our proposed algorithms tend to yield worse results
under real conditions before they are really put into practice, in this sense, a real
experimental prototype is desirable and helpful.

The benchmark data set provides 9 weeks audit data altogether (7 weeks are labelled
training data, 2 weeks are unlabelled testing data). In addition, in order to compare
our methods with KNN classifier, similar preprocessing steps of data as report in [50] is
carried out:

43

1. There are 5 out of 35 (seven-week training) simulation days free of attacks; 4 out of
these 5 days are picked arbitrarily as training data, the left one day data is taken
as the normal part of testing data.

2. There are total 606 distinct processes drawn from more than 2000 sessions running on
the victim Solaris machine during the selected four training days, all these processes
are picked as the normal part of training data; There are total 40 attack instances
(hidden in more than 55 sessions) in the seven-week training data, and 30 intrusive
processes among those intrusive sessions (cover most of the attack types in the
training data, such as “eject, spy, ffb, ipsweep...”) are selected as anomaly part of
training data.

3. The left one day data in step 1 (3rd day of week 7th) contains 412 sessions (total
5285 processes), and all these processes are taken as the normal part of testing
data (session information are included); 24 attacks (16 are known, 8 are novel) from
two-week DARPA testing data are taken as anomaly part of our testing data.

It is worth noting that an intrusive session may contain only a small part of intrusive
processes or even only one, such as eject, format, ffb, spy and so on. Therefore, 55 intrusive
sessions do not mean there are 55 attacks. In fact, there are 40 clear (components of the
attacks are visible in BSM data) or stealthy (components of the attack in the audit
data are hide by encryption, by spreading the attack over multiple sessions or by other
techniques) attack instances included in more than 55 intrusive sessions, representing all
types of attacks and intrusion scenarios in the seven-week training data.

To evaluate our proposed methods that are based on different assumptions, two data
sets are formulated here; one is taken as clean data, and another is taken as noisy data.
As above reformulation, details of the training and testing data for those two data sets
are illustrated in Table 1. Note that training data of the noisy data set takes only 15
out of the original 30 intrusive processes as anomalies, and the remaining 15 intrusive
processes are disguised as normal processes and incorporated into the truly normal ones.
The reason we formulated noisy data set is to verify the performance of Robust SVM.
While for One-class SVM, we only use normal training data (i.e., 606 normal processes).
The testing data for clean data set and noisy data set are same.

Table 3.1: Experiment Data Sets
Clean data (processes) Noisy data (processes)
normal intrusive normal intrusive

Training 606 30 621 15
Testing 5285 24 attacks 5285 24 attacks

According to our definition, when a process is determined to be intrusive, the session
with which the process is associated is classified as an attack session, and each attack
counts as one detection, even with multiple sessions (for those stealthy attacks). De-
tection accuracy is then calculated as the rate of detected attacks, and the false positive
probability is defined as the rate of misclassified normal processes (these two terms are not
rigorously symmetrical here). A drawback of intrusion detection using original SVMs is
that, as time passes, the old hyperplane can no longer accurately distinguish normal from

44

abnormal activities, thus the detection accuracy decreases dramatically with an increasing
false positive rate. The obvious way to handle this concept drift [42] is to periodically
retrain the SVMs, therefore, training time is another important factor to consider. Be-
cause the running time of SVM is proportional to the number of support vectors (SVs),
we prefer SVs rather than time counting to measure their performance. Additionally, we
also have a comparative study on the performance between our proposed methods with
that of existing method−KNN classifier.

3.6.2 Results and Discussion

We did experiments over clean training data and noisy training data respectively using
the SVMs we presented above. All the SVMs were implemented with the RBF kernel
function(i.e. K(xi, xj) = e‖xi−xj‖/σ), and the best hyperplanes were obtained by varying
the related regulation parameters (table 3.2). Moreover, for our modified SVMs, training
data were provided in a sequence, namely, normal processes and intrusive processes were
mixed up and provided one by one, while for original SVMs and KNN, training data were
provided in a batch. A comparative study were carried on the performance of various
SVMs, in terms of detection accuracy, false positive rate, the number of support vectors
and training time.

Table 3.2: Regulation Parameters of Different Methods
Methods Regulation Parameters
Traditional SVM σ, C
Robust SVM σ, λ
One-class SVM σ, υ
KNN k, τ

General parameters sliding window w=60, time window T=10

“τ” denotes the threshold of KNN, “T” is the number of consecutive
processes being considered, rather than the real time counting.

Although the Receiver Operating Characteristic (ROC) curve is a typical method for
measuring the performance of an intrusion detection technique, it provides little insight
into the performance that we intend to evaluate, and we did not employ it here because
the multi-variable would make it unclear. Actually, we care most about two points in the
ROC, that is, detection accuracy when false positive rate is zero and the false positive
rate when detection accuracy is 100%. These two terms of three different SVMs and KNN
are shown in table 3.3 by adjusting the related regulation parameters after training with
clean data and noisy data respectively.

Following conclusions therefore can be derived from the results of table 3.3, which
shows the Hits out of 24 attacks while no False Alerts (FA.), and FA. out of 5285 normal
processes while 100% Hit:

• Online training did not cause the detection accuracy deterioration of SVMs; instead,
new weighting method sometimes improved the detection performance. For exam-
ple, original KNN can not detect all the attacks hidden in testing set with noisy
data (a DoS attack named process table cannot be detected due to its normal ap-
pearance), but it can do that with some false alerts using the new weighting method

45

Table 3.3: Two Samples of the Experiments with Training Data

Methods Hits (%) FA. (%)

Clean Noisy Clean Noisy

SVM Original 54.2 58.3 12.3 −
Modified 58.3 58.3 11.1 −

RSVM Original 70.8 50.0 3.8 8.7
Modified 70.8 54.2 3.8 8.7

KNN Original 16.7 12.5 9.9 −
Modified 20.8 12.5 9.9 11.1

One-class SVM Original 70.8 70.8* 10.1 10.1*
Modified 75.0 75.0* 9.8 9.8*

“−” means the value is unavailable, “*” means the value unchanged.

(considering the correlation between a particular time window). In addition, keep-
ing zero false positive rate, a conventional SVM can detect 13 out of 24 attacks with
clean training data (i.e. detection accuracy is 54.2%), while the modified SVM can
detect 14 attacks; the modified RSVM and One-class SVM also had more hits than
the original methods.

• All the methods experienced performance deterioration with noisy training data
(One-class SVM had no change because it was trained with only normal data). To
get 100 percent hits, the conventional SVM misclassified 12.3% of normal processes
as intrusive ones with clean training data, while with noisy data, the conventional
SVM could not detect all the intrusive processes until all the normal processes were
misclassified as intrusive ones, indicating that conventional SVM has no ability to
suppress the effect brought by noisy samples, neither does KNN.

• Compared with the conventional SVM, Robust SVM showed a slight decline of
performance in the presence of noise, and were able to reach 100% detection accuracy
while maintaining a low false positive rate.

Table 3.4: Comparison of the Detection Accuracy (%) when FP. less than 1%

Training Methods SVM RSVM KNN One-Class SVM

Data Parameters σ=8, σ=4, k=10 σ=10
C=10 λ=1.2 τ=0.85 υ=0.005

Clean Original 79.17 83.33 87.50 75.00
Data Modified 87.50 83.33 91.67 83.33
Noisy Original 50.00 70.83 66.67 75.00*
Data Modified 63.33 75.00 70.83 83.33*

Furthermore, as we mentioned above, intrusion detection systems usually require as
low a false positive rate as possible due to the fact that too high false positive rate would
make the systems ineffective. This is also the reason that most existing commercial IDSs

46

prefer misuse ID techniques rather than anomaly ID techniques. To compare the perfor-
mance of our proposed methods, the false positive rate was kept under 1% by regulating
the parameters of the SVMs, and the detection accuracy of conventional SVM and RSVM
were recorded over both clean training data and noisy training data (One-class SVM only
was trained with normal data). The results in Table IV show that the performance of
SVM, RSVM with clean training data and that of One-class SVM with normal data did
not have much difference, but RSVM had better performance than traditional SVM over
noisy data due to its ability to solve the overfitting problem. Additionally, the results
showed that our modified methods suppress false positives effectively. For instance, the
original conventional SVM achieved 79.17% detection accuracy with 0.99% false positive
rate, while our modified SVM could achieve 87.50% detection accuracy with 0.75% false
positive rate. Also shown in the Table IV, both modified RSVM and One-class SVM
had better performance than the original ones. Surprisedly, KNN showed the best perfor-
mance with cleaning data (91.67% hit with only 0.66% FA.), but it deteriorated greatly
with noisy training data because of some misclassified intrusive processes.

Another factor worth considering is the number of support vectors. As we know, SVC
classify new examples by solving a quadratic programming problem, and the computa-
tional complexity of SVCs has a linear relationship to the number of SVs, therefore, SVMs
with less SVs require less running time, which significantly benefits online intrusion de-
tection. When we derived table 3.4, we recorded the number of SVs of different SVMs,
and as illustrated in Table 3.5, traditional SVM and RSVM had more support vectors
over the clean training data than over the noisy training data because of the misclassified
elements, and the number of SVs of our proposed methods was generally less than that of
the original ones. Original One-class SVM selected 48 out of 606 normal processes as its
SVs, while the modified one reduce the number of SVs to 34. Unlike SVMs, KNN has to
calculate the similarity distance between the ongoing process and all the processes in the
training data (the size is usually huge in practice), in order to guarantee a high detection
accuracy, which thus increase its running time and response time heavily.

Table 3.5: Comparison of the Number of SVs over Training Data Sets

Training Data Methods SVM RSVM One-Class SVM

Clean Data
Original 46 34 48
Modified 43 32 34

Noisy Data Original 41 19 48*
Modified 36 19 34*

Besides the detection accuracy and support vectors, another aspect that must be
addressed is the training time of intrusion detectors. Available intrusion detection ap-
proaches rely too strongly on the assumption that high quality labeled training data can
be readily obtained, which undermines their efficiency and limits their application. An
ideal IDs should be trainable with any provided data, even online. Therefore, the ability
to achieve satisfied detection accuracy during as short a certain training time as possi-
ble is very important for an IDS that works online. Table 3.6 shows the ratio of the
training time for original SVMs to the modified method with clean data and noisy data
respectively.

47

Table 3.6: Ratio of the Training Time for the Modified/Original SVMs
Training Data SVM(%) RSVM(%) One-class SVM(%)
Clean Data 56.01 51.61 59.40
Noisy Data 65.12 66.67 60.20

The training time for the modified SVMs was much less than for the original ones;
RSVM and One-class SVM need more training time than conventional SVM in order
to get high detection accuracy with a false positive rate less than 1%. The training
time for modified SVMs represents an average performance over 50 trials, and it greatly
depends on the distribution of the SVs in the training sequence. During the experiment,
we found that the modified algorithms converge faster to the optimal boundary if the
SVs are provided to the algorithms earlier than the in other examples. However, modified
algorithms deteriorated severely when abnormal points were provided after most of the
normal points had been supplied, due to the sudden change of the nature of boundaries.
Under such conditions, the modified algorithms perform narrowly better than the original
algorithms. In our experiment, the fastest trial only takes 8.3s, when the normal processes
and anomaly processes were provided alternately during the initial training phase, in
contrast to the worst trial, which takes 223.3s, when some anomaly processes were supplied
suddenly at the end of training stage, so we averaged the performance over 50 trials for
comparison with the original algorithms.

3.7 Conclusion and Future Work

In this paper, intrusion detection was formulated as a text processing problem. Aiming to
lower the high false positive rate, and based on the special characteristics of the observable
subjects−system calls in privileged processes, we use a modified tf -idf text processing
model with considering the time information and the correlation between the processes,
the prerequisites and consequences of the attacks, etc. In addition, we modified tradi-
tional SVM, RSVM and One-class SVM respectively, based on the method from OSVM.
The preliminary experiments with the 1998 DARPA BSM audit data showed that our
modified algorithms outperform conventional SVMs in terms of the number of support
vectors and amount of required training time while keeping comparable detection accu-
racy. Specifically, the running time of the modified algorithms can be greatly reduced
because of the fewer support vectors, and significant training time can be saved by the
effective decomposition of the original algorithms for faster convergence. Both of these
two aspects are essential to the design of an satisfactory online IDS. One significant dis-
covery is that the modified One-class SVM can be trained online with unlabelled data sets
because of its unsupervised nature, which contradicts the strong assumption that most
existing methods are based on. It also inspires us to undertake further research about
the application of online training with related effective unsupervised learning methods for
intrusion detection, such as incremental learning methods. Although there may still be
some reasons to doubt the performance of our proposed methods in practice, actually, we
can not exclude causes from the limited sample of the experiment data. Moreover, we
can conclude that the characterization of the observable subjects is more important than
the specific method, so the effective description of the subjects is more meaningful for

48

improving the performance of intrusion detection that uses text processing techniques.
The following aspects are worth further consideration:

• Collecting more random samples particularly of intrusions from real environments,
to evaluate our method. Some effective evaluation methods that offer insight into
the mechanisms of anomaly detectors are worth further exploration, rather than
just tallying detection accuracy with false positive rates using benchmark data sets.

• Comparing our method with other intrusion detection techniques from machine
learning and pattern recognition.

• Some other effective incremental learning algorithms are worth considering to be
applied to the realtime intrusion detection, and capture the system normality drift.

49

Chapter 4

Constructing Multi-Layered
Boundary to Defend Against
Intrusive Anomalies: An Autonomic
Detection Coordinator

4.1 Introduction

As we have analyzed in the first chapter, the procedure of building an anomaly detection
model should involve first studying the intrinsic characteristic of the data (so-called ob-
servation) and then selecting a model that best utilizes the characteristic. The selected
observations (e.g., system calls traces, network packet logs, shell command line strings)
are mainly used to characterize behavioral normality and hence construct anomaly de-
tector’s operating environments. However, although a large number of variables could
be used to characterize the stage of a host, cataloguing every possibility is impossible,
and since the normal behavior of many variables has no obvious pattern, “normality”, in
most cases, is simply noise. The so-called effective anomaly detection models are mainly
based on smoothed or coarse-grained data, which always contain less information than a
fully detailed fine-grained data model. Therefore, how to pick out the most efficient ob-
servations for system normality characterization is the ever-lasting challenge in anomaly
detection domain. One fact has to be realized is that different observations have differ-
ent properties and characteristics, which might affect anomaly detector’s capability of
characterizing system normality. In some cases, observation might limit anomaly detec-
tor’s ability to discover some hidden intrusive attempts. For example, Feng et al. [27]
have shown that some attacks can be detected in system call stacks, whilst escaping from
system call traces.

In our work, we pay more attention to the observations than the specific design of
anomaly detection schemes. Taking the analysis on the anomaly detector’s observations
as a starting point, we attempt to construct a framework to correlate several observation-
specific ADs in order to achieve better performance in terms of broader detection cover-
age, higher detection accuracy, and fewer false alerts. Specifically, the following questions
prompt our work: Whether the combination or fusion of diverse observations or differ-
ent properties of the same observation provide more information on revealing intrusive
anomalies and, if it can, why and how? Whether the detection coverage can be broadened

50

while fewer false alerts are triggered by the complementary operation of some basic ADs,
if it can, how? the complementary operation is deterministic or probabilistic? How to
coordinate the observation-specific ADs to work together in an anticipated manner with
provision of adaptability and reliability in order to capture the drifts of system normal-
ity? Also, an attack might include several stages, and leave traces in various manners for
the same system vulnerability. The combination of different ADs is expected to extract
concrete behaviors to a sufficiently high-level to detect families of attacks rather than
individual instantiations, thereby allowing for the detection of all the attack variants that
attempt to exploit the same weakness.

Additionally, the combination of ADs may seek some theoretical foundation from those
state-of-the-art design methodologies and paradigms for fault-tolerant systems, which
suggest that reliability or dependable computing environments can be achieved via a
sequence of system partitioning, subsystem design, and system-wide integration [?]. In
this sense, improved reliability (tolerate false positive and false negative) of each single AD
within an information system (probably in different working environments) facilitates the
construction of a multi-layered boundary to cope with attack-driven faults and react with
more coordinated diagnosis and effective countermeasures, ultimately achieving improved
performance as a whole [90]. In general, we envision a framework in which several levels
of data analysis are used as the basis to be combined to yield a single but effective system
normality characterization. We envision further an approach in which anomaly detection
models are built on a fundamental understanding of their operating environments, and
have the adaptability to respond to the diverse demands of various system situations.
The hope is that a collection of simple surrogates based on specific observable subjects
can cooperate and evolve into generic models with broader anomaly detection coverage
and less false alerts.

With the objectives in mind, in this chapter, based on a brief observation-centric
analysis on existing anomaly detectors in the first chapter, we formulate the correlation
between different observation-specific anomaly detectors as a multi-agent model using
Partially Observable Markov Decision Process (POMDP). The proposed detection model
including a core component called an autonomic detection coordinator (ADC), is expected
to work in a dynamic manner to find an optimal combination to adapt to the changing sys-
tem situations with satisfactorily performance in terms of predefined evaluation metrics.
A basic assumption to support the model is that various operating environment could pro-
vide different kinds of normal and anomalous information for system characterization, and
thus different anomaly detectors could create a consensus on the identification of anoma-
lies, while intersecting their judgement on false alerts. Moreover, the model could be
easily extended to more complex situations, such as a network with distributed anomaly
detectors, sensor networks, or wireless networks. Also, the probabilistic nature of the
model guarantees it will work in a tolerant manner. Even though one of the individual
anomaly detector might fail to work properly, ADC can still collect enough intelligence
from the other anomaly detectors, and make a correct decision based on their consensus.
Therefore, adaptability, scalability, and dependability enrich the functionality of ADC sig-
nificantly, compared to an individual AD that works with a single operating environment.
After the model formulation, we take a host with Solaris OS as experimental scenario to
evaluate our integrated detection model, with emphasis on the attack-centric comparative
studies between the detection performance of independent anomaly detectors and that of
the model, based on the fundamental understanding of the employed anomaly detectors’

51

behavior and their respective operating environments.
The rest chapter is organized as follows: Section 2 gives a brief introduction about

the related works. In Section 3, we construct a general framework for the correlation
of multiple anomaly detectors based on POMDP, and cast the posed problems in the
framework with detailed formulation, together with specific solutions. In section 4, we
apply our formulated model to four host-based anomaly detectors, and take a host with
solaris OS as experimental scenario to evaluate the model’s performance. Section 5 reports
the experimental results and presents some further discussions. Concluding remarks and
future work are presented in the last section.

4.2 Related Work

The motivation for the correlation of different anomaly detection models is intuitive in
essence, and many work have been done on this idea, although the research emphasis
are not similar. Han et al. [32] combined multiple host-based detection models using a
decision tree to lower false alert rate while keeping high detection accuracy. However, their
detection models were established and combined on the same layer (i.e., audit events with
some related parameters, arguments, and flags), although the utilized information were
diverse. In addition, the decision tree essentially is a static combination approach, causing
the model to be lack of adaptability, and the performance would deteriorate dramatically
with the increasing number of elemental ADs.

Based on the observation that the human experts always attempt to design “root-
cause” signatures that “combine” different attack characteristics in order to attain low
false alarm rates and high attack detection rates, Giacinto et al. [29] proposed an approach
to network intrusion detection based on the fusion of multiple classifiers, while each mem-
ber of the classifier ensemble was trained on a distinct feature representation of patterns
(in their work, each network connection refers to a sequence of data packets related to
a particular service, which could be extracted as content features, intrinsic features and
traffic features). The classification results of three neural networks were then combined
using a number of “fixed” (Majority, Average) and “trainable” (Naive Bayes, A posteriori
DCS) fusion rules. The reported results showed that the fused rules could achieve a better
trade-off between generalization abilities and false alarm generation than that of individ-
ual classifiers. However, in this work, network-based intrusion detection essentially was
formulated as a pattern recognition problem, and more efforts were paid to the compar-
ative studies on the fusion approaches rather than the anomaly detection problem itself,
specific analysis on the intrusion detection performance was not the emphasis either.

In addition, many collective intrusion detection models have been proposed to coun-
termine distributed attacks by leveraging the information collected from distributed hosts,
such as [68, 74, 83], or to improve the accuracy of alarms by correlating diverse observa-
tions of multiple heterogeneous sensors [40,65,80]. In those models, local monitors, agents
or sensors are used to collect interesting events (from various sources, such as audit data,
network packets, SNMP traffic, etc.) or alarm reports, and the distributed architectures
provide various communication methods to exchange the local detection information. For
instance, Graph-based IDS (GrIDS) [18] detect intrusive anomalies by building a graph
representation of network activity based on the reports from hosts, and then infer the
intrusive patterns or hostile activities based on predefined rules using TCP/IP traffic be-

52

tween hosts. Distributed Intrusion Detection System DIDS [74] also takes advantage of
a collective approach to detect intrusive anomalies by deploying monitors to watch mul-
tiple network links and thus track user activity across multiple hosts. In [80], different
measurement reports of the alarms are correlated in a probabilistic way to suppress false
alerts, while [65] provides a tool TIAA for interactive intrusion analysis by correlating
alerts on the basis of prerequisites and consequences of attacks.

Compared with the existing works, even though starting with similar motivation, our
work is mainly focused on the anomaly detection model itself for correlating the anomaly
measurements from independent anomaly surrogates, and searches the optimal correlation
manners on the system state from learning instead of relying on a predefined set of rules
or events. The emphasis of the work is on the analysis of the model’s anticipated behavior
from a high level standpoint, and the effects of the complementary correlation of different
observations on revealing intrusive anomalies. The automatic detection with optimality,
adaptability, dependability is also of the concern in our work.

4.3 ADC Modeling

Insightful analysis on the independent anomaly detector’s behavior and the fundamental
understanding of their detection coverage and blind spots is the preliminary but essen-
tial stage for their optimal correlation. With the motivation about the correlation of
observation-specific anomaly detectors, and based on the analysis of their general behav-
ior and special properties in the first chapter, an integrated anomaly detection model
which mainly contains a core component−autonomic detection coordinator (ADC), is
formulated in this section. After the formulation, a well-studied policy-gradient reinforce-
ment learning algorithm is modified to serve as the specific approach to search in the
optimal correlation strategy.

4.3.1 Technical Rational and Model Formulation

As described in the last section, the design challenge of ADs is the definition of system
normality, and the measurement distance between ongoing activity and normal profiles
is the key point of detection. During the operation, the AD triggers alert when ongoing
activity produces a distance exceeding a specified threshold, or beyond a tolerance range,
which thus introduces the problem of threshold selection. Intuitively, a larger threshold
causes missed detection (or false negative), while a smaller threshold results in false alarm
(or false positive). In most cases, the measurement threshold is closely related with the
AD’s detection coverage or blind spot.

Assume that each AD is an independent entity working in its own environment with
uncertain perceptions, actions (or responses), and feedback, and each of them responses
individually according to its local parameterized detection scheme. Our integrated detec-
tion model ADC attempts to combine those independent entities in an optimal way, with
the anticipated behavior to suppress false alerts and achieve broader detection coverage.
From the perspective of control theory, the design is to search in optimal decision strategies
to minimize a cost function (or maximize a reward function), as the state of operational
environment evolves over an extended period of time. Due to the system inherent un-
certainty, either in the way the system state evolves or in the way the state is observed
or both, it is not a well-posed problem to optimize the criterion directly. In this sense,

53

stochastic control formulations, which seek probabilistic strategies rather deterministic
strategies, is a more suitable optimization method to meet our realistic objective.

It is worth noting here that our main concern is the behavior (response) of independent
ADs, rather than their inner detection schemes. The independent AD decides whether
the ongoing activity is legal or malicious, and since each of them only works in its own
context, the true system state can only be indirectly observed through their respective
detection measurement, and they have to maintain the estimates of the true system state,
therefore, the detection problem is partially observable for the entire system. Furthermore,
the decision process is a Markov process, because the next state of the system is dependent
only upon the current state and the previous decision. Thus, a partially observable Markov
decision process is formulated here.

Formally, a POMDP model is structurally characterized by four key elements [1]: a
finite state space S of n distinct states, or S = {1, 2, ..., n} of the system; a control space
U of m distinct actions (or responses), or U = {1, 2, ...,m} that are available to the
detection policy; an observation space Z of q distinct observations, or Z = {1, 2, ..., q};
and, a (possibly stochastic) reward r(i) ∈ R for each state si ∈ S, or in another sense,
cost ci,j(u) for state transition from si to sj with a particular control u.

As a POMDP model, the interaction between an independent AD and its environment
includes a sequence of decision stages as follows:

1. At time step i (discrete), the system is in a particular state si ∈ S, and the un-
derlying state emits an observation zi ∈ Z to the AD according to a probability
distribution ν(si) over observation vectors.

2. The AD responds ui ∈ U in accordance with a randomized policy, based on a
probability distribution µ(zi) over actions, with known zi.

3. ui determines a stochastic matrix Pr(ui) = [pij(ui)], pij(ui) is the probability of
making a transition from state si to state sj under action ui.

4. In every system state, the AD receives a reward signal ri, while its aim is to choose
a policy so as to maximize the long-term average of reward (E is the expectation
operator),

η := lim
T→∞

E[
1

T

T∑
i=1

ri]. (4.1)

The above decision process shows that at each time step the AD sees only the observa-
tions zi and the reward r(i), while it has no knowledge of the underlying state space, how
the actions affect the evolution of states, how the reward signals depend on the states,
or even how the observations depend on the states. From another viewpoint, to each
randomized policy µ(·) and observation distribution ν(·), the Markov chains for state
transitions si and sj are generated as follows:

si ∈ S
ν(si)−−→ zi ∈ Z

µ(zi)−−−→ ui ∈ U
pij(ui)−−−−→ sj ∈ S

In essence, all the above parameters can be organized into a family of action-dependent
matrices: m n × n state transition probability matrices F , m n × q observation proba-
bility matrices H, m n × n transition reward matrices G. ν(si) is essentially a m · n · q

54

Figure 4.1: Architecture of the Autonomic Detection Coordinator

known observation probability Pr(zi|si, ui−1), while µ(zi) is a q ·m ·m action probability
Pr(ui|zi, ui−1). In order to parameterize these chains, we parameterize the policies, so
that µ(·) becomes a function µ(θ, zi) of a set of parameters θ ∈ Rk as well as the observa-
tion zi. The Markov chain corresponding to θ has state transition matrix P (θ) = pij(θ)
given by pij(θ) = Ezi∼ν(si)Eui∼µ(θ,zi)pij(ui). Therefore, equation (8) can be achieved by
the parameterized policy with θ:

η(θ) := lim
T→∞

Eθ[
1

T

T∑
i=1

ri]. (4.2)

As the detection process of each AD can be formulated as partially markov decision
process, the ADC naturally can be modeled as a multi-agent POMDP, as shown in figure
4.1. In the coordinator, several independent ADs with distinct operating environments are
incorporated. Each of them sees a distinct observation vector, and has a distinct param-
eterized randomized policy that depends on its own set of parameters. If the collection of
ADs is considered as a single AD, the individual observation vectors can be combined into
a single observation vector, and similarly for the parameter vectors and action vectors,
while the common goal of those ADs is to maximize the average reward, or minimize the
on-average cost of the actions. Effectively, each AD treats the other ADs as a part of
the system, and updates its own policy while remaining oblivious to the existence of the
other ADs. The only communication between these cooperating ADs is via the globally
distributed reward signal.

More formally, the meta-action of the coordinator U contains the cross product of
all the responses available to each AD, that is, U = {u1 × u2 × · · · × un}. Because the
AD parameters/policys are independent, each AD independently chooses actions that are
combined to form the meta-action. For stochastic policies, the overall action distribution
is the joint distribution of actions for each AD, µ(u1, u2, ...un|θ1, θ2, ...θn, z1, z2, ...zn). In
another sense, ADC’s meta-action Ui is essentially based on the estimate of the system
state S̃i, which contains the responses of independent ADs (u1, u2...un), the proceeding
meta-action Ui−1, and the proceeding system estimate S̃i−1, or Ui = µ(S̃i).

55

4.3.2 A Specific Solution

To establish the structure of model, several elements need to be specified via engineering
assumptions, formal definitions, and even empirical training:

• A concatenation parameter setting θ = (θ1, θ2...θn)

• The system state space S of cardinality n, the observation space Z of cardinality q,
and the action space U of cardinality m

• The state transition probability matrices F , observation probability matrices of ADs
H, transition reward matrices G, and the definition of the reward signal r

As the meta-action of the ADC is affected by a concatenation parameter θ, while our
aim is to find such a parameter setting (or control policy) for all the ADs that maximizes
the expected long-term average reward in equation (8). This is essentially is a kind of
direct reinforcement learning problem, which has been discussed in [7, 8].

In a brief word, the algorithm learns to adjust the parameters θ of a randomized policy
with observation zi, and chooses actions according to µ(zi, θ). It involves the computation
of a vector qt at time step t, and it updates according to:

qt+1 = ρ · qt +
∇µut(zt, θ)

µut(zt, θ)
(4.3)

where ρ ∈ (0, 1), µut(zt, θ) is the probability of the action ut under the current policy, and
∇ denotes the gradient with respect to the parameters θ. The vector qt is an eligibility
trace of the same dimensionality as θ; it is used to update the parameters, and guides
the policy to climb the gradient of the average reward. Here, we intend to apply a multi-
agent variant of the OLPOMDP algorithm [6], which has been applied to solve a routing
problem by Tao et al [79], and a multi-neurons learning problem in the brain by Bartlett
et al [5]. The OLPOMDP gives a simple way to compute an appropriate direction to
update the parameters:

θt = θt−1 +4θ = θt + τt · rt · qt (4.4)

where the long-term average of the updates 4θ lie in the gradient direction ∇η(θ), rt is
the sum of the rewards, and τt is the suitable size of the steps taken in parameter space.
The key feature of the algorithm is that the only non-local information each AD needs
is a global reward signal; AD does not need to know any other information about the
system state in order to climb the gradient of the global average reward.

More practically, considering the specific characteristics of the information systems
(regardless of single hosts or computer networks), two assumptions need to be addressed
to facilitate the algorithm’s application:

Assumption 1 For every given θ, the system converges to a unique steady state s0 ∈ S
after a number of aperiodic normal operations.

Specifically, although the system’s underlying states are unknown, it will return to a
steady state ultimately; that is, the right-hand-side of equation (9) is independent of the
system starting state, and converges with probability 1 over all possible reward sequences
{ri}.

56

Assumption 2 For the POMDP-based ADC, which coordinates the independent ADs,
the updates of equations (10) and (11) for the ADC are equivalent to those that would be
used by each AD.

That is, if we let zi
t denote the observation vector for the ith AD , ui

t denote the action
it takes, and θi denote its parameter vector, the update equation (11) is equivalent to the
individual update equations,

θi
t = θi

t−1 + τt · rt · qi
t (4.5)

where τ1, τ2, · · · > 0,
∞∑

t=0

τt = ∞, and
∞∑

t=0

τ 2
t < ∞, while the vectors qi

t ∈ Rk are updated

according to

qi
t+1 = ρ · qi

t +
∇µui

t
(zi

t, θ
i)

µui
t
(zi

t, θ
i)

(4.6)

where ∇ denotes the gradient with respect to the AD’s parameter θi.
In addition, several formal definitions need to be given in order to cast the independent

AD’s behavior in the POMDP model:

Definition 1 All the ADs have no knowledge about the exact system states, in some
sense, |S| is infinite; the observation set Z={Normal, Attack}, and the response/action
set U={Silence, Alert} according to their specific detection scheme.

Due to the numerous and various operations, it is impossible for ADs to determine
the exact system state especially those normal states. Generally, ADs consider two states
Normal and Attack, while Attack state can be further specified according to the severity
degree. Based on the the system estimate, ADs thus respond in a deterministic way
according to their observations. In addition, to synchronize the responses to ADC from
basic ADs, a staging scheme needs to be defined. Suppose an activity (local or remote)
happens at time step t, ADs receive different observation streams independently in their
own operating environments; let σ(·) denotes a general form of the ADs’ decision rule,
which partitions the infinite measurement space into discretely different decision regions,
with each region corresponding to one of a finite number κ (according to the definition 1,
κ = 2) of possible output observations. Given a single-stage measurement (AD-specific)
χ0 ∈ R on stream `, AD i makes a decision with the decision rule parameterized by a
threshold value λi

`, as follows:

Definition 2 For every measurement stream ` with measurement χ0, there is a decision
rule σ` : R→ {0, 1} of the form

σχ0(`) =

{
0, χ0 ≤ λi

`

1, χ0 > λi
`

where output “0” denotes the ‘Normal’ observation and “1” the ‘Attack’ observation.
Corresponding actions ‘Observe’ and ‘Alert’ are taken by AD according to their respective
observation.

As mentioned, the parameter θ of ADC is a concatenation of parameters θi, which
is a row vector with form θ = (θ1, θ2, ...θn). Essentially, θi is a column vector, and its
dimensionality is determined by the number of the ith AD’s parameters. It is worth

57

noting that λi in definition 2 is only the threshold determining the distance between
normal and abnormal activities, while ADs’s actions actually are also affected by other
inner parameters. For the easy of discussion, we only consider the key parameter λi in
the model.

Our next consideration is to to derive the second term of the right-hand side in equa-
tion (13) for every independent AD. Since it is difficult to parameterize the underlying
detection schemes with λi, in order to make the ADs trainable and save computational
cost, we assume a general probabilistic model for the ADs’ behavior. Specifically, if we
assume p is the a prior detection probability of AD, the probability of detecting n attacks
among N activities is:

Pp(n|N) =

(
N

n

)
pn(1− p)N−n (4.7)

taking the distribution as the function of the expected number of successful detections,
v = pN , the equation becomes:

Pv/N(n|N) =

(
N

n

)
(

v

N
)n(1− v

N
)N−n

When N →∞, we have,

Pv(n) = lim
N→∞

Pv/N(n|N)

= lim
N→∞

N(N − 1) · · · (N − n + 1)

n!

vn

Nn
(1− v

N
)N−n

=
vne−v

n!

Obviously, Pv(n) is a Poisson distribution. Hence, during a particular period, the probabil-
ity of no anomaly appears is Pv(0) = e−v, or for an AD, Pr(Slience) = Pr(ut = 0) = e−v.
To make ADs’ parameters trainable, we take v (which is essentially related with detection
probability p) as a function of λi, i.e., v = ϕ(λi). AD’s action ut thus generally obeys a
rule Pr(ut = 0) = e−ϕ(λi), while ϕ(λi) ∈ (0,∞) is defined as:

ϕ(λi) =
M · λi

t

di
t(`)

(4.8)

where M is a constant which can be determined during the training stage with knowledge
of the number of injected attack operations, and λi

t is the threshold of ith AD at time
instant t, while di

t(`) denotes the measurement distance between ongoing observations `
and the normal patterns. Assumption 2 shows how to update the threshold λi

t in the
direction that maximally increases the long-term average of the reward. From equation
(13), we easily derive

∂
∂λi

t
µut

µut

=




−M/di

t(`) if ut = 0

M · e
−M·λi

t
di
t(`) /{di

t(`) · (1− e
−M·λi

t
di
t(`))} otherwise

(4.9)

To complete the picture we need to define reward/cost functions for the ADC’s behav-
ior, which is used to guide the improvement of its detection performance. As we know, in
the anomaly detection domain, following cases always happen, more or less:

58

• normal behavior is detected as normal (correct)

• normal behavior is detected as anomaly (false positive)

• abnormal behavior is detected as normal (false negative)

• abnormal behavior is detected as anomaly (correct)

Here we want to employe an expected cost function (regardless of AD-specific de-
tection schemes), which is essentially equivalent to equation (8), to express a minimum
probability-of-error criterion where errors (false positive & false negative) corresponding
to ADC’s action “Alert” while in state Normal, or “Silence” when not in state Normal,

C(λt) =
n∑

i=1

Pr(si)[R(0, si)Pr(d ≤ λt|si) + R(1, si)Pr(d > λt|si)] (4.10)

where d is a general form of measurement distance, λt is threshold at time step t, Pr(si)
is a prior probability distribution which can be obtained via training data, and, R(A0, si) :
{0, 1}×S → R, represents rewards with action A0 ∈ {0, 1} when the true state is si, and it
can be defined according to various system situation and security demands. Obviously, the
ADC’s expected optimal behavior can be achieved by minimizing C(λt), or via selection
of the optimal λ∗t .

Based on our specific assumptions and formal definitions, a modified version of algo-
rithm OLPOMDP [7] can be used to describe the AD’s behavior:

Algorithm Reinforcement Learning of ADC meta-action
1:Given:

Coefficient ρ ∈ [0, 1),
Step size τ0,
Initial system state s0,
Initial thresholds of independent ADs λi

0,
i.e., θi

t in concatenation vector θ.
2:Begin
3: for discrete time instant t = 1, 2, · · · do
4: Get ongoing observations and their corresponding

measurement stream `.
5: Generate action ui

t according to the specific detection
scheme and definition 2.

6: The ADC broadcasts the cost signal rt.
7: Update qi

t+1 according to equation (13) and (16):
8: if the previous actions is “Silence” (i.e., ut = 0)
9: qi

t+1 = ρ · qi
t −M/di

t(`).
10: else

11: qi
t+1 = ρ · qi

t + M · e
−M·λi

t
di
t(`) /{di

t(`) · (1− e
−M·λi

t
di
t(`))}.

12: end if
13: Update θi

t+1 according to equation (12):
14: θi

t+1 = θi
t + τt · rt · qi

t+1.
15: end for
16: end

59

Note that rt in equation (12) is the sum of costs that ADC have got so far, and qi
t is

a trace of the same dimensionality as θi
t, with qi

0 = 0; ρ ∈ [0, 1) is a free parameter to
control both the bias and the variance of the estimates produced by the algorithm. It
has been shown that provided the bias is sufficiently small, it will converge to a region of
near-zero gradient, which thus can be extended to the multi-detector environment, and the
algorithm does not need access to the underlying state and does not make use of recurrent
states. Except the global reward signal rt, each AD only applies local information in its
parameter updates. A multi-agent OLPOMDP is thus an ideal approach to optimize the
cooperative responses of different anomaly detectors.

4.3.3 Practical Considerations

The modeling of our ADC and its anticipated behavior are supported by two assumptions.
The first assumption is usually but not always strictly satisfied. During the online training
phase, if the system is safe from attacks, no matter what the initial state si ∈ S, the
system will return to a steady state s0 after a number of normal operations. But once
the system is attacked, the probability of achieving a steady state decreases dramatically.
Even though such case could happen, equation (12) and (13) may still perform well when
the process parameters vary slowly over a large number of stages. Strictly speaking, the
second assumption can be regarded as a theorem deduced from equation (10) and (11),
which is theoretically proved in [5,7]. So, it is always satisfied during the modeling process.

Table 4.1: A Simple Comparison between Four Basic Elements

Anomaly Detectors Observation
Main Property

Parameters Detection Cost
Frequency Ordering

MCE [89] Shell Command Lines
√

λ, L O(N · n2)
Markov Chains [86,87] Audit Events

√ √
λ, L O(L · n2)

STIDE [28] System calls
√

λ, w, L O(N · L)
KNN [50] System calls

√
λ, k O(N · n2)

’L’ is the size of ongoing observation, ’n’ is the number of unique events/states, ’w’ in STIDE is sliding window size,
’N ’ is the size of normal profiles which has different meaning in different ADs

During the modeling process, we limit our attention on the controllability of the ADC,
some other considerations such as computational cost, independent ADs’ underlying de-
tection scheme, etc., are not of our main concerns, and essentially, the computational
cost that the ADC needs is much less than that of the independent ADs. Several addi-
tional attractive properties in the following strengthen the model’s advantages, and might
broaden its application field:

• Adaptability In our model, reward signal is the only information shared by elemental
ADs, and the cooperation between those ADs need not consider their explicit inter-
communication; this allows the ADC to adapt to diverse system situations by setting
different reward signals. Furthermore, with the adjustable reward signal, the ADC
is expected to be capable of capturing the drifts of system normality in a dynamic
manner, through periodical training.

60

Figure 4.2: Architecture of the Multiple Observation-specific ADs Combination

• Scalability As shown in Fig. 1, the ADC’s distributed architecture allows different
numbers of independent ADs to be incorporated into the model without loss of
performance. Furthermore, the ADC might achieve more intelligent controls based
on the consensus with increased population of basic ADs. This flexibility thus
benefits the extension of the ADC to more complex environments, such as a network
with several dominated hosts/servers, sensor networks, and wireless networks.

• Dependability Because the ADC’s action depends on the overall responses of a group
of dependent ADs, even if one or some of them suffer from faults, the ADC still has
the ability to provide reliable decisions with high confidence. Additionally, because
the independent ADs are observation-specific, even though some sophisticated intru-
sive anomaly can escape from the detection of a particular AD with a knowledge of
its blind detection region [78], other ADs in different layers still have the probability
of revealing it.

• Optimality The key feature of our model. The underlying working manner is es-
sentially formulated as an optimization problem with the objective function (8) or
(17) and some constrained conditions. Assumption 2 shows that the simple update
rule modifies the parameters of ADs in the direction that maximally increases the
average reward, which leads to parameter values that locally optimize the perfor-
mance of the independent ADs. ADC’s general behavior is thus anticipated to be
found as the optimal correlation strategy. The theoretical foundation about this
optimization can be found in reference [6, 7].

4.4 Experimental Scenario−A Host-based ADC

This section describes the implementation and evaluation of a host-based ADC proto-
type, which intends to construct a multi-layered boundary to detect host-based intrusive
operations.

61

Table 4.2: Statistics of the Data Source

Data Category\Source No. of Command Lines No. of Audit Events No. of Processes

Training Set (Normal) 5,600 62,100 640
Normal Data 5,640 70,780 690

Testing Set Masquerader 2127 850 272
Other Attacks no trail uncounted 35

4.4.1 ADC Setting

Based on the observation-centric analysis in section 3, and taking into account following
considerations, we employed four typical ADs (shown in table 4.1) as basic elements to be
incorporated into ADC, while their detailed descriptions can be found in their respective
references.

1. the trade-off between the computational cost and detection performance is the main
consideration,

2. since we take Solaris OS as the experimental platform, the selected ADs are host-
based, and observation-specific,

3. every AD has sensitive parameters that can be controlled to impact observations,

4. for the easy of control and analysis, the number of independent ADs should not be
too large

In table 4.1, λ, as defined in the definition 2, is the threshold determining the similarity
between ongoing observations and those in normal profiles. Besides this common param-
eter, the observation of ADs are also affected by other inner parameters. For instance, for
STIDE, the window size of system call sequences w, the locality frame count (LFC) L can
also be adjusted to impact the observation. For MCE (Minimum Cross Entropy based on
frequency distribution), the length of command blocks L is also an adjustable parameter
(but usually according to the length of login sessions). For KNN, k, the number of nearest
neighbors of the ongoing process, is also a key parameter for its observation. While for
the Markov Chain detector, the size of the observation window L is often regarded as an
important parametric variable which affects the difference between two sequences. How-
ever, because most of those inner parameters are closely related to the training phase, we
only include λi into the concatenation parameter vector θ here, that is, θi = {λi}, while
other parameters are not included. In addition, figure 4.2 shows a general combination
architecture for ADC’s working environments. MCE works with the user shell command
lines by extracting its frequency property; Markov Chains mainly takes advantage of the
ordering property of audited events; both STIDE and KNN operate with system calls of
privilege process, but the main property they exploit are different, i.e., local ordering and
frequency respectively.

4.4.2 Scenario Description and Data Collection

An intrusion instance is exemplified in the following to show the operating scenario of our
ADC. A keyboard masquerader or remote interloper takes control of a terminal/host, and

62

Table 4.3: Attacks List in the Experiments
Attack Category Attack Description No. of instances

Masquerader access to programs and data as an 850 commands
imposter by controlling the keyboard
xlock heap buffer overflow vulnerability 2

Buffer Overflow eject buffer overflow vulnerability 3
lpset buffer overflow vulnerability 3
Exhausting Disk Space (with dd) 2

DoS Exhausting the Memory 1
Consumption of process table 2

then takes advantage of the legitimate user’s privileges and access to system programs
and data. The intruder may attempt to read or write access to private data, acquire
unauthorized system privileges (or even abuse of legitimate privileges), and install some
softwares such as Trojan for further malicious behavior. For the sophisticated intruder
with knowledge of AD installed in target terminal, he might take some seeming legal
tricks to surpass the detection coverage. In such activity, the intruder leaves trace data,
in various forms, to victim terminal, such as shell command lines (especially for keyboard
masquerader) with corresponding audit events, privilege processes with system calls, etc.
The ADC is thus expected to detect those anomalies during the malicious attacks based
on the trace data.

To validate ADC’s functionality and performance, we need a scenario as described to
implement the prototype and conduct concerned evaluation. However, to the best of our
knowledge, there is no true trace data in the open literature that meets our experimental
demands. Therefore, we have to collect, combine and formulate the experimental data
with our particular considerations. To simulate the scenario, we need two role-players,
Alice and Bob, to operate in a same Solaris 8.0 operating system (SunOS release 5.0).
Alice plays the role of a legitimate user, while Bob pretends to be a masquerader.

The following is a summary of the procedure that was performed in order to create
simulation scenario and collect the experimental data,

1. Alice operates in the host as a legitimate user, and executes the system programs
under normal conditions to obtain records of normal usage, to obtain normal data.

2. Alice executes some known exploits to obtain the data recording attacks as the part
of training set.

3. Bob executes a series of system programs under normal conditions, and operates
with objective to steal some privacy data that regarded to be confidential to obtain
masquerader’s trace data.

4. Bob downloads and executes some published exploits and determine the correspond-
ing system programs that those exploits misuse, to obtain the data recording the
occurrence of the attacks.

5. Using the normal data obtained from step 1, and the labeled attack data obtained
from 2, train ADC and determine its behavior evolvement. Using the data obtained

63

from step 3, evaluate the ADC’s capability to detect masquerader attack. Using the
data obtained from step 4, evaluate the ADC’s performance in terms of detection
accuracy and false alarms.

During Alice’s four-week operation, she usually used text editor (vi, ed, etc.), com-
piler(gcc, cc, etc.), and some system programs(ps, lpr, sendmail etc.) on the machine
SunBlade 1500, meanwhile, she also executed several attack instances to train the ADC.
Excluding wrong commands and some noisy data, while keeping repeated ones, a total of
132,886 records of BSM audit data and 11,240 shell command lines (using the shell .his-
tory file to log all truncated commands without additional information) were obtained,
and these data were roughly averaged as part of pure training set and as testing set.
Note that during the collection of shell command lines, we also recorded the related audit
events and executed processes in terms of system calls, as BSM provides the monitor of
the execution of system calls by all processes launched by the user. However, considering
the processes in user mode usually cannot harm the system security, we only recorded
those processes in kernel model that require services from system kernel. Additionally, to
collect the attack data, Bob pretended to be a masquerader/attacker and operated in the
same host. Besides some normal operations, he carried out a series of attacks, including 8
cases of local buffer overflow and 5 cases of DoS. A small batch of Bob’s commands history
(2127 audit events, 850 command lines, and 272 processes) were added into testing set as
a masquerader trace data, together with the intended attack data. Table 4.2 and table
4.3 shows the experimental data we used in detail.

4.4.3 Structural Specification and Parameter Setting

To cast ADC model in the experimental scenario, its statistical structure and related pa-
rameters have to be specified. Obviously, a choice for S reflecting the true and fine-grained
state of the information system, especially those normal states, is neither meaningful for
security concerns nor feasible for practical implementation. In this sense, S must abstract
the operating environment at a controllable level to reflect the coarse-grained state tran-
sitions, namely, the changes between models of anticipated normal activity and the stages
of anticipated attack. Taking into account the specific experimental scenario, we assume
following possible states:

• N , normal state without any attacks,

• Am, local masquerader attack,

• Ab, local/remote buffer overflow attack,

• Ad, local/remote DoS attack.

The state space is thus S = {N, Am, Ab, Ad}, or n = 4, and the possible state transitions
that ADC intends to observe is N → (Am) → Ab(Ad).

As described in definition 2, each AD has two kinds of observations, and takes two
corresponding response in a deterministic manner. ADC’s observation space is thus a
combination of responses from independent ADs, that is, Z={MCE:0, MCE:1, MK:0,
MK:1, STIDE:0, STIDE:1, KNN:0, KNN:1}, or q = 6. ADC’s actions, Silence or Alert,
are thus evolved based on the combination of AD’s observations and proceeding feed-
back rewards, which is essentially a probabilistic decision process. With the specified

64

Figure 4.3: Correlation of Detection Measurements Among Different Layers

Table 4.4: Independent ADs’ Default Parameters

MCE Markov Chain STIDE KNN

Sequence length(L) 30 15 6 (LFC=20) variable
Threshold (λ) 0.45 0.80 0.6 0.72 (k=10)

’k’ is the number of nearest neighbors of the ongoing observation

structure, another essential step is to derive a conditional probability chain, including
Pr(sj|si, ui), P r(zi|si, ui−1), P r(ui|zi, ui−1). In essence, these conditional probabilities are
the relative frequency of each random event based on the specified POMDP structures
S, Z, U,C. Practically, those probability distribution can be estimated, or empirically ap-
proximated by training. Machine learning theory shows that, the more samples provide
in the training data, the more accurate the probability is estimated, and thus the more
effective the ADC is applied to the testing data.

In addition, a reward function needs to be specified to guide the evolvement of ADC’s
anticipated behavior, which mainly considers two types of errors, that is, false positive
and false negative,

r(sj|si, ui) =





r1, si ∈ {Am, Ab, Ad}, uk = Silence
r2, si ∈ N, uk = Alert
0, otherwise

(4.11)

Furthermore, to simply the training stage, the independent ADs’ initial parameters
ADC employed were directly derived from their original version, as shown in Table 4.4.
Thus, the parameter vector θ is a matrix with size N×M , where M is the number of basic
ADs, N is the number of controllable parameters. The initial concatenation parameter θ0

is therefore denoted as following, but in actual experiment, we only adjust the first row
of θ, i.e., N = 1,M = 4.

θ0 =

(
0.45 0.80 0.60 0.72
30 10 6 0

)

4.5 Experimental Results and Analysis

In the simulation-based experiment, we intend to explore three problems: How ADC
evolve its anticipated behavior during the training stage? How about the ADC’s perfor-
mance on suppressing false alerts? How about the ADC’s detection coverage/blind spots
on detecting known and novel attacks?

65

0 100 200 300 400 500
−15

−10

−5

0

5

10

15

Training Epochs

R
ew

ar
d

S
in

ga
l

Figure 4.4: Reward Signal of the Coordinator During Training Phase

4.5.1 Training Procedure

The training procedure generally includes three steps: train independent AD’s behavior
to determine their threshold λ, and create normal profiles; train ADC’s behavior to search
for an optimal concatenation vector θ; train ADC with trained θ to obtain its probabilistic
actions. Here the first step is omitted, and the procedure mainly focuses on the later two
steps.

As shown in table 4.2, 5,600 command tokens with 62,100 audit events and 640 pro-
cesses were taken as training data. Therefore, all 5,600 command tokens were used to
create a distribution-based behavioral model. Corresponding audit events and processes
were also used to create normal profiles for Markov Chains, STIDE, and KNN respec-
tively. Since the amount of the available data are limited, we used joint sets, that is,
half of training data were interleaved with half of testing data (altogether 5,620 command
tokens, 66,400 audit events, and 660 processes) to train the ADC. As every login session
(i.e., from login to logout) contains about 30 command tokens, for simplicity, we used a
constant window to partition command tokens, together with corresponding audit events
and system calls. Hence, a total b5620

30
c = 187 commands blocks were available, mean-

while, corresponding audit events and system calls that executed by processes were also
extracted as input to respective ADs. Since the independent ADs have different observa-
tions and detection measurements, a staging-scheme needs to be developed to synchronize
their reports. Here, we take the most outer layer, namely user command lines, as the base-
line of the ADC’s decision stage, that is, ADC take actions at each command trace. Figure
4.3 shows the logic relationship between the detection stages of independent ADs.

Since the training data contains only normal data, we set the items in equation (18)
as r1 = 0, r2 = −1. A total reward signal is then calculated after one pass through the
sequence data concatenated by observation traces (the ideal value should be 0 if there is
no false alarms). During the decision stage, to simplify the consensus strategy, any false
alarm reported by any AD would led to ADC’s action Alert, with penalty to all ADs.
Figure 4.5 depicts the evolvement of the ADC’s behavior during the training phase (with
500 training epochs, parameters ρ=0.90 and τ1 = τ2 · · · = 10−3, M = 1). The upper part
of the figure shows the changing of the number of false alerts in the training phase, and

66

Figure 4.5: Reports of the Basic ADs During Attack Training

the lower part of the figure shows the average reward signal (to manifest the trend, ADC
only considered the past 10 passes, i.e., T=10 in equation (2)). The figure shows clearly
that the ADC had incrementally improved performance during the training phase, as the
reward signal improves, on average, over time to an optimum. We found that after the
462th pass, there was no false alert triggered. After being trained, the parameter vector
of coordinator θ is:

θ =

(
0.42 0.84 0.69 0.79
30 10 6 0

)

Another training procedure is to achieve the ADC’s probabilistic behavior, there-
fore, a batch of training data that contains both normal and attack data are needed.
To obtain such data, during Alice’s four-week-operation, she also executed 2 cases of
buffer overflow (xlock & lpset) and 2 cases of DoS (Attempts to Exhaust Disk Space

and Memory). Here, to save the testing data and training time, we only used artificial at-
tack data (those related processes and audit events) to train the ADC’s probabilistic
action, and thus achieved the consensus strategy during the attack stages. Figure 4.5
simply shows the training results, where Ti means the ith attacking stage in terms of
30-command-block (executing scripts with exploit codes). Note that in T3 no exploit code
was executed, while KNN and STIDE still reported Alert due to operations in T2.

4.5.2 Testing of False Alarms

To evaluate the capability of the ADC of suppressing false alerts, we tested the trained
ADC using the normal testing set in table 4.2. Similar to the processing of training
data, the testing data was also divided into 188 commands traces (each trace contains
30 command tokens), together with their underlying audit events and processes. Figure
4.6 shows the relationship between the average false alert rate (the number of false alerts
over the number of command traces) and the number of command traces used for testing
data. Since the ADC gives the report with the pace of each command trace, we compared
its performance with that of MCE (with initial parameter), which also reports once on
every command trace (computed with the command traces in training data).

The figure shows clearly that the ADC suppressed false alerts significantly compared
with MCE. Specifically, ADC generated its first false alert at the 101th command trace
(i.e., F.P.=0.99%, first 94 command traces has been used to train ADC, thereby no false
alerts were triggered until the 101th command trace). At the 183th command trace,

67

20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 Testing Period (# of Command Blocks)

 #
 o

f A
ve

ra
ge

 F
al

se
 A

le
rt

 R
at

e

 MCE
 Proposed Model

Figure 4.6: False Positive Rate on Testing Data

MCE has generated 11 alerts, i.e., F.P.=6.01%, while the ADC only generated 4 alerts,
F.P.=2.19%. We found that at the 128th and 171th command traces, MCE did not
report false alert, while ADC reported, which means that one of the other 3 ADs has
made wrong reports. Although the analysis of other three detectors are helpful to insight
into the story, we did not carry it out here due to the intractable data partition, and the
lack of a compelling need to do. In addition, the parameter used by the MCE was directly
derived from the ADC rather than by individual training, therefore, we can not rule out
the possibility that the MCE might achieve better performance after being trained and
parameterized carefully with another training dataset.

4.5.3 Detection of Common Exploits

In addition to the false alerts, detection accuracy is also our concern, which needs careful
analysis.

Firstly, we evaluated the ADC’s masquerade detection performance. 850 command
tokens (with underlying 2127 audit events and 272 processes) operated by Bob were
truncated into 28 command traces (each login session also contains 30 command tokens or
so), and injected at randomly selected positions, without replacement, into the stream of
original 188 command traces (a more complicated case is to inject the command traces into
the command tokens instead of command traces; in such a case, the boundaries between
the traces might generate uncontrollable false alerts). Meanwhile, the underlying audit
events and processes that have been executed by the ‘masquerader’ were also injected into
the respective normal observation traces (as shown in Fig 3).

The results is shown in Table 4.5. Among total 216 command traces (188 normal + 28
anomalous), MCE detected 20 out of 28 anomalous command traces with a F.P. 11.17%
by regulating the threshold to 0.38. After this detection spot, the F.P. raised sharply to
100% with a total 21 anomalous command traces being detected. While the trained ADC
detected 23 anomalous command traces with a F.P. 9.57%. A careful comparative study
showed us the reasons contributing to the better performance of the ADC:

• MCE only worked in the command traces layer, while the ADC also considered

68

Table 4.5: Comparison of masquerade detection results between MCE and ADC

Methods MCE ADC

of normal command traces 188 188

of anomalous Command traces 28 28

Traces size 30 30

Hits(%) 71.43 82.14

Misses(%) 28.57 17.86

F.P.(%) 11.17 9.57

Total Detected 21 23

Table 4.6: Comparison of detection performance between ADC and Basic ADs

ADs/Statistics
Buffer Overflow Attacks

xlock(1) eject(1) lpset(1) eject(2) xlock(2) lpset(2) eject(3) lpset(3)
MCE × × × × × × × ×
Markov Chain X X X X X X X X
STIDE X X X X X X X X
KNN × X X X × X X X
ADC X X X X X X X X

‘X’ denotes hit, ‘×’ denotes miss

ADs/Statistics
DoS Attacks Metrics

ThresholdDisk(1) Memory(1) PT (1) Disk(2) PT (2) Hits(%) F.P.(%)
MCE × × × × × 0 0 0.42
Markov Chain X X × X × 84.62 4.35 0.88
STIDE X × X X X 92.30 3.48 0.75
KNN × × X × X 76.92 5.36 0.95
ADC X X X X X 100.00 1.01 −

“PT” denotes process table attack

69

the reports from other three ADs. The most important one is Markov Chain, which
works in audit events layer (actually, the STIDE and KNN have contributed nothing
since there were no intrusive process appeared during the masquerader detection).

• An intruder always tries to hide the not-so-frequently-used commands essential for
intrusion by adding some frequently used commands, while the additional audit
event information can be used to extract out the redundant information about the
particular command(s). Therefore, even if the malicious attempts could not be
detected in the command traces, ADs work in audit events or executed processes
might reveal those anomalies.

• 5 “masquerader” login sessions contain more than 30 command tokens, the trun-
cation to the size of 30 might generate more false alerts. Another 4 login sessions
have the same seeming with “Normal” ones, causing them to be free of being de-
tected by MCE and ADC. This might also because “masquerader” Bob actually is
a legitimate user, even though he has attempted to make some artificial deviation.

Secondly, the trained ADC was used to detect the injected attacks that shown in
Table 4.3, and its performance was compared with that of independent ADs. In this test,
detection accuracy is defined as the ratio of the detected attacks to all the injected attacks
(hidden in 35 intrusive processes, any detected intrusive process represented the detection
of the corresponding attack). false alert rate is the ratio of the misreports to all the normal
processes (total 690). To simplify the experiment while keeping its validity, we assumed
that false alerts would not be generated by those normal traces that have been used in the
last experiment for testing false alerts, and the ADC takes probabilistic behavior according
to the consensus strategies from training stage. The initial parameters used by the basic
ADs were directly derived from the ADC, whereas in order to investigate the relationship
between detection accuracy and F.P., we had to adjust them independently. Although
ROC curve is a traditional method to describe the relationship between the detection
accuracy and F.P., it can hardly provide us a fundamental and insightful understanding
of the detection story. A careful attack-centric analysis with comparative studies is more
helpful.

Table 4.6 shows the detection results of the ADC, and the best trad-off between the
detection accuracy and F.P. of the basic ADs by adjusting their respective thresholds (a
higher detection accuracy would cause a dramatic increase of false alerts). Specifically,
we have following observations:

• since the intrusive processes were injected into the normal processes without corre-
sponding command traces, MCE always took action ‘Observe’; Actually, since the
exploit code is written and executed in the script, it leaves nothing in the command
traces layer. But before that, the local intruder might reveal some unique behavior
in commands to achieve his/her goal.

• the ADC detected all the injected attacks by combing the reports from elemental
ADs, while its false alert rate was very low (i.e., 7 among 690 processes were mis-
reported); The novel Buffer Overflow attack eject and DoS attack by exhausting
Process Table were detected.

70

• for the Buffer Overflow attacks, which always attempt to obtain elevated privileges
by gaining a user→root transition, most of detectors could them out with a low
F.P..

• Both STIDE and KNN detected DoS attack by the consumption of process table,
since this attack generated excessive amount of ‘fork’ system calls. Although they
did not show any abnormality in system call transitions (abuse of a perfectly legal
action), which made Markov Chain fail to detect successfully, the high frequency
of ‘fork’ and the lack of the corresponding local ordering in our training processes
revealed its anomaly.

• Compared with the ADC, the basic ADs had to trigger more false alerts in order to
achieve a higher detection accuracy. For instance, the detection of the consumption
of process table cause many normal processes to be misclassified by STIDE and
KNN as abnormal ones.

Although the attacks in our experiments are not so sophisticated, they did help us to
insight into the detection coverage of various detectors. For instance, Markov Chain per-
forms well on detecting ‘Buffer Overflow’ attacks, based on the state transitions (micro),
while STIDE can detect anomalies based on the local ordering of observations (macro
states transition), and KNN is good at revealing those attacks showing high frequency
of a particular observation. The complementary operations of those ADs might provide
a broader detection coverage, and probably abstract some specific attack instances to a
higher level to disclose the “root-cause” of anomalies and to conduct post-analysis of alert
correlations.

4.5.4 Further Discussion

The correlation between the meta-actions are essential to the final decision of the ADC,
which is based on the consensus of reports from basic ADs being parameterized by a
policy gradient learning algorithm. Although the detection manner is probabilistic, it
still can be analyzed from a deterministic viewpoint. In our model, each AD only has two
action modes, i.e., Observe and Alert (denoted by 0, 1 respectively). Thus, total 24 = 16
kinds of report sequences would be generated, among which, ‘0000′ (definitely ‘Observe’
mode) most occurs, while ‘1111′ (definitely ‘Alert’ mode) rare occurs. After being trained,
each combination might find its matching action mode, if it cannot be adjusted to achieve
‘0000′. Obviously, the greater of the number of ADs (M) and action modes (N), the more
complex of the report sequence (NM), and thus the more difficult for the ADC to make
correct decision. In our experiment, to insight into the probabilistic behavior of ADC
and the state transitions, we trained ADC using pure normal data and “malicious” data
respectively. A more ideal case is to train ADC using true data trace mixed by normal and
anomalous activities (usually unobtainable), and find probabilistic action modes (that is,
the various combination manners of the basic ADs).

Another point worth addressing is the trade-off between detection accuracy and false
alerts, which is an inherited problem of the anomaly-based intrusion detection. We have
given some assumptions to support our model formulation, since it is truly hard to achieve
the goal without any insightful correlation analysis of the false alerts and post-processing
techniques [65]. In our model, the combination of the concerns from both observations and

71

detection schemes might facilitate it to find some solutions. In addition, the adaptability
of the model enables ADC to adapt the changing environments and suppress F.P. to an
acceptable level. Once the F.P. exceeds a given threshold, the ADC can be re-trained to
learn new probabilistic action modes and capture the drifts of system normality.

4.6 Concluding Remarks and Future Work

In this paper, we constructed a framework for the correlation of anomaly detectors. The
objective is to broaden detection coverage, suppress false alerts, and capture “root-cause”
attack instances in an automatic and adaptive manner. In general, our work are threefold:

Firstly, anomaly detectors’ general behavior and their failure curses were analyzed to
show the feasibility and advantage of their complementary operation.

Secondly, and the major contribution, we have developed an integrated detection
model ADC, which was formulated as a partially observable markov decision process. A
policy-gradient reinforcement learning algorithm was applied to tackle the delayed reward,
partially observable, multi-agent learning problem. The key features of the model includes,

• the ADs learn cooperative behavior to complement each other, under the guide of
a global reward signal, without inter-communication and explicit underlying states

• The adjustable reward signal enable the ADC to be capable of adapting to changing
system situations with various security concerns. Both of remote attacks and local
attacks are expected to be detected based on the dynamic combination of underlying
independent ADs

• the distributed architecture allows the ADC to tolerate some failure of basic ADs,
and to be extended easily to more complex environments

Finally, a host-based experimental scenario was developed and utilized to implement
and evaluate the ADC’s performance. Four well-known host-based ADs were employed as
basic elements of ADC to construct a multi-layered boundary to defend against intrusive
anomalies. The experimental results and comparative analysis demonstrated that our
ADC outperforms individual ADs in terms of several admitted criteria.

In general, the framework presented a formal and effective way for the modeling, anal-
ysis, evaluation and implementation of the anomaly detector’s complementary operation,
which might facilitate the development of more efficient cooperative detection models.
As the subsequent work, we intend to collect more real trace data (and some artificial
anomalies) to enrich the experiments, in meantime, reducing the computational cost of
the proposed method by abstracting effective observations for each AD is also of our con-
cern. Other consensus strategies, or combination methods from the data fusion domain
are also worth consideration. Furthermore, we will extend our model to the computer
networks, to evaluate the performance of ADC on detecting distributed attacks. In this
case, individual ADs locates in different hosts, especially those dominated hosts.

72

Chapter 5

Janus: Modeling and Analysis of
Multi-Stage Coordinated Attacks in
Computer Networks

5.1 Introduction

Although people never stop seeking the measures to secure their information systems by
developing various defense strategies, attackers always can find some crafts to achieve
their malicious intentions. Among the attacks, the most destructive and difficult one to
detect are those that occur in stages over time and cooperated by a group of attackers,
which is beyond much the power of individual attackers. To accomplish such a com-
promise, attackers must undergoes a process of reconnaissance, penetration, attack, and
exploit. Meanwhile, the attackers need to cooperate each other for their common goals by
resource sharing, task allocation, information communication and synchronization. Most
of the current intrusion detection techniques aim to identify the individual stages of an
attack with a certain accuracy and some false alerts, in most cases, some post-analysis of
alerts correlation are usually needed. While the detection of a sophisticated multi-stage
coordinated attacks remains difficult, which may involve a complex set of steps like using
hosts as stepping stones, exploiting trust relationships and vulnerabilities of hosts, and
data theft under the control of several organized hackers with particular capabilities.

Due to the special characteristic of multi-stage coordinated attacks, the simple com-
bination and correlation of some individual attack countermeasures can hardly provide
effective safeguard for the computer networks with distributed potential holes. An intu-
itive way is to deploy a rich set of intrusion detection sensors to collect the information
related with the network links and hosts log data, the attack scenario hence can be con-
structed through the alert abstraction and correlation. However, the huge volume of
alerts (both positive and negative ones), the different types of sensors (signature-based
or anomaly-based), the sources of the alerts (hosts or communication links) and their
semantics (preconditions or consequences) always make it too complex to handle. Strate-
gic models can also be expressed as attack tress, which represent goal-oriented attack
behaviors in hierarchical data structures. Such approaches provide a foundation for ab-
stractly describing multistage behavior based on the conditional causal relationships be-
tween events or states, but those paradigms are generally static, which cannot provide
a comprehensive model for the analysis of organized attacker’s dynamic and concurrent

73

behaviors. An ideal approach not only considers the state transitions (for multi-stage) but
also handle interactions between attacker’s joint actions (for coordinated). Taking into the
concerns that are not involved into most of existing schemes, we construct the multi-stage
coordinated attacks as a multi-agent partially observable markov decision process (MPO-
MDP). In addition, due to the inherent limits of the available IDSs and the increasing
application of encryption in communication, such as IPSec, SSL, intrusion detection and
prevention have once again moved back to the host systems, therefore, the observations in
our model are mainly from hosts rather than communication links. Specifically, the state
transitions of the computer network and the attacker’s object are represented in terms of
those observable variables from hosts, such as audit log, file systems, and some particular
application ports.

Rather than focused on the design of specific countermeasures, this chapter sheds
light on the modeling and analysis of multi-stage coordinated attacks from a hight-level
viewpoint. We envision a framework in which the security-related information (key obser-
vations) of the dominant hosts in the computer networks can be utilized to characterize
their trust relationships and causal vulnerabilities. We also envision that attacker capabil-
ities and scenarios can be constructed and represented in terms of observed preconditions,
so that cooperative behavior can be isolated and multi-stage attacks can be suspended
in case of further compromise. The hope is that those two concerns, like two sides of
one coin, from the standpoints of defender and attacker respectively, can be combined
together to achieve a complementary perspective for the detection of multi-stage coor-
dinated attacks. The analytical model we are going to utilize, which has already been
analyzed in the last chapter, is named Janus1 (a Joint ANalytical model with two United
Shields). Janus essentially formulate the behavior of both attacker and defender as a Par-
tially Observable Markov Decision Process (POM-DP), and then develop two algorithms
with apparently opposite concerns.

The rest of this chapter is organized as follows. Section 2 describes the attacker’s basic
behavior. Section 3 casts the attacker’s behavior into a formal framework, and defines
some notions and basic properties. Section 4 analyzes the model from the perspective of
both defender and attacker. Section 5 discuss some similar techniques that can be utilized
to enrich our modeling and analysis. Section 6 concludes the chapter and points out the
future work.

5.2 Attacker’s Basic Behavior

Different from those traditional attacks, which are launched by a single attacker to a
single victim in a short period, multi-stage coordinated attacks are usually conducted by
a group of organized attackers sharing the same objective and attacking tools, and usually
accomplish in a long period through number of operations. Obviously, two key features
are multi-stage, and coordinated, which are analyzed respectively in following.

Multi-stage: Or stealthy attack, which means that each attack consisted of a se-
quence of distinct steps, while each step represents an atomic attacker activity. For
example, an attack might involve a network surveillance step, followed by an intrusion
step using a known vulnerability, followed by a privilege escalation step to improve access

1The god of gates and doorways in Roman Mythology, depicted with two faces looking in opposite
directions.

74

Figure 5.1: Multi-Stage Attacks

to the target, and finally achieve some goals such as information theft or denial of some
system service.

A typical example of multi-stage attack is vulnerability finding worms, whose life-cycle
generally includes four steps [49,82]:

• Propagation: port scanning and probing to identify potential victim systems and
specific vulnerabilities present on those systems,

• Activation: user-to-root access exploitation by executing a set of commands,

• Infection: downloading and installing an attack payload or planting malicious codes,
and,

• Replication: eventually, conversion of the victim into a new attacker and looking
for the next victim

Such attacks are sequential chains composed by several atomic operations, as shown
in figure 5.1, while any failure of any step would cause the attack fail to succeed. It is
worth noting that most of worm-like attacks are automated and non-coordinated, and
they might spread to a large-scale area in a very short time. In figure 5.1, assume S0 is
the initial state of the system, while Sn is the system state when attacker has achieved
his/her goal. The final state transition from Sn−1 to Sn depends on the former transitions,
without which, Sn cannot be achieved.

Coordinated: A group of attackers simultaneously compromise a target host or net-
work by joint actions. As mentioned, the attacker does not necessarily mean human, it
also might be artificial agents/tools, malicious scripts/codes acting on behalf of human.
A very simple form of coordinated attack is distributed attacks like DDoS in which a mul-
titude of compromised systems attack a single target, thereby causing denial of service
for users of the targeted system. The key characteristic of such attacks is that the com-
promising point is multiple, the aggregated effects rather than the individual compromise
lead to the successful attack. Figure 5.2 illustrates a simple coordinated attack scenario,
in which two attacker e1 and attacker e2 cooperate each other to move the system from
state s0 (initial state) to sn (compromised state). From state s0 to state s3, e1 and e2

act independently without necessary cooperation, while from state s3 to sn, attacker e2’s
action u2

n has to be concurrently applied with e1’s actions u1
n−1 and u1

n, that is, the tran-
sition from state s3 to sn must depend on the joint action of e1 and e2. Although there is
no compelling need to discriminate the multi-stage coordinated attacks and coordinated
attacks, it is worth noting that the coordinated attacks usually takes several stages, but
sometimes the correlation among the independent attackers are not so close, and the se-
quential property of the actions are not very obvious, while our concern here are those
coordinated attacks with observable stages.

So far, many effective measures have been developed to cope with stealthy attacks and
coordinated attacks respectively, however, the integration of those two forms of attack
bring the defender more challenges:

75

Figure 5.2: Coordinated Attacks

• Escape from the detection. The coordinated attack can avoid both misuse detec-
tion and anomaly detection, by breaking the attack pattern into many apparently
innocent pieces. Although the individual activity appears normal, the aggregate
effects might lead to successful compromise.

• Countermine the detection. Instead of managing to avoid being detected by
defenders, the coordinated attacks might distract the intrusion detection systems
by triggering IDS’s alerts and consuming its resources. Although some minor or
decoy attacks are detected, the major attack can still succeed, since the coordinated
attack usually launch several simultaneous attacks.

• Diversity. Coordinated attacks can take various forms to achieve the same goal.
At a particular stage, even one atomic attack has been detected, it can still take
other actions to bypass the detection, or launch some similar attacks in parallel with
the main attack.

We assume a network composing a set of potential victims V = {v1, v2..., vm} which
can be individual hosts or the vulnerabilities in the hosts, and a group of attackers
E = {e1, e2, ...en} attempt to crack V during multiple stages T , where T = {t1, t2, ...tl}.
Another assumption is that the network undergoes the states S = {s1, s2, ...sn} under
attacks during particular stages, while each attacker has his own action space ui. The
multi-stage coordinated attack scenario can be generalized with following properties:

• Pr{Et(û)|si, vi} is assumed as the probability of a group of attackers E take joint
actions û = u1× u2× · · · × un at stage t, with the knowledge of system state si and
victims vi. The elements have following specific meaning,

• It is the joint action û rather than the individual action ui that moves the system
state from si to sj.

• The joint action û depends on the preconditions of V in state si, while the concurrent
action list changes with the specific state.

• The attackers always intend to take the minimum set of actions (n of û is as small
as possible) to achieve their goal (subgoal).

5.3 A Formal Framework

Based on the understanding of the multi-stage coordinated attacks in the last section,
this section aims to further characterize the attacker’s behavior by formulating it as a
multi-agent partially Markov decision process.

76

5.3.1 Model Formulation

Formally, a POMDP model is structurally characterized by four key elements [1]: a finite
state space S of n distinct states, or S = {1, 2, ..., n} of the system; a control space U of
m distinct actions (or responses), or U = {1, 2, ..., m} that are available to the detection
policy; an observation space Z of q distinct observations, or Z = {1, 2, ..., q}; and, a
(possibly stochastic) reward r(i) ∈ R for each state si ∈ S, or in another sense, cost
ci,j(u) for state transition from si to sj with a particular control u.

To cast the multi-stage coordinated attacker’s behavior in a POMDP framework, we
have to specify the basic elements and notions as following,

1. S = {s0, s1, ...sn} is a set of system states, which cannot be observed directly by
attackers. s0 represents the initial states, and si(i 6= 0) denotes the state when
attacking goal or subgoal has been achieved.

2. O = {o1, o2, ...oq} is a set of observations to the attackers when system in state S.

3. U = {u1, u2, ...um} is a set of actions taken by m attackers, where ui = {ui
1, u

i
2, ...u

i
l}

is the set of actions available to attacker ei(l is various with ui) and, Ei(û) ⊂ U .

4. A reward signal rt to show whether the goal (subgoals) of the attackers has been
achieved at stage t, or ci,j(u) represents the cost moving state si to sj with action
û.

Further, some additional constraints have to be set considering the multi-stage coordi-
nated attacks’ specific characteristic. Since the system states cannot be observed directly,
they can only be represented as a set (or conjunction) of those observations oi that are
true in the state. For example, attacker e1 successfully logged in v1 as a superuser and e3

accessed the log files in v2, the observation oi thus can be represented as e1(v1) ∧ e3(v2),
in most cases, the vulnerabilities combination v̂i rather than the individual ones vi con-
tributes to the observation oi. However, in essence, oi ⊂ v̂i, since oi is only those vi

that can be taken advantage by attackers; Attacker’s action ui are diverse due to their
location, assigned jobs, assistance tools and capability, and we assume that each of them
performs at most one action at a time (in a particular stage, some attackers could be idle);
It also need to note that not only the single state si, but also the conjunction of states
ŝi represents the attacker’s goal, since a complex goal might consist of several concurrent
subgoals.

Based on the formal definitions and the specific concerns, the above parameters can
be organized into a family of action-dependent matrices: m ·n×n state transition proba-
bility Pr{sj|si, Ei(û)} of matrices F , m · n× q observation probability Pr{oi|si, Ei−1(û)}
of matrices H, m · n× n transition reward matrices G, and a q ·m×m action probabil-
ity Pr{Ei(û)|oi, Ei−1(û)} (which is essentially equals to Pr{Et(û)|si, vi}). From the at-
tacker’s viewpoint, the reward signal should be maximized provided subgoals are achieved
at each stage, i.e.,

min{ lim
T→∞

E[
1

T

T∑
i=1

ri]}, (5.1)

in another sense, the attacking cost ci,j(Ei(û)) is always expected to be minimized from

77

state si to sj, and the objective function is

min{ lim
T→∞

1

T
E[

T∑

k=1

ci,j(Ei(û))]} (5.2)

5.3.2 Basic Properties

Since the model is formulated from the perspective of attackers, their joint action is our
main concern, since it directly related with the security of the system. In a more detail,
each attacker’s action can be specified as: which attacker ei is performing the action
ui, what are the preconditions v̂i of the action, who other attackers are involved at the
current stage, what concurrent actions have to be taken, what is the system state (by
observations) after the operation.

Property 3 (Preconditions) The successful attack depends on the preconditions V that
can be taken advantage by attackers E. At the initial state, V mainly denotes the set of
exploitable vulnerabilities in the system, at other states, it also includes the conditions
that have been generated by previous actions.

Many techniques and tools, which are based on modeling network specifications, fault
tress, graph models, and performance models, have been developed to analyze vulnera-
bility by checking system logs and monitoring specific monitoring performance metrics.
Attack trees [70] and graph-based network vulnerability analysis [67,76] are two popular
methodology. Attacker tress usually constructed in a given specific environment, and
quantifies vulnerability by mapping known attack scenarios into tress; graph-based ap-
proach analyzes risks to specific network assets and examines the possible consequences of
a successful attack. As the preconditions, the analysis system usually requires a database
of common attacks (which might be broken into atomic steps), the information related
with network configuration and topology, and even attackers’ profile. The nodes of the
graph identify an attack stage, and the graph thus enables us to identify the attack paths
with the highest probability of success attack.

Property 4 (Concurrent Actions) A group of attackers’ joint action ûi keeps logically
consistent in each underlying state si, which means uj

i of ej does not necessarily contradicts
with uk

i of ek. The consistence of independent actions depends on that of preconditions
and post-conditions.

This property is essential to the attack’s efficiency, suppose the goal ultimately will
be achieved. For instance, if a group of sophisticated attackers cooperate well, and no
member acts any negative effects on the current system state, their joint action at each
stage would achieve their subgoals (at least generate the necessary preconditions for latter
stages). For a group of amateur attacker, the same goal might cost more.

Property 5 (Consequence) The consequence of the coordinated attackers’ action ût is
a concurrent list of observations, which are jointly consistent, without any conflicts, in
the state si. The consequential observation might be generated by an individual attacker,
or a group of attackers.

78

Figure 5.3: Stat Transition Under Attacks

Property 3 essentially seems to the property 2, both of which are focused on the
aggregate affects of the concurrent actions. The consequence of joint action ûi, in fact, is
the precondition of joint action ûi+1. In this sense, those three properties are consistent.

Taking into account those three properties, a Markov chain for state transitions are
generated as:

si ∈ S
ν(si)−−→ oi ∈ O

µ(oi)−−−→ Ei(û) ∈ U
pij(Ei(û))−−−−−→ sj (5.3)

where ν(si) = Pr{oi|si, Ei−1(û)}, µ(oi) = Pr{Ei(û)|oi, Ei−1(û)}, and pij(ui) = Pr{sj|si, Ei(û)}.
A figure can be used to illustrate the relationships between the elements, which is shown
in figure 3,

Note that the dash line connecting v2 and oi means v2 does exist, but is not employed
as oi; the dash line connecting v1 and oj means v1 does exist, and is not generated due
to actions; The dash circle of si and sj means the states are not observed directly. The
consequence of Ei(û) (only those v generated by previous actions), and the previously
existing v combine as the preconditions v̂j of the next action Ei+1(û).

5.4 Janus: a Two-Sided Analytical Model

The last section presents a formal model incorporating both security analyst and the
attackers’ concerns, which therefore can serve both as a semantic model of computer
networks (mainly from defender’s standpoint) and as an analytical model for a group of
attackers. This section firstly addresses the attacker’s behavior based on the formulated
model, and then proposes defender’s countermeasures from the opposite viewpoint of the
same model.

5.4.1 Attacker-Centric Analysis

In the above formal model, the system state S contains both normal system states SN

and the sates SA when system are being compromised, which are not accessible for the ob-
servers while can be distinguishable through particular observations O by their knowledge
and skills. However, for a group of attackers, there is no such a compelling need to differ-
entiate all the possible state transitions, rather, they only need to discern those attack-
relevant states by some distinctive features of the states. Therefore, the states in the
attacker’s analytical model derived from the general one only means those attack-relevant
states, i.e., the system states undergoing attacks SA = {s0, s1, · · · sa}, and SA ⊆ S.

79

As the model shows, reward signal or attacking cost2 can be used to evaluate at-
tacks’ efficiency. Assume a group of attackers E = {e1, e2...en} successfully attack an
object by T stages, and the final state is sa, the most desirable reward signal should
be max{E[1

T

∑T
i=1 ri]}. Suppose the initial system state is s0, and the system states are

transited in a sequential order, i.e., s0, s1, · · · , sa−1, sa, the cost of transiting system states
can be computed as,

C0,a(E) = c0,1(E0(û)) + c1,2(E1(û)) + · · ·+ ca−1,a(Ea−1(û))

=
a∑

i=1

ci−1,i(Ei−1(û))
(5.4)

more generally, for si, sj ∈ S, i 6= j ∈ [0, a], C0,a(E) =
∑

i,j ci,j(Ei(û)). Obviously, for
coordinated attackers E, the smaller C0,a(E) the better, and a group of sophisticated
attackers are always expected to achieve smaller C0,a(E) than that of amateur attackers.
In most cases, the smaller attacking cost C0,a(E) means a smaller set of concurrent actions
|U |, which are essential to the efficiency of multi-stage coordinated attacks for the sake of
following observations,

• the smaller |U | might require smaller |V |, which means that smaller concurrent
action sets needs less necessarily preconditions for attack and,

• the smaller |U | might require smaller |E|, which means that a smaller number of
attackers are involved in the attack and,

• small |U |, |V | and |E| reduce the complexity of attacks, and thus suffer less proba-
bility of being detected.

No attacker prefer those cost-consuming attacks if they have options of cheaper ones
for the same goal, in another word, they would not use a large set of concurrent actions
if a smaller subset can achieve the desired effect. If so, all our analysis are in vain. The
observation can be briefly described as follows,

Observation 1 For a particular target, provided necessary preconditions V , there exist
an optimal concurrent action set Û by which a group of attackers E can achieve their goal
with minimum attacking cost C0,a(E).

More formally, we model the action-dependance state transition as a directed state
contact graph G =< SA,W >. The edges of the graph W = V ×U , where V is the set of
preconditions for a particular joint action, and U is the collection of joint actions. Each
directed edge represents a transition between two system states si, sj ∈ SA at a certain
stage. We represent each edge by a tuple w =< si, sj, Ei(û), oi > (oi ∈ v̂i is the exploitable
preconditions) where si is the previous state and sj is the target state with Ei(û) × oi.

Edge w is thus si
Ei(û)×oi−−−−−→ sj. Based on the model and three properties derived from the

general framework, observation 1 can be generalized as a following corollary,

Corollary 5 In the directed state contact graph G, a group of attackers E always intend
to search for the least-weight-path wmin from source node s0 to the destination node sa.

2attacking cost means the cost that a group attackers have to pay during an attack stage, which can
be measure by time, computational costs&resources, and some assistant tools, etc.

80

It is worth noting that the formulation of G is based on the assumption that attackers’
actions have no loops, or excluding the wrong operations, recoveries, etc. In this sense,
the attacking plans might be deterministic rather than probabilistic. Moreover, insights
to individual attacker’s behavior might benefits us better understanding of a group of
attacker’s joint actions,

Corollary 6 For a particular attacker ei, its action-related edges can only be regarded as
a collection of discontinuous lines connecting two different system states.

For a particular attacking scenario, ei’s operating traces can also be viewed as a se-
quence of state-related actions, namely, τ(ei) = (ui

0(s0), u
i
1(s1), · · · , ui

k(sk)), where ui
j(sj)

presents the action uj is executed by ei in state sj, and it might be nothing if ei is not
involved in a particular attacking stage. This is based on an assumption that with the
knowledge of G, attacker ei always knows which action to be executed in every stage. The
general attacking scheme is thus the combination of all the attackers’ operating traces,
i.e, τ(E) = (û0(s0), û1(s1), · · · , ûa(sa)). More generally, a group coordinated attackers’
capacity can be measured by the tuple (U,N), where U is all the available actions (more
specifically, the knowledge, skills, and assistant tools, etc.) available to the attackers, N
is the total number of participators. Although the individual attackers in practice might
have different capabilities and experiences, considering the common target and the inter-
nal sharing of the knowledge/skills/tools during the coordinated attacks, it is reasonable
assume a group of attackers to be homogeneous. Based on the formulated model and the
derived assumptions, also motivated by the attacker’s intention, we attempt to develop an
algorithm inspired by those ideas from ant colony optimization (ACO) algorithms fam-
ily [20,25], called Attackers Nondeterministic Trail Search (ANTS), to search for such an
attacking scheme as presented in corollary 1. In the algorithm, each attacker is viewed
as a context-awareness ant searching for the food (subgoal), while the observations oi at
each stage construct covert channels for ants’ action-dependent context.

Our formulated problem essentially belongs to the group of (constrained) shortest path
problems that can be solved by ANTS algorithms, and can be specialized in following
aspects,

• There is a set of constraints Ω for the concurrent actions of attackers.

• The available actions of attackers is a finite set N = {n1, n2, · · · , nl}.
• for every system state, a set of actions can be taken over N as δ =< nr, ns, · · · , nu, · · · >

(< r, s, · · · > to simply). Assume ∆ is the set of all possible coordinated actions, we

denote by ∆̃ the set of feasible sets with respect to the constraints Ω. The elements
in ∆̃ define the feasible actions. |δ| is the size of a set δ, i.e., the number of actions
in the set.

• There is a neighborhood structure among concurrent action sets defined as follows:
δ2 is an adjacent action set of δ1 if (1) δ1 ∈ ∆ and δ2 in∆, (2) δ2 can be reached
from δ1 by an additional logical action, i.e., δ2 =< δ1, r >(r /∈ δ1, while r ∈ δ2). The

feasible adjunct action of δ1 is the set containing all action sets δ2 ∈ ∆̃; if δ2 /∈ ∆̃,
δ2 is viewed as the infeasible adjunct action set of δ1.

• An attacking scheme AS is an element of ∆̃ verifying all the requirements.

81

• There is an attacking-specific cost Cost to evaluate every AS.

Base on the problem-specific characterization, an ANTS algorithm can be developed
as follows,

Attackers Nondeterministic Trail Search
void ANTS(U, N)

Initialize (U , N , minimum cost, O0); //O0 is preconditions currently available
while (termination criteria not met)

repeat in parallel for k = 1 to N
initialize ant(k);
L = update ant memory(); //understanding of the current concurrent action
while (current system state 6= target system state)

compute transition probability (F,H);
//F, H are matrix populated during training procedure

take next action(Ũ); // Ũ is the feasible actions in U
L = update internal state();

end while
if (state transited)

compute reward signal(r);//according to equation (1)
cost = compute transition cost(G); //according to equation (2)
deposit pheromone update(r);

end if
minimum cost = update minimum cost(cost);
get ant trail(k);

end repeat in parallel
get concurrent action list();
if (attacking goal not achieved)

return(“Attack Failed!”);
end if

end while

Note that criteria for the termination of ANTS can be set as required, it might be
the goal has been achieved or the minimum attacking cost exceed a certain threshold,
while the subgoals can be viewed as some specific preconditions for the next targets.
F,H, G are three matrices of MPO-MDP characterizing the transition probability of sys-
tem states, observations, and actions, which can be populated by a situation-specific
training procedure. Considering the specific correlation among attackers (by constraints
Ω), the searching process can be accelerated by their inter-communication (i.e., the pro-
cedure update internal state() and take next action(Ũ)), which also avoids the algorithm
getting into local optima.

5.4.2 Defender-Centric Analysis

Taking the same analytical model as basis, defender can take advantage the inferred
information for the prevention of multi-stage coordinated attacker’s exploitation:

• The model facilitate us specific methods and techniques to defend against, mitigate
or suspend the attacker’s action in both temporal and spacial spans.

82

• If the attacker’s graph G is well modelled by prior vulnerability correlation and
analysis, the pivot of the attacking scheme thus can be figured out and removed
easily.

• Corresponding cost-saving countermeasures can be taken based on the estimates
of system state transition by seeking the tradeoff between failure cost caused by
attacks and maintenance cost due to defence.

Vulnerability analysis has been taken as a kind of effective methodology to exam-
ine security-related properties for enhancing the dependability and security of computer
systems, and many analytical models and tools [13, 17, 69] have been developed so far.
However, we do not focus our attention on the development of our own analytical tools
here, instead, we intend to figure out the key stages of attacking plans by assuming vulner-
abilities have already been discovered and construing possible attack graphs. Intuitively,
for the attack graph G, if a set of edges connecting essential exploits, namely, backbone
of the attack graph are cut off, the attackers would never achieved their goal successfully.
The observation can be briefly described as follows,

Observation 2 An exploit might depend on a set of preconditions v and undergo mul-
tiple elementary actions u in order to take advantage of a single vulnerability (or sub-
goal), the vulnerabilities and corresponding examiners therefore allow us to derive a cause-
consequence relationship for each basic actions.

Similar with the construction of attacker graph G, the correlation among vulnerabil-
ities can also be extracted as a directed state contact graph G′ =< SN ,W ′ >, where SN

is the set of underlying system states representing the state transitions under known vul-
nerabilities, while W ′ is the collection of abstracted edges connecting s ∈ SN . Note here,
defenders not only concern those state transitions resulting in attacks, but also seemingly
normal transitions, therefore, SA ⊆ SN and |S| ≤ |SA ∩ SN |. Also, W ′ = V × U , where
V is the preconditions and, U is vulnerable operations, w ∈ W ′ thus essentially denotes
the multiple vulnerable operations u on several objects v that are involved in exploiting
a vulnerability, in another word, changing system states. A corollary characterizing such
property can be generalized as follows,

Corollary 7 In the directed graph G′, there exist at least one path, usually a collection
of edges w′, from the source node s0 to the destination node sn, without which, graph G′

would turn to disconnected graph being cut into several parts.

Obviously, if such edges w′ do exist, and can be found out even approximately by
heuristic methods in non-deterministic manners, defenders can easily understand adver-
sary’s possible attempts by figuring out the key observations. Since our basic assumption
is that G′ has been constructed by vulnerability analytical tools such as model-checking,
a backward searching algorithm might be more feasible and efficient to explore the ob-
jective with desired properties. We intend to develop such an algorithm called Attacker’s
Pivots Discovery by Backward Searching, or APD-BS, which can also derived from the
ACO algorithm family. The main idea is generalized as follows,

1. select the most significant vulnerabilities resulting in the system compromised state
sn, i.e., for those observations with a higher probability Pr{oi|sn, u}.

83

2. put the ants on those interested node, and trace back those neighbors meeting
constraints in probabilistic manners,

3. rank the edges with the amount of pheromone left by those ants walking from source
node to end node, based on which, the most significant pivots can be figured out
for remove.

4. the above three steps are carried out iteratively until the termination criteria are
met.

The main element of this metaheuristic algorithm is ants, which constructs candi-
date discoveries (a complete discovery is a solution) for the problem by individually and
iteratively computation. The complete discovery contains a collection of correlated obser-
vations being generated from system state s0 to sN , while intermediate discoveries only
contains parts of them. At each step, every ant k computes a set of feasible expansions to
its current discovery and moves to one of these probabilistically according to a probability
distribution pk

ab (ant k from observation a to the next one b) by combining and specifying
following two values,

• the attractiveness εab of the move, as computed by some a priori desirability of that
move;

• the trail level τab of the move, indicating how proficient is has been in the past
to make that particular move, which is essentially a posteriori indication of the
desirability of that move.

Taking into account our specific concern, and based on the pre-knowledge that H(a) =
Pr{a|si, ui−1} and H(b) = Pr{b|si, ui−1}, we define the attractiveness of the ants’ move
as the correlation coefficient of those two probabilities,

εab =
Cov(H(a), H(b))√
D(H(a))

√
D(H(b))

(5.5)

where Cov(H(a), (b)) is the covariance of H(a), H(b) and
√

D(H(a)) is the variance of
H(a), and the ant’s pheromone trail update rule can be defined as,

τab = ρτab + τ0(1− ci

c
) (5.6)

where ρ ∈ (0, 1] is a coefficient such that 1−ρ represents the decrease of trail between two
generations of complete discoveries, and τ0 is the initial trail level which is usually fixed
to be an arbitrary small positive value. c is a moving average on the cost of the last l
discoveries, and ci is the cost of the ith ant’s discovery. We can see that the cost G(a) for
system state transition essentially is taken as an underlying guidance for ant’s movement,
this is reasonable if we consider the fact, as we have discussed previously, attackers always
manage to seek the cheaper actions for system state transition. Henceforth, the probability
for ant k to make the move is given by

pk
a,b =




{τab · ξ + εab · (1− ξ)}/{

∑

x∈tabuk

τax · ξ + εax · (1− ξ)}, if b /∈ tabuk

0, otherwise
(5.7)

84

where the sum is over all the feasible moves and ξ ∈ (0, 1] is a control parameter balancing
the relative importance of the trail τab and the attractiveness εab, tabuk is an observation
dependent set for kth ant’s feasible moves. In this sense, pk

ab actually is a tradeoff between
the desirability of the current move and the past trails. With the definitions described
above, the algorithm can be developed as follows in pseudocode,

Attacker’s Pivots Discovery by Backward Searching
void APD-BS()
Initialize (po, current observation, minimum cost);
//current observation is a set of observations Oinitial currently available
//po is apriori probability of observation selection, minimum cost = ∞
Put ants on those N selected nodes with Pr{Oinitial|sn, u} > po;
while (termination criteria not met)

repeat in parallel for k = 1 to N
initialize ant(k);
L = update ant memory(); //get the information of the current context
while (current observation 6= ∅)

for(j = 1 to number of current observation)
a = get current observation[j];
b = neighbor(a);
//neighbor is defined as those observations resulting in the same system state
εab = attractiveness compute(a, b);

end for
move backward(); //make the move according to equation (7)
compute move cost(); //update the k-th ant’s discovery cost
append new observation(tabuk);//update the k-th ant’s new feasible move

end while
cost = get current discovery cost();
if(cost < minimum cost)

minimum cost = cost; //update the k-th ant’s moving costs
update discovery();//update the k-th ant’s discovery

end if
end repeat in parallel
for (each move of ants())

Update trail level();// update N ants’ trail level by equation (6)
end for

end while
Pivots selection();
//select the key observations connecting by those edges
//with the most amount of pheromone

Note that since the development of our algorithm is based on the assumption that
observatons/vulnerabilities have already been characterized by particular assistant tools,
three matrices F, H, G can be populated with the preknowledge in advance.

In addition, the general MPO-MDP model formulated in the section 3 presents us a
formal way to utilize the probabilistic state estimate as a sufficient statistic and optimally
decompose the feedback controller into a recursive estimator and a response selector,
which has been developed in [43] as a host-based autonomic defense system for the pro-

85

vision of the system survivability. Based on the functional decomposition, defender can
select the proper countermeasures according to the feedback from system state estimator.
The decomposition can be briefly described as follows,
Notations:
Ik, all the information received by defender D prior to selecting the kth action uk, in-
cluding ok−1, uk−1, and Ik−1.
Bk, the system state estimate in stage k, which is a column vector with length n (state
space), and the ith element bk(i) = Pr(si|Ik) representing the relative confidence that
state si is indeed the true system state in stage k. In essence, Bk ∈ {ρ ∈ [0, 1]n|∑n

l=1[ρ]l =
1}; when [ρ]i = 1, defender surely knows system is in state si at current stage k; while
when Bk is a uniform distribution, defender has no knowledge about system state estimate
at all.

Intuitively, from the perspective of defender, an estimation policy ϕ that outputs
each estimate Bk can be derived recursively as Bk = ϕ(ok, uk−1,Bk−1). Based on the
probabilistic state estimate, defender can select the candidate countermeasures according
to a response policy µ, namely, uk = µ(Bk). The objective of such a decomposition is to
achieve the tradeoffs between the failure cost of a compromised information system and
the maintenance cost of ongoing defensive countermeasures. As defined above, ci,j(u) is
the cost for state transition from si to sj with action u at stage k, while the defender’s
aim is to save cost during operation stages, i.e,

λ(ϕ, µ|F, H, G) = lim
T→∞

1

T
E[

T∑

k=1

ci,j(µ(Bk))|F, H,G] (5.8)

The equations essentially shows that the aim of defender’s countermeasures is to minimize
λ by simultaneously optimizing ϕ and µ. As for stationary POMDP models, probabilistic
analysis can yield the optimal estimation ϕ∗ via the closed-form recursion [43], with the
fixed ϕ, the optimal response policy taken by defender can be expressed by

µ∗(Bk) = arg min
uk∈U

[
∑
si∈S

c∗i,j(uk)bk(si)] (5.9)

where c∗i,j(uk)bk(si) is the expected cost obtained through an optimal selection of coun-
termeasures at future decision stages, given current state si and action uk. The counter-
measures with minimum cost taken by defender thus is a set of values ci,j(uk) so that the
selected control µ(B) is obtained at each stage by applying the last equation. However,
it it worth noting that the determination of the optimal countermeasures and the mini-
mization of the given objective function is typically not possible, and thus approximation
methods and heuristics must be applied to find near-optimal policies.

5.5 Implementation Issues and Concluding Remarks

The characterization and detection of multi-stage coordinated attacks pose as a difficult
task in the intrusion detection domain due to its special temporal characteristics and
wide spacial spans. From the temporal standpoint, a complete attack scheme can be
accomplished through multiple steps whereas each step cannot be detected individually. In
addition, such attacks usually span a wide area including multiple objects, which make it

86

harder to be discovered due to apparently normal pieces. To cope with this kind of attacks,
in this chapter, we presented a two-sided model Janus for their representation and analysis.
The model was cast in the Multi-agent Partially Observable Markov Decision Process
(MPO-MDP) framework for both attacker’s and defender’s behavior characterization.
Based on the model, three parts of work were conducted,

• the basic properties of multi-stage coordinated attacks were analyzed, and some key
observations were figured out for attacks’ more effective description. The analysis
lays the theoretical foundation for the further modeling and analysis of users’ (bother
attacker and defender) behavior.

• attacker’s behavioral characterization was specialized by taking account into their
particular concerns. From attacker’s point of view, an ANTS algorithm (Attacker
Nondeterministic Trail Searching algorithm) derived from ACO algorithm family
was developed to search for attack schemes with the minimum action cost;

• a defender-centric analysis was also carried out for the development of efficient coun-
termeasures. Another searching algorithm which also derived from ACO algorithm
family, called Attacker’s Pivots Discovery via Backward Searching (APD-BS) was
developed to capture the most significant observations/vulerabilities for a successful
attack. By removing those key objects, attacks are expected to be thwarted or coun-
termined. In addition, from the defender’s standpoint, the MPO-MDP model was
decomposed into two parts, i.e., system estimator and response controller, based on
which, defender can select proper countermeasures concerning the tradeoffs between
the system maintenance cost and the failure cost.

The future work is mainly focused on the implementation of our two designed algo-
rithms, i.e, ANTS and ADP-BS, and meanwhile developing more efficient local search
(LS) algorithms to accelerate those two algorithms’ convergence speed. Those two algo-
rithms are also expected to be applied to simulation-based testing environments with real
trace data. For example, one specific application of ADP-BS is to identify the worms
origin in the computer networks [84], that is, to determine both the host responsible for
launching a propagating worm attack and the set of attack flows (can be viewed as edges
w′) that make up the initial stages of the attack tree via which the worm infect successive
generations of victims. Since worm’s generation and propagation can be essentially for-
mulated as an attack graph we have analyzed, ADP-BS armed with efficient local search
algorithms thus can be used to discover the most suspect origins.

87

Chapter 6

Conclusions

6.1 Summarization

This thesis contributes to developing effective and efficient models, methods and tech-
niques for anomaly-based intrusion detection in hosts and networks with the concern of
adaptability. Taking the observation-centric analysis as the theoretical foundation and
starting point, we have developed three versions of SVM-based adaptive anomaly detec-
tors that can be trained online for capturing the drifts of normal behavioral patterns;
we also have developed an integrated anomaly detection model (core component is called
autonomic detection coordinator) for correlating several individual observation-specific
anomaly detectors; the modeling framework is also extended for the preliminary analysis
of coordinated multi-stage attacks in computer networks. Generally, the work presented
in this thesis, also our main contributions, can be summarized as follows:

1. The first part of work lays the foundation for the modeling and development of the
specific anomaly detectors. Based on the similarity with the induction inference
problem, we cast anomaly detection in a statistical framework, which gives a formal
analysis on anomaly detector’s anticipated behavior from a high level; The challeng-
ing issues and potential solutions are both presented, including the characterization
of host-based and network-based normality, evaluation of anomaly detectors; Case
studies on several typical anomaly detectors present us a formal way for the analysis
of their operational capabilities, which might benefit their improvement and broader
application.

2. The second part of work is about the development of three versions of SVM-based
anomaly detectors. The kernel detection scheme are three modified Support Vector
Machines, which reject the traditional assumption that training data for anomaly de-
tectors are readily available with high quality in batch. Those SVM-based anomaly
detectors aim to capture the normality drifts of normal behaviors by periodical
training online, so that they can adapt to the new computing environments without
triggering excessive false alerts. To validate those anomaly detector’s performance,
we implemented the experiments by reforming 1998 DARPA BSM data set collected
at MIT’s Lincoln Labs, and conducted the comparative studies with the original al-
gorithms.

3. The third part of work contains two pieces of contributions. First, taking the for-
mal observation-centric analysis of the individual anomaly detector’s behavior as the

88

departure point, we developed an integrated detection model called ADC by corre-
lating several individual parametric anomaly detectors. The complementary oper-
ations among the basic elements was formulated as a partially observable Markov
decision process, and searching in an optimal cooperation manner, i.e., an opti-
mal parameters setting for every anomaly detector. The anticipated behavior is
to broaden overall detection coverage with fewer false alerts. A host-based experi-
mental scenario was developed to implement ADC; Second, we extended the model
as an approach for the modeling and analysis of multi-stage coordinated attacks
in computer networks, the basic properties were given, together with the behavior
analysis from the point of view of defenders and attackers. Moreover, two searching
algorithms drawn from ACO algorithm family were developed, with the objective
to search for attack schemes with the minimum action cost (from attacker’s stand-
point) and to capture the most significant observations/vulerabilities of a successful
attack (from defender’s standpoint), respectively.

6.2 Future Work

Our future work basically along the line currently undergoing, which is expected to be
conducted in the following two mainstreams and thus make our already accomplished
work more complete.

Firstly, to enrich the observation-centric analysis that we have carried out. We will
extend our SVM-based anomaly detectors, which originally worked in the environments
constructed by system calls (mainly frequency property), to some other operating envi-
ronments such as shell command lines. Our main objective is to explore the relationship
between the anomaly detector’s performance and their computing environments.

Secondly, to extend the anomaly detection models that we have developed. We at-
tempt to extend our integrated anomaly detection model to countermine those distributed
attacks (e.g. worms, Dos, etc.). Although ADC’s extended version, which is called Janus,
has been applied to the modeling and analysis of multi-stage coordinated attacks in com-
puter networks, its implementation (especially two algorithms ANTS and ADP-BS) worth
further consideration with the specific computing environments. The model is also ex-
pected to dynamically preserve the desirable capability of information systems in the face
of malicious intrusive attacks, i.e., survivability, and detect those attacks in their early
stage so that cost-sensitive anti-attack strategies can be taken to mitigate threats in both
scope and severity, mainly thwart attack’s spread and prevent the further penetration.

89

Bibliography

[1] Douglas Aberdeen, “A Survey of Approximate Methods for Solving Partially Ob-
servable Markov Decision Processes”, National ICT Australia Report, Canberra,
Australia, December 8, 2003.

[2] M. Asaka, T. Onabuta, T. Inoue, S. Okazawa and S. Goto, “A New Intrusion
Detection Method Based on Discriminat Analysis,” IEICE Trans. INF.and SYST.,
Vol.E84-D, No.5, pp.570-577, May 2001.

[3] Stefan Axelsson, “The Base-Rate Fallacy and the Difficulty of Intrusion Detection,”
ACM Transaction on Information and System Security, Vol.3, No.3, August 2000,
Pages 186-205.

[4] B. Balajinath, S.V. Raghavan, “Intrusion detection through learning behavior
model,” Computer Communications, pp.1202-1212, Elsevier Science, 2001.

[5] Peter L. Barlett and Jonathan Baxter, “Hebbian synaptic modifications in spiking
neurons that learn”, Technical report, Computer Sciences Laboratory, RSISE, ANU,
November, 1999.

[6] Jonathan Baxter and Peter L. Barlett, “Stochastic Optimization of Controlled
Partially Observable Markov Decision Processes”, Proceedings of the 39th IEEE
Conference on Decision and Control(CDC00), pp.124-129, vol.1, Australia, Dec,
2000.

[7] Jonathan Baxter and Peter L. Barlett, “Direct Gradient-Based Reinforcement
Learning: I.Gradiment Estimation Algorithms”, Technical report, Research School
of Information Sciences and Engineering, Australian National University, July 1999.

[8] J. Baxter, L. Weaver, and P.L. Bartlett, “Direct Gradient-Based Reinforcement
Learning: II.Gradiment Descent Algorithms and Experiments”, Technical report,
Research School of Information Sciences and Engineering, Australian National Uni-
versity, September 1999.

[9] Bloedorn, E., Hill, B., Christiansen, et al., Data mining for improving intrusion
detection, http://www.mitre.org/support/papers/tech papers99 00/.

[10] T. Brants, F. Chen, A. Farahat, “A System for New Event Detection,” Proceedings
of the 26th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR’03), pp.330 - 337, July 28-August 1, 2003,
Toronto, Canada.

90

[11] S. Braynov and M. Jadiwala, “Representation and Analaysis of Coordinated At-
tacks”, Proceedings of the 2003 ACM workshop on Formal methods in security
engineering, pp.43-51, Washington, D.C. 2003.

[12] Broderick, J., IBM outsourced solution, http://www.infoworld.com/cgi-
bin/displayTC.pl/980504sb3-ibm.htm, 1998.

[13] H. K. Browne, W. A. Arbaugh, J. McHugh, W. L.Fithen, “A Trend Analysis of
Exploitations,” Proceedings of 2001 IEEE Symposium on Security and Privacy
(sP’2001), pp.214-229, May 14-16, 2001, Oakland, California, USA.

[14] Christopher J.C. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition,” Data Mining and Knowledge Discovery, 2, pp.121-167 (1998).

[15] M. Burgess, H. Haugerud, and S. Straumsnes, “Measuring System Normality,”
ACM Transactions on Computer Systems, Vol.20, No.2, Pages 125-160, May 2002.

[16] C.C.Chang, C.W.Hsu, C.J.Lin. “The analysis of decompostion methods for support
vector machines,” IEEE Trans. Neural Networks, 11(2000), pp. 1003-1008.

[17] Shuo Chen, Zbigniew Kalbarczyk, Jun Xu, Ravishankar K.Iyer, “A Data-Driven
Finite State Machine Model for Analyzing Security Vulnerabilities,” 2003 Interna-
tional Conference on Dependable Systems and Networks(DSN’03), pp.605-614, San
Francisco, California, USA.

[18] Cheung, S., Crawford, R., Dilger, M., Frank, etc., “The design of GrIDS: A Graph-
based Intrusion Detection System,” Technical Report CSE-99-2, U.C. Davis Com-
puter Science Department, 1999.

[19] Sung-Bae Cho and Hyuk-Jang Park. “Efficient anomaly detection by modeling
privilege flows using hidden Markov model”, Computer and Security, Vol. 22, No.1,
pp.45-55, 2003.

[20] O. Cordon, F. Herrera, T. Stutzle “A Review on the Ant Colony Optimization
Metaheuristic: Basis, Models and New Trends,” Mathware and Soft Computing 9,
2002.

[21] G. Cormode, M. Datar, P. Lndyk, and S. Muthukrishnan, “Comparing Data
Streams Using Hamming Norms(How to Zero In)” IEEE Transaction on Knowledge
and Data Engineering, Vol.15, No.3, pp.529-540, May/June 2003.

[22] K. Daley, R. Larson, J. Dawkins, “A Structural Framework for Modeling Multi-
Stage Network Attacks”, Proceedings of the International Conference on Parallel
Processing Workshops (ICPPW’02), pp.5-10, Vancouver, Canada, 2002.

[23] V. N. P. Dao and V. R. Vemuri, “A Performance Comparison of Different Back Prop-
agation Neural Networks Methods in Computer Network Intrusion Detection,” Dif-
ferential Equations and Dynamical Systems, vol 10, No 1&2, pp.201-21, Jan/April,
2002.

91

[24] X. Defago, P. Urban, N. Hayashibara, and T. Katayama, “ Definition and Speci-
fication of Accrual Failure Detectors”, Proceedings of the International Conference
on Dependable Systems and Networks (DSN 2005), pp.206-216, Yokohama, June
28-July 1, 2005.

[25] M. Dorigo, V.Maniezzo, and A. Colorni, “The Ant System: Optimization by a
colony of cooperating agents,” IEEE Trans. Syst. Man, Cyber. Part B, vol.26,
pp.29-41, 1996.

[26] E. Eskin, A. Arnold, M. Prerau, L. Portnoy and S. Stolfo, “A Geometric Framework
for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data,”
Applications of Data Mining in Computer Security, Kluwer Academic Publishers,
2002.

[27] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong, “Anomaly Detection
Using Call Stack Information”, Proceedings of 2003 IEEE Symposium on Security
and Privacy(SP’03), pp.62-75, Berkeley, CA, USA, May 2003.

[28] S. Forrest, S.A. Hofmeyr, and T.A. Longstaff, “A sense of self for UNIX processes,”
Proceedings of 1996 IEEE Symposium on Security and Privacy(SP’1996), pp.120-
128, Los Alamitos, CA, USA, May 1996.

[29] G. Giacinto, F. Roli, L. Didaci, “Fusion of multiple classifiers for intrsuion detection
in computer networks,” Pattern Recognition Letters, 24 (2003) 1795-1803.

[30] A.K.Ghosh, A.Schwartbard and A.M.Shatz. “em Learning Program Behavior Pro-
files for Intrusion Detection,” Proceedings of the 1st USENIX Workshop on Intrusion
Detection and Network Monitoring, pp.51-62, Santa Clara, CA, 1999.

[31] S. Guha, A. Meyerson, N. Mishra, R. Motwani, L. O’Callaghan, “Clustering Data
Streams: Theory and Practice,” IEEE Transaction on Knowledge and Data Engi-
neering, Vol.15, No.3,pp. 515-528, May/June 2003.

[32] S. J. Han, and S. B. Cho, “Combining Multiple Host-Based Detectors Using Decision
Tree,” Artificial Intelligence, LNAI 2903, pp.208-220, 2003.

[33] P. Helman and G. Liepins, “Statistical Foundations of Audit Trail Analysis for
the Detection of Computer Misuse,” IEEE Transaction on Software Engineering,
Vol.19, No.9, pp.886-901, September 1993.

[34] Steven A. Hofmeyr, Stephanie Forrest, Anil Somayaji, “Intrusion Detection using
Sequences of System Calls,” Journal of Computer Security,Vol6, No.3, Page:151–
180, 1998.

[35] S. H. Steiner, “Grouped Data Exponentially Weighted Moving Average Control
Charts, ” Journal of the Royal Statistical Society: Series C (Applied Statistics),
Vol. 47, No. 2, pp.203-216, 1998.

[36] W. Hu, Y. Liao, V.R. Vemuri. “Robust Support Vector Machines for Anomaly
Detection in Computer Security,” Proceedings of The 2003 International Confer-
ence on Machine Learning and Applications (ICMLA’03), pp.168-174, Los Angeles,
California, June 2003.

92

[37] W. Hu and Q. Song, “An Accelerated Training Algorithm for Robust Support Vector
Machine”, IEEE Transaction on Circuits and Systems II: Fundamental Theory and
Applications, Vol. 51, No.5, 2004.

[38] M. Hutter, “Optimality of universal Bayesian sequence prediction for general loss
and alphabet,” Journal of Machine Learning Research , 4 (2003): 971-1000.

[39] Daejoon Joo, Taeho Hong, Ingoo Han, “The neural network models for IDS based
on the asymmetric costs of false negative errors and false positive errors,” Expert
Systems with Applications, pp.69-75, 25, (2003).

[40] Joshua H., Dorene K.R., Larra T., Stephen T., “Validation of Sensor Alert Coore-
lators,” IEEE Security and Privacy, pp.46-56, 2003.

[41] Julisch, K., “Clustering Intrusion Detection Alarms to Support Root Cause Anla-
ysis,” ACM Trans. on Information and System Security, Vol.6, No.4, pp.443-471,
Nov. 2003.

[42] Klinkenberg,R., and Joachims,R, “Detecting concept drift with support vector ma-
chines,” Proceedings the 17th International conference on Machine Learning (ICML-
00), pp.487-494, Stanford, US: Morgan Kaufmann Publishers, San Francisco, US.

[43] O.Patrick Kreidl, Tiffany M. Frazier, “Feedback Control Applied to Survivability:
A Host-Based Autonomic Defense System,” IEEE Trans. on Reliability, Vol.53,
No.1, pp. 148-166, March 2004.

[44] T. Lane, C. E.Brodley, “An Empirical Study of Two Approaches to Sequence
Learning for Anomaly Detection,” Machine Learning, vol.51, pp.73-107, 2003.

[45] K.W.Lau, Q.H.Wu, “Online training of support vector classifier,” Pattern Recogni-
tion, 36(2003), 1913-1920.

[46] W. Lee, S. J. Stolfo. “Data Mining Approaches for Intrusion Detection,” Proceedings
of the 7th USENIX Security Symposium, San Antonio, Texas, Jan.26-29, 1998.

[47] W. Lee, S.J. Stolfo, and Mok,K.W., “Mining audit data to build intrusion de-
tection models,” Proceedngs of the Fourth International Conference on Knowledge
Discovery and Data Mining,, pp.66-72, Menlo Park, CA:AAAI Press.

[48] W. Lee and D.Xiang, “Information-theoretic meaasures for anomaly detection,” In
IEEE Symposium on Security and Privacy (SP’2001) pp. 130-143, 14-16 May 2001,
Oakland, California.

[49] Elias Levy, “Worm Propagation and Generic Attacks”, IEEE Security and Privacy,
Vol.3, No.2, pp. 63-65, March/April 2005.

[50] Y. Liao and V. R. Vemuri, “Use of K-Nearest Neighbor Classifier for Intrusion
Detection,” Computers & Security, 21(5), pp.439-448, Oct., 2002.

[51] Terran Lane, Carla E. Brodley, “Temporal Sequence Learning and Data Reduction
for Anomaly Detection,” ACM Trans. on Information and System Security, Vol.2,
No.3, pp. 295-331, August 1999.

93

[52] E. Lundin and E. Jonhsson, “Anomaly-based intrusion detection: privacy concern
and other problems,” Computer Networks, Vol.34, pp.623-640, 2000.

[53] T. F. Lunt, “IDES: An intelligent system for detecting intruders”, In Proceedings of
the Symposium: Computer Security, Threat and Countermeasures, pp.30-45, Rome,
Italy, Nov., 1990.

[54] Sheng Ma, and Chuanyi Ji, “Modeling Heterogeneous Network Traffic in Wavelet
Domain,” IEEE/ACM Transactions On Networking, Vol.9, No.5, pp.634-649, Oc-
tober 2001.

[55] Marcus A. Maloof, Ryszard S. Michalski, “Incremental learning with partial in-
stance memory,” Foundations of intelligent systems, Lecture Notes in Artificial
Intelligence, Vol. 2366, pp.16-27. Berlin: Springer-Verlag, 2004.

[56] Manganaris, S., Christensen, M., Zerkle, D., and Hermiz, K., “A data mining
analysis of RTID alarms”, Computer Networks, Vol.34, No.4, pp.262-294, 2000.

[57] Sunu Mathew, Chintan Shah, Shambhu Upadhyaya, “An alert Fusion Framework
for Situation Awareness of Coordinated Multistage Attacks”, Proceedings of the
Third IEEE International Workshop on Information Assurance (IWIA’05), pp.95-
104, College Park, MD, USA, 2005.

[58] Roy A. Maxion, and Kymie M.C. Tan, “Anomaly Detection in Embedded Systems,”
IEEE Transaction on Computers, Vol.51, No.2, pp.108-120, Feb.,2002.

[59] Roy A. Maxion, and Kymie M.C. Tan, “Benchmarking anomaly-based detection
systems”, Proceedings of International Conference on Dependable Systems and Net-
works (DSN2000), pp.623-630, 25-28 June 2000, New York, NY, USA.

[60] Roy A. Maxion, “Masquerade Detection Using Truncated Command Lines”,
Proceedings of International Conference on Dependable Systems and Networks
(DSN2002), pp.219-228, Washington, DC, 23-26 June 2002.

[61] Roy A. Maxion, “Masquerade Detection Using Enriched Command Lines”, Proceed-
ings of International Conference on Dependable Systems and Networks (DSN2003),
pp.5-14, San Francisco, CA, 22-25 June 2003.

[62] John Mchugh, “Testing Intrusion Detection Systems: A Critique of the 1998 and
1999 DARPA Intrusion Detection System Evaluations as Performed by Lincoln Lab-
oratory,” ACM Transactions on Information and System Security, Vol.3, No.4,
November 2000, Pages 262-294.

[63] MIT Lincoln Laboratory, http://www.ll.mit.edu/IST/ideval/data/data index.html

[64] Binh Viet Nguyen, An Application of Support Vector Machines to Anomaly De-
tection, Research in Computer Science−Support Vector Machine, Ohio University,
course report, Fall 2002.

[65] P. Ning, Y. Cui, D.S. Reeves, and X. Ding, “Techniques and Tools for Analyzing
Intrusion Alerts,” ACM Transactions on Information and Systems Security, Vol.7,
No.2, May 2004, Pages 274-318.

94

[66] P. Ning, Y. Cui, D. S. Reeves, “Constructing Attacks Scenarios through Correla-
tion of Intrusion Alters”, Proceedings of the 9th ACM Conference on Computer and
Communications Security (CCS 2002), pp.245-254, November 18-22, 2002, Wash-
ington, DC, USA.

[67] C. Phillips, L. Swiler, “A graph-based system for network-vulnerability analy-
sis”, Proceedings of the 1998 Worshp on New Security Paradigms, pp.71-79, Char-
lottesville, VA, USA, 1998.

[68] Porras, P.A., Neumann, P.G., “EMERALD: Event Monitoring Enabling Responses
to Anomalous Live Disturbances,” Proceedings of the 20th National Information
Systems Security Conference, pp.353-365, October 7-10, 1997, Baltimore, Maryland,
USA.

[69] R. W. Ritchey, P. Ammann, “Using Model Checking to Analyze Network Vulnera-
bilities,” Proceedings of 2000 IEEE Symposium on Security and Privacy (SP’2000),
pp.156-165, May 14-17, 2000, Oakland, California, USA.

[70] B. Schneier, “Attack Tress,” Dr. Dobb’s J., vol. 12, Dec. 1999 (Computer Security),
http://www.ddj.com/articles/1999/9912.

[71] Scholkopf, B. Platt, J.C. Shawe-Taylor, J. Smola, A. J. and Williamson, R. C.,
“Estimating the support of a high-dimensional distribution,” Neural Computation
13(7):1443-1471, 2001.

[72] Qing Song, Wenjie Hu and Wenfan Xie, “Robust Support Vector Machine for Bullet
Hole Image Classification,” IEEE Transaction on Systems, Man and Cybernetics
Part C. Vol 32. Issue 4, pp.440-448. Nov.2002.

[73] Ray J.Solomonoff, “Three Kinds of Probabilistic Induction: Universal Distributions
and Convergence Theorems,” http://world.std.com/ rjs/pubs.html, June 2003.

[74] Snapp, S. R., Smaha, S. E., Teal, D. M., Grance, T., “The DIDS (Distributed
Intrusion Detection System) prototype”, the summer USENIX Conference, pp.227-
233, San Antonio, Texas, USENIX Association, 1992.

[75] Sun Microsystems, SunShield Basic Security Module Guide, 1995.

[76] L. Swiler, C. Phillips, D. Ellis, and S. Chakerian, “Computer-attack graph gener-
ation tool,” DARPA Information Survivability Conference and Exposition, pp.146-
161, Anaheim, California, 2001.

[77] Kymie M.C. Tan and Roy A.Maxion, ““Why 6” Defining the Operational Limites
of stide, an Anomaly-Based Intrusion Detector,” Proceedings of the 2002 IEEE
Symposium on Security and Privacy, SP’2002, pp.188-201, Berkeley, California,
USA, May 2002.

[78] Kymie M.C. Tan, Kevin S.Killourhy, and Roy A.Maxion, “Undermining an
Anomaly-Based Intrusion Detection System Using Common Exploits,” Proceed-
ings of the 5th International Symposium on Recent Advances in Intrusion Detection
(RAID 2002), LNCS, Vol.2516, pp.54-73, Springer-Verlag, 2002.

95

[79] Nigel Tao, Jonathan Baxter, Lex Weaver, “A Multi-Agent, Policy-Gradient ap-
proach to Network Routing”, Proceedings of the Eighteenth International Confer-
ence on Machine Learning (ICML 2001), pp.553-560, MA, USA, July 2001.

[80] Valdes, A., Skinner, K., “Probabilistic Alert Correlation,” Proceedings of the 4th
International Symposium on Recent Advances in Intrusion Detection (RAID 2001),
LNCS, Vol.2212, pp.54-68, Springer-Verlag, 2001.

[81] C. Warrender, S. Forrest, B. Pearlumtter, “Detecting Intrusions Using System Calls:
Alternative Data Models,” Proceedings of 1999 IEEE Symposium on Security and
Privacy (SP’1999) , pp.133-145, Oakland, 1999.

[82] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy of com-
puter worms”, Proceedings of the 2003 ACM CCS workshop on Rapid Malcode
(WORM’03), pp.11-18, Washington. DC, USA 2003.

[83] White, G., Fisch, E., Pocch, U, “Cooperating Security managers: A peer-
based intrusion detection system,” IEEE Network, Vol. 10, No. 1, pp.20-23, Jan-
uary/February 1996.

[84] Yinglian Xie, Vyas Sekar, David A. Maltz, Michael K. Re iter, Hui Zhang “Worm
Origin Identification Using Random Moonwalks,” Proceedings of 2005 IEEE Sym-
posium on Security and Privacy, (SP’2005) pp.242-256, Oakland, CA, May 2005.

[85] Y.Yang, T.Pierce, and J.Carebonell. “A study on retrospective and on-line event
detection,” Proceedings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR-98), pp.28-36, Mel-
bourne, Australia, Aug., 1998.

[86] Nong Ye, Xiangyang Li, Qiang Chen, Syed Masum Emran, and Mingming Xu,
“Probabilistic Techniques for Intrusion Detection Based on Computer Audit Data,”
IEEE Transaction on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.31, No.4, pp.266-274, July 2001.

[87] Nong Ye, Syed Masum Emran, Qiang Chen, and Sean Vilber, “Multivariate Statisti-
cal Analysis of Audit Trails for Host-Based Intrusion Detection,” IEEE Transaction
on Computers, Vol.51, No.7, pp.810 - 820, July 2002.

[88] Nong Ye, Timothy Ehiabor and Yebin Zhang, “First-order Versus High-Order
Stochastic Models For Computer Intrusion Detection,” Quqlity and Reliability En-
gineering Internation,2002(18): 243-250.

[89] Dit-Yan Yeung, Yuxin Ding, “Host-based intrusion detection using dynamic and
static behavioral models,” Pattern Recognition 36 (2003) 229-243.

[90] Zonghua Zhang, Hong Shen, “Application of Online-training SVMs for Real-time
Intrusion Detection with Different Considerations”, Computer Communications,
Vol.28, No. 12, pp.1428-1442, Elsevier Science.

96

[91] Zonghua Zhang, Hong Shen, “Constructing Multi-Layer Boundary to Defend
Against Intrusive Anomalies: An Autonomic Detection Coordinator” Proceedings
of the International Conference on Dependable Systems and Networks(DSN2005),
pp.118-127, Yokohama, Japan, June 28-July 1, 2005.

[92] Zonghua Zhang, Hong Shen, “A brief Observation-Centric Analysis on Anomaly-
based Intrusion Detection”, Proc. of the First Information Security Practice and
Experience Conference (ISPEC 2005), LNCS, pp.178-191, Singapore 11-14 April,
2005.

97

Publications

[1] Z. Zhang, H. Shen, “Application of Online-training SVMs for Real-time Intrusion
Detection with Different Considerations,” Journal of Computer Communications,
Vol.28, No. 12, July 2005, pp.1428-1442, Elsevier Science.

[2] Z. Zhang, H. Shen, “A Brief Observation-Centric Analysis on Anomaly-based In-
trusion Detection”, to appear in the International Journal of Network Security.

[3] Z. Zhang, H. Shen, “Towards a Framework for the Correlation of Observation-
Centric Anomaly Detectors: Modeling, Analysis, and Evaluation”, Submitted to
IEEE Trans. on Reliability.

[4] Z. Zhang, H. Shen,“A Brief Comparative Study on the Computer System Depend-
ability and Security,” Proceedings of the 6th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT2005), pp.493-
497, Dec., 2005, DaLian, China.

[5] Z. Zhang, H. Shen, “Constructing Multi-Layer Boundary to Defend Against Intru-
sive Anomalies: An Autonomic Detection Coordinator,” Proc. of the International
Conference on Dependable Systems and Networks (DSN2005), pp.118-127, Jun.,
2005, Yokohama, Japan.

[6] Z. Zhang, H. Shen, “A Brief Observation-Centric Analysis on Anomaly-based In-
trusion Detection,” Proc. of the First Information Security Practice and Experience
Conference (ISPEC2005), pp.178-191, Apr., 2005, Singapore.

[7] Z. Zhang, H. Shen, “Dynamic Combination of Multiple Host-based Anomaly De-
tectors with Broader Detection Coverage and Less False Alerts”, Proc. of the 4th
International Conference on Networking (ICN’05), pp.989-996, Apr., 2005, Reunion
Island, France.

[8] Z. Zhang, H. Shen,, “Capture the Drifting of Normal Behavior Traces for Adaptive
Intrusion Detection Using Modified SVMs,” Proc. of the 3rd International Con-
ference on Machine Learning and Cybernetics (ICMLC2004), pp.3045-3051, Aug.,
2004, ShangHai, China.

[9] Z. Zhang, H. Shen, “Online Training of SVMs for Real-time Intrusion Detection,”
Proc. of the 18th IEEE International Conference on Advanced Information Net-
working and Applications (AINA2004), Vol 1, pp.568-p573, Mar., 2004, Fukuoka,
Japan.

98

[10] Z. Zhang, H. Shen, “Suppressing False Alarms of Intrusion Detection Using Im-
proved Text Categorization Methods,” Proc. of the IEEE International Conference
on e-Technology, e-Commerce and e-Service (EEE2004), pp.163-p166, Mar., 2004,
TaiWan, China.

99

