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Abstract. Spanning tree congestion is a relatively new graph parameter, which
has been studied intensively. This paper studies the complexity of the problem
to determine the spanning tree congestion for non-sparse graph classes, while it
was investigated for some sparse graph classes before. We prove that the prob-
lem is NP-hard even for chain graphs and split graphs. To cope with the hardness
of the problem, we present a fast (exponential-time) exact algorithm that runs in
O∗(2n) time, wheren denotes the number of vertices. Additionally, we provide
a constant-factor approximation algorithm for cographs, and a linear-time algo-
rithm for chordal cographs.

1 Introduction

Spanning tree congestion is a graph parameter defined by Ostrovskii [18] in 2004. Si-
monson [21] also studied the same parameter under a different name as a variant of
cutwidth. After Ostrovskii [18], several graph-theoretic results have been presented [2,
6, 12–17, 19], and very recently the complexity of the problem for determining the pa-
rameter has been studied [3, 20]. The parameter is defined as follows. LetG be a con-
nected graph andT be a spanning tree ofG. Thedetourfor an edge{u, v} ∈ E(G) is a
uniqueu–v path inT. We define thecongestionof e ∈ E(T), denoted bycngG,T(e), as
the number of edges inG whose detours containe. Thecongestion of G in T, denoted
by cngG(T), is the maximum congestion over all edges inT. Thespanning tree conges-
tion of G, denoted bystc(G), is the minimum congestion over all spanning trees ofG.
We denote by STC the problem of determining whether a given graph has spanning tree
congestion at most givenk. If k is fixed, then we denote the problem byk-STC.

Bodlaender, Fomin, Golovach, Otachi, and van Leeuwen [3, 20] studied the com-
plexity of STC andk-STC. They showed thatk-STC is linear-time solvable for apex-
minor-free graphs and bounded-degree graphs, whilek-STC is NP-complete even for
K6-minor-free graphs with only one vertex of unbounded degree ifk ≥ 8. They also
showed that STC is NP-complete for planar graphs. Bodlaender, Kozawa, Matsushima,
and Otachi [2] showed that the spanning tree congestion can be determined in linear

1



time for outerplanar graphs. Although several complexity results are known as men-
tioned above, they are restricted to sparse graphs. The complexity for non-sparse graphs
such as chordal graphs and chordal bipartite graphs were unknown.

In this paper, we show that STC is NP-complete for these important non-sparse
graph classes. More precisely, we show that STC is NP-complete even for chain graphs
and split graphs. It is known that every chain graph is chordal bipartite, and every split
graph is chordal. The hardness for chain graphs is quite unexpected, since there is no
other natural graph parameter that is known to be NP-hard for chain graphs, to the
best of our knowledge. The hardness for chain graphs also implies the hardness for
graphs of clique-width at most three. To cope with the hardness of the problem, we
present a fast exponential-time exact algorithm. Our algorithm runs inO∗(2n) time,
while a naive algorithm that examines all spanning trees runs inO∗(2m) or O∗(nn)
time, wheren andm denote the number of vertices and the number of edges. Note that
O∗( f (n)) = O( f (n) · poly(n)). The idea, which allows us to achieve this running time, is
to enumerate all possible combinations of cuts instead of all spanning trees. Using this
idea, we can design a dynamic-programming-based algorithm that runs inO∗(3n) time.
Then, by carefully applying the fast subset convolution method developed by Björk-
lund, Husfeldt, Kaski, and Koivisto [1], we finally get the running timeO∗(2n). We also
study the problem on cographs. It is known that cographs are precisely the graphs of
clique-width at most two. For some cographs such as complete graphs and complete
p-partite graphs, the closed formulas for the spanning tree congestion are known [12,
14, 18]. Although the complexity of STC for cographs remains unsettled, we provide
a constant-factor approximation algorithm for them. Furthermore, we present a linear-
time algorithm for chordal cographs.

Due to space limitation all proofs are omitted.

2 Preliminaries

Graphs in this paper are finite, simple, and connected, if not explicitly stated otherwise.
We deal with edge-weighted graphs in Subsections 2.2 and 3.1. Our exponential-time
exact algorithm runs inO∗(2n) time for edge-weighted graphs, too.

2.1 Graphs

LetG be a connected graph. ForS ⊆ V(G), we denote byG[S] the subgraph induced by
S. For an edgee ∈ E(G), we denote byG−e the graph obtained fromG by the deletion
of e. Similarly, for a vertexv ∈ V(G), we denote byG− v the graph obtained fromG by
the deletion ofv and its incident edges. ByNG(v), we denote the (open) neighborhood
of v in G; that is,NG(v) is the set of vertices adjacent tov in G. For S ⊆ V(G), we
denote

∪
v∈S NG(v) by NG(S). We define thedegreeof v in G asdegG(v) = |NG(v)|. If

degG(v) = |V(G)| − 1, thenv is auniversal vertexof G.
Let G and H be graphs. We say thatG and H are isomorphic, and denote it by

G ≃ H, if there is a bijectionf : V(G) → V(H) such that{u, v} ∈ E(G) if and only if
{ f (u), f (v)} ∈ E(H). Now assumeV(G) ∩ V(H) = ∅. Then thedisjoint unionof G and
H, denoted byG ∪ H, is the graph with the vertex setV(G) ∪ V(H) and the edge set
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E(G) ∪ E(H). The join of G andH, denoted byG ⊕ H, is the graph with the vertex set
V(G) ∪ V(H) and the edge setE(G) ∪ E(H) ∪ {{u, v} | u ∈ V(G), v ∈ V(H)}.

For A, B ⊆ V(G), we defineEG(A, B) = {{u, v} ∈ E(G) | u ∈ A, v ∈ B}. For S ⊆
V(G), we define theboundary edgesof S, denoted byθG(S), asθG(S) = EG(S,V(G)\S).
Note thatθG(∅) = θG(V(G)) = ∅. The congestioncngG,T(e) of an edgee ∈ E(T) satisfies
cngG,T(e) = |θG(Ae)|, whereAe is the vertex set of one of the two components ofT − e.
For an edgee in a treeT, we say thate separates AandB if A ⊆ Ae andB ⊆ Be, where
Ae andBe are the vertex sets of the two components ofT −e. Clearly, ifT is a spanning
tree ofG ande ∈ E(T) separatesA andB, thencngG,T(e) ≥ |E(A, B)|. If e separatesA
andB, we also say thate divides A∪ B into A andB.

Let T be a tree rooted atr ∈ V(T). Then we denote byprtT(v) the parent ofv ∈ V(T)
in T. The parent of the rootr is not defined. We denote byChdT(v) the children of
v ∈ V(T) in T. Clearly,NT(v) = {prtT(v)} ∪ ChdT(v) for every non-root vertexv.

2.2 Spanning tree congestion of weighted graphs

A graphG may be associated with an edge-weight functionwei: E(G) → Z+. If a
graph has such a function, then we call it anedge-weighted graphor just aweighted
graph. Note that unweighted graphs can be considered as weighted graphs by setting
wei(e) = 1 for each edgee. For an edge-weighted graphG andF ⊆ E(G), we define
wei(F) =

∑
f∈F wei( f ) for F ⊆ E(G). We extend the notion of spanning tree congestion

to edge-weighted graphs by defining the congestion of an edgee as the sum of the
weights of edges whose detours pass through the edgee. If e ∈ E(T) separates vertex
setsA andB, thencngG,T(e) ≥ wei(E(A, B)).

For a weighted graphG, we define theweighted degreeof v in G aswdegG(v) =
wei(θG({v})). It is not difficult to see that the following fact holds.

Proposition 2.1. Let G be a weighted graph, and let S⊆ V(G). Then

wei(θG(S)) =
∑
v∈S

wdegG(v) − 2wei(E(G[S])).

It is known that STC for weighted graphs is equivalent to STC for unweighted
graphs in the following sense.

Lemma 2.2 ([3, 20]).Let G be a weighted graph and let e∈ E(G). Let G′ be the graph
obtained from G by removing the edge e and adding wei(e) internally disjoint paths of
arbitrary lengths between the ends of e, where each edge in the added paths is of unit
weight. Then, stc(G) = stc(G′).

2.3 Graph classes

A graph ischordal if it has no induced cycle of length greater than three. A graphG is
a split graphif its vertex setV(G) can be partitioned into two setsC andI so thatC is
a clique ofG and I is an independent set ofG. Clearly, every split graph is a chordal
graph (see [10]). Acograph(or complement-reducible graph) is a graph that can be
constructed recursively by the following rules:
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1. K1 is a cograph;
2. if G andH are cographs, then so isG∪ H;
3. if G andH are cographs, then so isG ⊕ H.

Note that ifG is a connected cograph with at least two vertices, thenG can be expressed
asG1⊕G2 for some nonempty cographsG1 andG2. A cograph is achordal cographif it
is also a chordal graph. Chordal cographs are also known astrivially perfect graphs[4,
10] andquasi-threshold graphs[22]. It is known that in the construction of a chordal
cograph by the above rules, we can assume one of two operands of⊕ is K1 [22].

Analogous to chordal graphs,chordal bipartite graphsare defined as the bipartite
graphs without induced cycle of length greater than four. A bipartite graphG = (X,Y; E)
is achain graphif there is an ordering< on X such thatu < v impliesNG(u) ⊆ NG(v).
It is known that every chain graph is 2K2-free [23], and thus chordal bipartite. It is also
known that every chain graph has clique-width at most three [5].

Clique-widthis a graph parameter which generalizes treewidth in some sense. Many
hard problems can be solved efficiently for graphs of bounded clique-width. For the
definition and further information of clique-width, see a recent survey by Hliněný, Oum,
Seese, and Gottlob [11].

3 Hardness for split graphs and chain graphs

This section presents our hardness results for split graphs and chain graphs. Namely,
we prove the following theorems.

Theorem 3.1. STC is NP-complete for split graphs.

Theorem 3.2. STC is NP-complete for chain graphs.

Since every chain graph has clique-width at most three, we have the following corollary.

Corollary 3.3. STC is NP-complete for graphs of clique-width at most three.

The weighted edge argument [3, 20] allows us to present a simple proof for split
graphs. However, we are unable to present a simple proof based on the weighted edge
argument for chain graphs. This is because, in the process of modifying a weighted
graph to an unweighted graph, we may introduce many independent edges (see Lemma
2.2). Although we need somewhat involved arguments for chain graphs, the proofs are
based on essentially the same idea.

Clearly, STC is in NP. The proofs of NP-hardness are done by reducing the follow-
ing well-known NP-complete problem to STC for both graph classes.

Problem: 3-Partition [9, SP15]
Instance: A multi-setA = {a1,a2, . . . ,a3m} of 3mpositive integers and a boundB ∈ Z+

such that
∑

ai∈A ai = mB, a1 ≤ a2 ≤ · · · ≤ a3m, andB/4 < ai < B/2 for eachai ∈ A
Question: CanA be partitioned intom disjoint setsA1,A2, . . . ,Am such that, for 1≤

i ≤ m,
∑

a∈Ai
a = B? (Thus eachAi must contain exactly three elements fromA.)

It is known that 3-Partition is NP-complete in the strong sense [9]. Thus we assume
a3m ≤ poly(m), where poly(m) is some polynomial onm. By scaling eacha ∈ A, we can
also assume thata1 ≥ 3m+ 2, m≥ 3, B ≥ 8, andB/4+ 1 ≤ ai ≤ B/2− 1.
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3.1 Hardness for split graphs

In this subsection, we prove that STC is NP-hard for split graphs. We first show that STC
is NP-hard for edge-weighted split graphs with weighted edges only in the maximum
clique, by reducing an instanceA of 3-Partition to an edge-weighted split graphGA

such thatA is a yes instance if and only ifstc(GA) ≤ k for somek. We then show
that GA can be modified to an unweighted split graphG′A in polynomial time so that
stc(GA) = stc(G′A). This proves Theorem 3.1.

Let A be an instance of 3-Partition. We now constructGA from A in polynomial
time. Let I = {ui | 1 ≤ i ≤ 3m} andC = {x} ∪ V ∪W, whereV = {vi | 1 ≤ i ≤ m} and
W = {wi | m+ 1 ≤ i ≤ a3m}. The graphGA has vertex setI ∪ C. The setsI andC are
independent set and a clique ofGA, respectively. Eachui ∈ I is adjacent to all vertices
in V and verticesw1,w2, . . . ,wai . More formally,E(GA) is defined as follows:

E(GA) = {{c, c′} | c, c′ ∈ C} ∪ {{u, v} | u ∈ I , v ∈ V} ∪ {{ui ,w j} | ui ∈ I ,m+ 1 ≤ j ≤ ai}.

Recall thatai > m for any i ≥ 1. The degrees of vertices inGA can be determined as
follows: degGA

(ui) = ai , degGA
(vi) = |C| + |I | − 1, anddegGA

(wi) = |C| + |{ j | a j ≥ i}| − 1.
Some edges ofGA have heavy weights. Letk = 2B+ 2|C| + 2|I | − 15. Then

wei(e) =


α := (k+ 1)/2 if e= {x, vi},
βi := k− degGA

(wi) + 1 if e= {x,wi},
1 otherwise.

Clearly,GA is a split graph with weighted edges only in the cliqueC. The weighted
degrees of vertices inGA is as follows:wdegGA

(ui) = ai , wdegGA
(vi) = α+ |C|+ |I | −2 =

k− B+ 6, andwdegGA
(wi) = k.

Lemma 3.4. Let k = 2B + 2|C| + 2|I | − 15. Then A is a yes instance if and only if
stc(GA) ≤ k.

Proof (Sketch).( =⇒ ) Let A1, . . . ,Am be a partition ofA such that
∑

a∈Ai
a = B for

1 ≤ i ≤ m. Let Ui denote the set{u j | a j ∈ Ai}. The desired spanning treeT of
GA can be obtained from the partitionA1, . . . ,Am as follows:E(T) = {{x, c} | c ∈
C \ {x}} ∪∪1≤i≤m

{
{vi ,u j} | u j ∈ Ui

}
. We can showcngGA

(T) ≤ k. (⇐= ) Omitted. ⊓⊔

Now we prove the NP-hardness of STC for unweighted split graphs. To this end, we
first reduce an instanceA of 3-Partition to a weighted split graphGA as stated above.
Recall that all weighted edges ofGA are inGA[C]. We need the following lemma.

Lemma 3.5. Let G be an edge-weighted split graph with a partition(C, I ) of V(G),
where C and I are a clique and an independent set of G, respectively. If the weighted
edges are only in G[C] and the maximum edge weight is wmax, then an edge-unweighted
split graph G′ satisfying stc(G) = stc(G′) can be obtained from G in O(wmax · |E(G)|)
time.

Observe that the maximum edge-weight inGA is bounded by a polynomial function
on B andm. Thus the above lemma implies that from an instanceA of 3-Partition, we
can construct in polynomial time an unweighted split graphG′A andk ∈ Z+ such thatA
is a yes instance if and only ifstc(G′A) ≤ k. This proves Theorem 3.1.
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U V W

X Y Z

P

Q

P0

Q0

U0 V0 W0

X0 Y0 Z0 P1

Q1Z1 Y1 X1

W1 V1 U1

GA HA

Fig. 1. GraphsGA and HA. A solid line between two sets implies that the two sets induce a
complete bipartite graph, and a dotted line between two sets implies that there are some (but not
all) edges between the two sets. Two color classes ofHA areP0 ∪ Q1 andQ0 ∪ P1.

3.2 Hardness for chain graphs

Next we prove the NP-hardness for chain graphs. Given an instanceA of 3-Partition,
we construct the graphGA = (P,Q; E). For convenience, letM = B + 3m − 4 and
γi = |{a j ∈ A | a j ≥ i}|. Note that 0< γi ≤ 3m for m+ 1 ≤ i ≤ a3m. In particular,
γm+1 = 3mandγa3m > 0. First we define the vertex setsP = U∪V∪W andQ = X∪Y∪Z
as follows:

U = {ui | 1 ≤ i ≤ m}, V = {vi | m+ 1 ≤ i ≤ a3m}, W = {wi | 1 ≤ i ≤ M − a3m},
X = {xi | 1 ≤ i ≤ 3m}, Y = {yi | m+ 1 ≤ i ≤ a3m}, Z = {zi | 1 ≤ i ≤ M − a3m}.

Next we define the edge set as follows:5

E = (X × U) ∪ (Y× (U ∪ V)
) ∪ (Z × (U ∪ V ∪W)

)
∪ {{xi , v j} | xi ∈ X,m+ 1 ≤ j ≤ ai}
∪ {{yi ,w j} | yi ∈ Y,1 ≤ j ≤ M − a3m − γi}.

See Fig. 1 for a simplified illustration ofGA.
Let G0 andG1 be two disjoint copies ofGA. That is,GA ≃ G0 ≃ G1 andV(G0) ∩

V(G1) = ∅. By Pi , Qi , Ui , Vi , Wi , Xi , Yi , andZi , we denote the vertex sets ofGi , i ∈ {0,1},
that correspond to the vertex setsP, Q, U, V, W, X, Y, andZ of GA, respectively.
Similarly, we denote the vertices ofGi , i ∈ {0,1}, that correspond to verticesu j , v j , w j ,
x j , y j , andzj of GA by ui

j , vi
j , wi

j , xi
j , yi

j , andzi
j , respectively. We define the graphHA as

follows (see Fig. 1):V(HA) = V(G0)∪V(G1) andE(HA) = E(G0)∪E(G1)∪ (P0×P1).

Lemma 3.6. The graph HA is a chain graph.

Lemma 3.7. The degrees of vertices in HA satisfy the following relations: degHA
(ui

j) =
2M + 2m, degHA

(vi
j) = 2M − m+ γ j > 2M − m, 2M − a3m ≤ degHA

(wi
j) ≤ 2M − m,

degHA
(xi

j) = ai , degHA
(yi

j) = M − γ j < M, and degHA
(zi

j) = M. Moreover,∆(HA) =
2M + 2m andδ(HA) = a1. ⊓⊔

5 For simplicity, we denote byS × T the set of unordered pairs{{s, t} | s ∈ S, t ∈ T}.
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Now we prove thatA is a yes instance of 3-Partition if and only if stc(HA) ≤ k. We
divide the proof into two only-if part (Lemma 3.8) and if part (Lemma 3.9).

Lemma 3.8. Let k= 3M −m− 2. If A is a yes instance, then stc(HA) ≤ k.

Proof (Sketch).Let T be a spanning tree ofHA with the edge set as follows:

E(T) = {{u0
1, v} | v ∈ Q0 ∪ P1} ∪ {{u1

j , x
1
h} | ah ∈ A j , 1 ≤ j ≤ m} ∪ {{u0

j , x
0
j } | 2 ≤ j ≤ m}

∪ {{vi
j , y

i
j} | i ∈ {0,1}, m+ 1 ≤ j ≤ a3m} ∪ {{wi

j , z
i
j} | i ∈ {0,1}, 1 ≤ j ≤ M − a3m}.

Then, we can prove thatcngHA
(T) ≤ k. ⊓⊔

Lemma 3.9. Let k= 3M −m− 2. If stc(HA) ≤ k, then A is a yes instance.

4 Exponential-time exact algorithm

We have shown that STC is NP-complete even for very simple graphs. It is widely be-
lieved that NP-hard problems cannot be solved in polynomial time. Thus we needfast
exponential-time (or sub-exponential-time) algorithms for these problems. Nowadays,
designing fast exponential-time exact algorithms becomes an important topic in theo-
retical computer science. See a recent textbook of exponential-time exact algorithms
by Fomin and Kratsch [8]. For STC, we can easily design anO∗(2m)- or O∗(nn)-time
algorithm that examine all spanning trees of input graphs, wheren andm denote the
number of vertices and the number of edges, respectively. In this section, we describe
an algorithm for STC that runs inO∗(2n) time. Although it is still an exponential-time
algorithm, it is significantly faster than a naive algorithm.

Let G = (V,E) be a given undirected graph. For convenience, we denote|θG(X)| by
c(X). Note thatc(∅) = c(V) = 0. Consider a spanning treeT with congestion at mostk.
We regardT as a rooted tree with rootr ∈ V. We denote this rooted tree by (T, r). Let
e = {u, v} ∈ E(T) be an edge ofT, and without loss of generality, letu be the parent
of v. Then, the congestion ofe in T is equal toc(DT,r (v)), whereDT,r (v) denotes the
set of descendants ofv in (T, r). Since the congestion ofT is at mostk, we see that
c(DT,r (v)) ≤ k. See Fig. 2. Conversely, ifc(DT,r (v)) ≤ k for all v ∈ V \ {r}, then the
congestion ofT is at mostk. This is because there exists a one-to-one correspondence
between the edgeseof T and the verticesv in V \ {r} so thatv is a deeper endpoint ofe.
We summarize this observation in the following lemma.

Lemma 4.1. The congestion of a rooted tree(T, r) is at most k if and only if c(DT,r (v)) ≤
k for every vertex v∈ V \ {r}. ⊓⊔

The lemma above suggests the following dynamic-programming approach. We call
a pair (X, v) of a subsetX ⊆ V and a vertexv < X a rooted subsetof V. By definition,
X , V for a rooted subset (X, v) of V. A rooted subset (X, v) of V is goodif there exists
a rooted spanning tree (T, v) of G[X∪{v}] such thatc(DT,v(u)) ≤ k for all u ∈ X. Here,c
is a cut function ofG, not ofG[X ∪ {v}]. By definition (X, v) is good whenX = ∅. Note
that there exists a rooted spanning tree (T, r) of G with congestion at mostk if and only
if the rooted set (V \ {r}, r) is good.

The following lemma provides a recursive formula that forms a basis of our algo-
rithm (see Fig. 3).
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r

v

DT,r(v)

Fig. 2.The definition ofDT,r (v).

X

v

u

X \ {u}

v

(X, v) is good. (X \ {u}, u) is good ∧ c(X) ≤ k. (Y, v), (X \ Y, v) are good.

⇐⇒
or

v

Y X \ Y

Fig. 3.An illustration of Lemma 4.2.

Lemma 4.2. Let (X, v) be a rooted subset of V with|X| ≥ 1. Then,(X, v) is good if and
only if at least one of the following holds.

1. There exists a vertex u∈ X ∩ NG(v) such that c(X) ≤ k and(X \ {u}, u) is good.
2. There exists a non-empty proper subset Y⊆ X such that both of(Y, v), (X \ Y, v) are

good.

Lemmas 4.1 and 4.2 above readily give anO∗(3n)-time dynamic programming al-
gorithm. However, the fast subset convolution method enables us to solve the problem
in O∗(2n) time. We give a more detail below.

Let S be a finite set. For two functionsf ,g: 2S → R, their subset convolutionis a
function f ∗ g: 2S → R defined as

( f ∗ g)(X) =
∑
Y⊆X

f (Y)g(X \ Y)

for everyX ⊆ S. Given f (X),g(X) for all X ⊆ S, we can compute (f ∗ g)(X) for all
X ⊆ S in O∗(2n) total time, wheren = |S| [1].

Back to the spanning tree congestion problem, letv ∈ V be an arbitrary vertex. We
define the functionfv : 2V\{v} → R by the following recursion:fv(X) = 1 if X = ∅;
otherwise,

fv(X) =
∑

u∈X∩NG(v)

fu(X \ {u}) max{0, k− c(X) + 1} +
∑
∅,Y(X

fv(Y) fv(X \ Y),

where the empty sum is defined to be 0. It is easy to verify thatfv(X) is non-negative
for everyv ∈ V and everyX ⊆ V \ {v}.

The following lemma connects the functionsfv, v ∈ V and good rooted sets.

Lemma 4.3. Let (X, v) be a pair of a subset X⊆ V \ {v} and a vertex v∈ V. Then,
fv(X) > 0 if and only if(X, v) is a good rooted subset of V.
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To apply the subset convolution method, we use the following functions. For each
i ∈ {0,1, . . . , n− 1}, wheren = |V|, andv ∈ V, let f i

v : 2V\{v} → R be defined by

f i
v(X) =

 fv(X) if |X| ≤ i,

0 if |X| > i,

for all X ⊆ V \ {v}. Then, it is not difficult to see the following.

1. For allv ∈ X andX ⊆ V \ {v}, f n−1
v (X) = fv(X).

f n−1
v (X) = fv(X).

2. For allv ∈ V andX ⊆ V \ {v},

f 0
v (X) =

1 if X = ∅,
0 otherwise.

3. For all i ∈ {1, . . . ,n− 1}, v ∈ V, andX ⊆ V \ {v}

f i
v(X) =

∑
u∈X∩NG(v)

f i−1
u (X \ {u}) max{0, k− c(X) + 1}

+
∑
∅,Y(X

f i−1
v (Y) f i−1

v (X \ Y)

=
∑

u∈X∩NG(v)

f i−1
u (X \ {u}) max{0, k− c(X) + 1}

+
∑
Y⊆X

f i−1
v (Y) f i−1

v (X \ Y) − 2 f i−1
v (∅) f i−1

v (X)

=
∑

u∈X∩NG(v)

f i−1
u (X \ {u}) max{0, k− c(X) + 1}

+ ( f i−1
v ∗ f i−1

v )(X) − 2 f i−1
v (∅) f i−1

v (X).

Our algorithm is based on these formulas.

Step 1. For all v ∈ V andX ⊆ V \ {v}, computef 0
v (X) based on the formulas above.

Step 2. For eachi = 1, . . . , n− 1 in the ascending order, do the following.
Step 2-1. For all v ∈ V, compute the subset convolutionf i−1

v ∗ f i−1
v .

Step 2-2. For all v ∈ V and allX ⊆ V \ {v}, computef i
v(X) based on the formula

above.
Step 3. If f n−1

v (V) > 0, then output Yes. Otherwise, output No.

The correctness is immediate from the discussion so far. The running time isO∗(2n)
since the running time of each step is bounded byO∗(2n). This is an algorithm for
solving the decision problem, but a simple binary search onk ∈ {1, . . . , |E|} can provide
the spanning tree congestion. Thus, we obtain the following theorem.

Theorem 4.4. The spanning tree congestion of a given undirected graph can be com-
puted in O∗(2n) time.

9



Note that the algorithm also works for the weighted case with theO(n)-factor increase
of the running time, since the number of distinct cut valuesc(X) is bounded by 2n and
so the binary search over the all possible values ofc(X) takes at mostO(log(2n)) = O(n)
iterations. This is possible if we computec(X) for all X ⊆ V beforehand, which only
takesO∗(2n) time.

5 Remarks on cographs

We showed NP-completeness of STC for graphs of clique-width at most three. There-
fore, it is quite natural to ask whether or not STC is NP-complete for graphs of clique-
width at most two; that is, for cographs [7]. Although the complexity of STC for
cographs remains unsettled, we have the following results.

Theorem 5.1. The spanning tree congestion of cographs can be approximated within
a factor four in polynomial time. Furthermore, the spanning tree congestion of chordal
cographs can be determined in linear time.
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