JAIST Repository

https://dspace.jaist.ac.jp/

Hardness Results and an Ekact Expon:
Title Al gorithm for the Spanninpg Tree Con:¢
Probl em
Okamot o, Yoshi o; Ot achi , Yot a; Ue hai
Author(s) ,
Un o, Takeaki
o Lecture Notes in Computer| Science,
Citation
452-462
Issue Date 2011-04-27
Type Journal Article
Text version aut hor
URL http:// hdl handle.net/ 101119/ 9861
This is the author-createfd version ¢
Yoshi o Okamot o, Yota Otachi, Ryuhei
Rights Takeaki Uno, Lecture Notep in Comput
. 6648/ 2011, 2011, 452-462.| The origi
publication is available pt www. spr.i
http://dx.doi.org/10.21007(978-3-642-
8t h Annual Conference on [Theory and
Description of Medel s of Computation, TAMC 2011,
Japan, May 23-25, 2011.

AIST

JAPAN
ADVANCED

INSTITUTE OF

® SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Hardness Results and an Exact Exponential Algorithm
for the Spanning Tree Congestion Problem

Yoshio Okamoté, Yota Otachi, Ryuhei Uehary and Takeaki Un

1 Center for Graduate Education Initiative, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292,
Japanokamotoy@jaist.ac.jp
2 Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan. JSPS
Research Fellowotachi@dais.is.tohoku.ac. jp
3 School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan.
uehara@jaist.ac. jp
4 National Institute of Informatics, 2—1—2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan.
uno@nii.ac.jp

Abstract. Spanning tree congestion is a relatively new graph parameter, which
has been studied intensively. This paper studies the complexity of the problem
to determine the spanning tree congestion for non-sparse graph classes, while it
was investigated for some sparse graph classes before. We prove that the prob-
lem is NP-hard even for chain graphs and split graphs. To cope with the hardness
of the problem, we present a fast (exponential-time) exact algorithm that runs in
O*(2") time, wheren denotes the number of vertices. Additionally, we provide

a constant-factor approximation algorithm for cographs, and a linear-time algo-
rithm for chordal cographs.

1 Introduction

Spanning tree congestion is a graph parameter defined by Ostrovskii [18] in 2004. Si-
monson [21] also studied the same parameter undefferelit name as a variant of
cutwidth. After Ostrovskii [18], several graph-theoretic results have been presented [2,
6,12-17, 19], and very recently the complexity of the problem for determining the pa-
rameter has been studied [3, 20]. The parameter is defined as followS.het con-
nected graph andl be a spanning tree @&. Thedetourfor an edgdu,v} € E(G) is a
uniqueu-v path inT. We define thecongestiorof e € E(T), denoted bycng; 1(€), as

the number of edges i@ whose detours contaim The congestion of G in Tdenoted

by cng;(T), is the maximum congestion over all edgedinThespanning tree conges-

tion of G, denoted bystqG), is the minimum congestion over all spanning tree&of

We denote by STC the problem of determining whether a given graph has spanning tree
congestion at most giveh If kis fixed, then we denote the problemkysTC.

Bodlaender, Fomin, Golovach, Otachi, and van Leeuwen [3, 20] studied the com-
plexity of STC andk-STC. They showed th&-STC is linear-time solvable for apex-
minor-free graphs and bounded-degree graphs, wh8&C is NP-complete even for
Ke-minor-free graphs with only one vertex of unbounded degrdexif 8. They also
showed that STC is NP-complete for planar graphs. Bodlaender, Kozawa, Matsushima,
and Otachi [2] showed that the spanning tree congestion can be determined in linear

time for outerplanar graphs. Although several complexity results are known as men-
tioned above, they are restricted to sparse graphs. The complexity for non-sparse graphs
such as chordal graphs and chordal bipartite graphs were unknown.

In this paper, we show that STC is NP-complete for these important non-sparse
graph classes. More precisely, we show that STC is NP-complete even for chain graphs
and split graphs. It is known that every chain graph is chordal bipartite, and every split
graph is chordal. The hardness for chain graphs is quite unexpected, since there is no
other natural graph parameter that is known to be NP-hard for chain graphs, to the
best of our knowledge. The hardness for chain graphs also implies the hardness for
graphs of clique-width at most three. To cope with the hardness of the problem, we
present a fast exponential-time exact algorithm. Our algorithm rur@*{g") time,
while a naive algorithm that examines all spanning trees runS*{@™) or O*(n")
time, wheren andm denote the number of vertices and the number of edges. Note that
O*(f(n)) = O(f(n) - poly(n)). The idea, which allows us to achieve this running time, is
to enumerate all possible combinations of cuts instead of all spanning trees. Using this
idea, we can design a dynamic-programming-based algorithm that r@i¢3f) time.

Then, by carefully applying the fast subset convolution method developed by Bjérk-
lund, Husfeldt, Kaski, and Koivisto [1], we finally get the running ti@g2"). We also

study the problem on cographs. It is known that cographs are precisely the graphs of
clique-width at most two. For some cographs such as complete graphs and complete
p-partite graphs, the closed formulas for the spanning tree congestion are known [12,
14,18]. Although the complexity of STC for cographs remains unsettled, we provide
a constant-factor approximation algorithm for them. Furthermore, we present a linear-
time algorithm for chordal cographs.

Due to space limitation all proofs are omitted.

2 Preliminaries

Graphs in this paper are finite, simple, and connected, if not explicitly stated otherwise.
We deal with edge-weighted graphs in Subsections 2.2 and 3.1. Our exponential-time
exact algorithm runs i©*(2") time for edge-weighted graphs, too.

2.1 Graphs

LetG be a connected graph. Ferc V(G), we denote by5[S] the subgraph induced by
S. For an edge € E(G), we denote bys — ethe graph obtained fro® by the deletion
of e. Similarly, for a vertex € V(G), we denote bys — v the graph obtained froi@ by
the deletion ofv and its incident edges. B)g(Vv), we denote thegpen) neighborhood
of vin G; that is,Ng(V) is the set of vertices adjacent wain G. ForS ¢ V(G), we
denotelUyes Na(V) by Ng(S). We define thelegreeof v in G asdeg;(v) = INg(V)|. If
deg;(v) = [V(G)| — 1, thenv is auniversal vertexf G.

Let G andH be graphs. We say th& and H areisomorphi¢ and denote it by
G =~ H, if there is a bijectionf : V(G) — V(H) such thafu, v} € E(G) if and only if
{f(u), f(v)} € E(H). Now assumé&/(G) n V(H) = 0. Then thedisjoint unionof G and
H, denoted byG U H, is the graph with the vertex s&{G) U V(H) and the edge set

E(G) U E(H). Thejoin of G andH, denoted byG @ H, is the graph with the vertex set
V(G) U V(H) and the edge s&(G) U E(H) U {{u,v} | u e V(G),v € V(H)}.

For A,B C V(G), we defineEg(A,B) = {{u,v} € E(G) |ue A, ve B}. ForS C
V(G), we define théboundary edgesf S, denoted by (S), asts(S) = Es(S, V(G)\S).
Note thatis(0) = 6c(V(G)) = 0. The congestiorng; 1 (€) of an edgee € E(T) satisfies
cng; 1(€) = |0c(Ae)l, whereAe is the vertex set of one of the two componentd of e.
For an edgein a treeT, we say that separates AndBif A C A. andB C B, where
A. andBg are the vertex sets of the two component3 efe. Clearly, if T is a spanning
tree ofG ande € E(T) separateé\ andB, thencng; 1(€) > [E(A, B)|. If e separates\
andB, we also say that divides AJ B into A andB.

LetT be atree rooted ate V(T). Then we denote byrt; (V) the parent of € V(T)
in T. The parent of the roat is not defined. We denote b$hdr(v) the children of
ve V(T)in T. Clearly,Nt(v) = {prt;(v)} U Chdr(v) for every non-root vertex.

2.2 Spanning tree congestion of weighted graphs

A graphG may be associated with an edge-weight functiegi: E(G) — Z*. If a
graph has such a function, then we call itedge-weighted grapbr just aweighted
graph Note that unweighted graphs can be considered as weighted graphs by setting
wei(e) = 1 for each edge. For an edge-weighted graghandF ¢ E(G), we define
wei(F) = Y ;g wei(f) for F € E(G). We extend the notion of spanning tree congestion
to edge-weighted graphs by defining the congestion of an edggethe sum of the
weights of edges whose detours pass through the edfe € E(T) separates vertex
setsA andB, thencng; 1 () > wei(E(A, B)).

For a weighted grapfs, we define theveighted degreef v in G aswdeg;(v) =
weids({v})). It is not difficult to see that the following fact holds.

Proposition 2.1. Let G be a weighted graph, and letSV(G). Then

wei(fs(S)) = | wdegs(v) - 2wel(E(G[S]).

vesS

It is known that STC for weighted graphs is equivalent to STC for unweighted
graphs in the following sense.

Lemma 2.2 ([3, 20]). Let G be a weighted graph and leteE(G). Let G be the graph
obtained from G by removing the edge e and addindey@iternally disjoint paths of
arbitrary lengths between the ends of e, where each edge in the added paths is of unit
weight. Then, s(6) = stqG’).

2.3 Graph classes

A graph ischordalif it has no induced cycle of length greater than three. A gi@p#
asplit graphif its vertex setV(G) can be partitioned into two se@and| so thatC is

a clique ofG andl is an independent set &. Clearly, every split graph is a chordal
graph (see [10]). Acograph(or complement-reducible graplis a graph that can be
constructed recursively by the following rules:

1. Ky is a cograph;
2. if G andH are cographs, then so&uU H;
3. if G andH are cographs, then so&® H.

Note that ifG is a connected cograph with at least two vertices, Bean be expressed
asG; &G, for some nonempty cograpls andG,. A cograph is &hordal cographf it

is also a chordal graph. Chordal cographs are also knownivasly perfect graphd4,
10] andquasi-threshold graphf22]. It is known that in the construction of a chordal
cograph by the above rules, we can assume one of two operaads Kf [22].

Analogous to chordal graphshordal bipartite graphsare defined as the bipartite
graphs without induced cycle of length greater than four. A bipartite ggaph(X, Y; E)
is achain graphif there is an ordering on X such thau < vimplies Ng(u) € Ng(V).

It is known that every chain graph i&z-free [23], and thus chordal bipatrtite. It is also
known that every chain graph has clique-width at most three [5].

Cligue-widthis a graph parameter which generalizes treewidth in some sense. Many
hard problems can be solvettieiently for graphs of bounded clique-width. For the
definition and further information of clique-width, see a recent survey byadfmnOum,
Seese, and Gottlob [11].

3 Hardness for split graphs and chain graphs

This section presents our hardness results for split graphs and chain graphs. Namely,
we prove the following theorems.

Theorem 3.1. STC is NP-complete for split graphs.

Theorem 3.2. STC is NP-complete for chain graphs.

Since every chain graph has clique-width at most three, we have the following corollary.
Corollary 3.3. STC is NP-complete for graphs of clique-width at most three.

The weighted edge argument [3, 20] allows us to present a simple proof for split
graphs. However, we are unable to present a simple proof based on the weighted edge
argument for chain graphs. This is because, in the process of modifying a weighted
graph to an unweighted graph, we may introduce many independent edges (see Lemma
2.2). Although we need somewhat involved arguments for chain graphs, the proofs are
based on essentially the same idea.

Clearly, STCis in NP. The proofs of NP-hardness are done by reducing the follow-
ing well-known NP-complete problem to STC for both graph classes.

Problem: 3-Partition [9, SP15]

Instance: A multi-setA = {ay, ay, . . ., asm} Of 3mpositive integers and a bourtle Z*
suchthat,.aa = mB a; <a; <--- < agm, andB/4 < a; < B/2 for eacha; € A

Question: CanA be partitioned intan disjoint setsA, Ay, ..., An such that, for 1<
i <m, Y aen @ = B? (Thus eachy must contain exactly three elements frém)

It is known that 3-RrriTion is NP-complete in the strong sense [9]. Thus we assume
agm < poly(m), where polytn) is some polynomial om. By scaling eacla € A, we can
also assume that; > 3m+2,m> 3,B>8,andB/4+1<g <B/2-1.

3.1 Hardness for split graphs

In this subsection, we prove that STC is NP-hard for split graphs. We first show that STC
is NP-hard for edge-weighted split graphs with weighted edges only in the maximum
cligue, by reducing an instande of 3-PartiTion to an edge-weighted split graibi
such thatA is a yes instance if and only #qGa) < k for somek. We then show
that G, can be modified to an unweighted split gra@h in polynomial time so that
stqGa) = stqG}). This proves Theorem 3.1.

Let A be an instance of 3aRrrion. We now construcG, from A in polynomial
time. Letl ={u |1 <i <3mlandC = {x}UV UW, whereV = {vi |1 <i <m}and
W ={w | m+1<i< agm. The graphGa has vertex set U C. The setd andC are
independent set and a clique®§, respectively. Eachy € | is adjacent to all vertices
in V and verticesvy, Wo, ..., W, . More formally,E(G,) is defined as follows:

E(Ga) ={{c,c}lcceClu{{uvi|uel,ve VIU{{u,wj} |u el m+1<j<a}

Recall thatay > mfor anyi > 1. The degrees of vertices (B can be determined as
follows: deg;, (ui) = &, deg, (vi) = [C| +[I| - 1, anddeg;, (W) = |C| + [{j | & > i}| - 1.
Some edges dbp have heavy weights. Lét= 2B + 2|C| + 2|I| — 15. Then

a:=(k+1)/2 if e={x v},
wei(e) = 16 == k—deg;, (W) +1 if e={x,wi},
1 otherwise

Clearly, Ga is a split graph with weighted edges only in the cliqgDeThe weighted
degrees of vertices B is as followswdeg;, (u) = &, wdeg;, (Vi) = a +[C|+|I|-2 =
k- B+ 6, andwdeg;, (W) = k.

Lemma 3.4. Let k = 2B + 2|C| + 2|l| — 15. Then A is a yes instance if and only if
stqGp) < k.

Proof (Sketch)(=) Let Ay,..., Ay be a partition ofA such thaty, ., a = B for
1 <i < m LetU; denote the sefu; | a; € A}. The desired spanning trée of
Ga can be obtained from the partitiofy, ..., Ay as follows:E(T) = {{x,c} | c €
C\{x}u Ulgism{{vi, Uil luj e Ui}. We can shovengs, (T) < k. (<) Omitted. O

Now we prove the NP-hardness of STC for unweighted split graphs. To this end, we
first reduce an instancg of 3-ParriTion tO @ weighted split graptsa as stated above.
Recall that all weighted edges G are inGA[C]. We need the following lemma.

Lemma 3.5. Let G be an edge-weighted split graph with a partiti@@ |) of V(G),
where C and | are a clique and an independent set of G, respectively. If the weighted
edges are only in {&] and the maximum edge weight isa then an edge-unweighted
split graph G satisfying st@G) = stqG’) can be obtained from G in @/max - |IE(G)|)

time.

Observe that the maximum edge-weigh@Ggis bounded by a polynomial function
on B andm. Thus the above lemma implies that from an instafi@d 3-PsrriTION, We
can construct in polynomial time an unweighted split grehandk € Z* such thatA
is a yes instance if and only stqG,) < k. This proves Theorem 3.1.

Ga Ha

Fig. 1. GraphsGa and Ha. A solid line between two sets implies that the two sets induce a
complete bipartite graph, and a dotted line between two sets implies that there are some (but not
all) edges between the two sets. Two color classé$,adirePy U Q; andQg U P;.

3.2 Hardness for chain graphs

Next we prove the NP-hardness for chain graphs. Given an insfan€&-PariTion,
we construct the grapGa = (P, Q; E). For convenience, leM = B + 3m - 4 and
vi = l{aj € A| @ > i}|. Note that O< y; < 3mfor m+ 1 < i < agy. In particular,
Yme1 = 3mandyy,, > 0. First we define the vertex sé?s= UUVUW andQ = XuYuZ
as follows:

U={ull<i<ml, V={|m+l<i<agm), W={w|l<i<M-ag,
X={x11<i<3m}, Y={yiim+1l<i<agy, Z={z|1<i<M-agn.

Next we define the edge set as folloWs:

E=(XxU)Uu(Yx(UUuV)u(@ZxUuVuw))
Ui{X, Vil IxeXm+l<j<a}
UlyLWitlyi€Y,1<j<M-agm—vil

See Fig. 1 for a simplified illustration @a.

Let Go andG; be two disjoint copies oGa. That is,Ga =~ Gg =~ G; andV(Gg) N
V(Gy) = 0.By P, Q;, Uj, Vi, W, X, Vi, andz;, we denote the vertex sets@f, i € {0, 1},
that correspond to the vertex sd®sQ, U, V, W, X, Y, andZ of Ga, respectively.
Similarly, we denote the vertices &, i € {0, 1}, that correspond to vertices, vj, w;,
X}, ¥j, andz;j of Ga by uj, vi, i, X, ¥}, andz,, respectively. We define the graph as
follows (see Fig. 1)V(Ha) = V(Gg) UV(G;) andE(Ha) = E(Gg) U E(Gy) U (Pg x Py).

Lemma 3.6. The graph H is a chain graph.

Lemma 3.7. The degrees of vertices inat$atisfy the following relations: dng(u‘j) =
2M +2m, deg,, (V) = 2M —m+yj > 2M —m, 2M - agn < deg,, (W) < 2M —m,
deg_lA(x'j) = q, degA(yj) =M-y; <M, and deg,A(z'j) = M. Moreover,4(Hp) =
2M + 2m ands(Hp) = ag. O

5 For simplicity, we denote b$ x T the set of unordered paifs, t} | se S,t € T}.

Now we prove thaA is a yes instance of 3aRrrion if and only if stqHa) < k. We
divide the proof into two only-if part (Lemma 3.8) and if part (Lemma 3.9).

Lemma 3.8. Let k= 3M — m- 2. If Aiis a yes instance, then §kt,) < k.

Proof (Sketch)Let T be a spanning tree ¢f5 with the edge set as follows:

E(T) = {{u}, v} [ve QuUPL U {{ul, Xi} [an € Aj, 1< j<mbu {fud, x| 2< j <m)
UVl Y} [T€(0,1), m+ 1< | <agnU{W,.Z}[i€{0,1), 1<]<M - agn).

Then, we can prove thang,, (T) < k. O

Lemma 3.9. Letk=3M — m- 2. If stq(Ha) < k, then A is a yes instance.

4 Exponential-time exact algorithm

We have shown that STC is NP-complete even for very simple graphs. It is widely be-
lieved that NP-hard problems cannot be solved in polynomial time. Thus wefasted
exponential-time (or sub-exponential-time) algorithms for these problems. Nowadays,
designing fast exponential-time exact algorithms becomes an important topic in theo-
retical computer science. See a recent textbook of exponential-time exact algorithms
by Fomin and Kratsch [8]. For STC, we can easily desigroaf2™)- or O*(n")-time
algorithm that examine all spanning trees of input graphs, whened m denote the
number of vertices and the number of edges, respectively. In this section, we describe
an algorithm for STC that runs i@*(2") time. Although it is still an exponential-time
algorithm, it is significantly faster than a naive algorithm.

LetG = (V, E) be a given undirected graph. For convenience, we dédfgX)| by
¢(X). Note thatc(0) = ¢(V) = 0. Consider a spanning trdewith congestion at modt
We regardT as a rooted tree with roote V. We denote this rooted tree by, (). Let
e = {u,v} € E(T) be an edge of, and without loss of generality, letbe the parent
of v. Then, the congestion & in T is equal toc(D+,(v)), whereD+,(v) denotes the
set of descendants ofin (T,r). Since the congestion df is at mostk, we see that
¢(D1,(V)) < k. See Fig. 2. Conversely, @(Dr(v)) < kfor all v e V \ {r}, then the
congestion ofT is at mostk. This is because there exists a one-to-one correspondence
between the edge=of T and the verticesin V \ {r} so thatv is a deeper endpoint ef
We summarize this observation in the following lemma.

Lemma 4.1. The congestion of a rooted tréE, r) is at most k if and only if @ (V) <
k for every vertex & V \ {r}. O

The lemma above suggests the following dynamic-programming approach. We call
a pair (X,v) of a subselX C V and a vertew ¢ X arooted subsetf V. By definition,
X # V for a rooted subset{ v) of V. A rooted subsetX, v) of V is goodif there exists
a rooted spanning tre& (v) of G[X U {v}] such that(Dr,(u)) < kfor all u € X. Here,c
is a cut function of5, not of G[X U {v}]. By definition (X, V) is good wherX = (. Note
that there exists a rooted spanning trégrf of G with congestion at modtif and only
if the rooted setV \ {r},r) is good.
The following lemma provides a recursive formula that forms a basis of our algo-
rithm (see Fig. 3).

DT 7n(l))

s

Fig. 2. The definition ofD+, (v).

I lV,I
/',' \\\
R or

x \L A\ ALy Ny v\

=
o<

Fig. 3. An illustration of Lemma 4.2.

Lemma 4.2. Let(X, V) be a rooted subset of V witK| > 1. Then,(X, V) is good if and
only if at least one of the following holds.

1. There exists a vertex& X N Ng(v) such that ¢€X) < k and(X \ {u}, u) is good.
2. There exists a non-empty proper subset X such that both ofY, v), (X \ Y, v) are
good.

Lemmas 4.1 and 4.2 above readily give@H(3")-time dynamic programming al-
gorithm. However, the fast subset convolution method enables us to solve the problem
in O*(2") time. We give a more detail below.

Let S be a finite set. For two functionk g: 25 — R, their subset convolutiois a
function f + g: 25 — R defined as

(F+g)(X) = > f(MYX\Y)
YcX
for every X C S. Given f(X), g(X) for all X ¢ S, we can computef(x g)(X) for all
X € Sin O*(2") total time, wheren = |S| [1].
Back to the spanning tree congestion problemyletV be an arbitrary vertex. We
define the functionf,: 2\ — R by the following recursionf,(X) = 1 if X = 0;
otherwise,

W)= > X\ uDmaxok-cX)+ 1+ > fWMRX\Y),

ueXnNNg (V) 0£YCX

where the empty sum is defined to be 0. It is easy to verify f{{at) is non-negative
for everyv e V and everyX C V \ {v}.
The following lemma connects the functiofisv € V and good rooted sets.

Lemma 4.3. Let (X,v) be a pair of a subset XC V \ {v} and a vertex ve V. Then,
f,(X) > 0if and only if (X, v) is a good rooted subset of V.

To apply the subset convolution method, we use the following functions. For each
i€{0,1,...,n—1}, wheren = |V|, andv e V, let fl: 2¥\¥ — R be defined by

fu(X) if [X] <1,

W00 = {o if [X| > i

forall X €V \ {v}. Then, it is not dfficult to see the following.
1. Forallve XandX c V \ {v}, f"1(X) = f,(X).
£ 7H(X) = fu(X).

2. Forallve VandX c V \ {v},
(X) = {

3. Forallie{l,...,n-1},ve V,andX C V\ {v}

B0 = >0 7K\ (u)maxo,k - o(X) + 1)

ueXNNg (V)

1 ifX=0,
0 otherwise

+ > R Y)

0£YCX

X (u) max(0.k - ¢(X) + 1)

ueXNNg(v)
+ 2, BT - 207 0))
YcX
- Z flilil(x \ {u}) max0, k — c(X) + 1}
ueXNNg(v)

+ (K7 70 - 267 @ £74(%).
Our algorithm is based on these formulas.

Step 1. For allv e V andX ¢ V \ {v}, computef?(X) based on the formulas above.
Step 2. Foreach = 1,...,n- 1in the ascending order, do the following.
Step 2-1. For allv € V, compute the subset convolutidjr® = fI=2.
Step 2-2. For allv € V and allX c V \ {v}, computef}(X) based on the formula
above.
Step 3. If f'-1(V) > 0, then output Yes. Otherwise, output No.

The correctness is immediate from the discussion so far. The running t®i€23
since the running time of each step is boundeddy2"). This is an algorithm for
solving the decision problem, but a simple binary searck en1, ..., |E|} can provide
the spanning tree congestion. Thus, we obtain the following theorem.

Theorem 4.4. The spanning tree congestion of a given undirected graph can be com-
puted in O(2") time.

Note that the algorithm also works for the weighted case withOgmg-factor increase
of the running time, since the number of distinct cut valo@$§) is bounded by 2and
so the binary search over the all possible valuexXj takes at mosD(log(2")) = O(n)
iterations. This is possible if we computéX) for all X € V beforehand, which only
takesO*(2") time.

5 Remarks on cographs

We showed NP-completeness of STC for graphs of clique-width at most three. There-
fore, it is quite natural to ask whether or not STC is NP-complete for graphs of clique-
width at most two; that is, for cographs [7]. Although the complexity of STC for
cographs remains unsettled, we have the following results.

Theorem 5.1. The spanning tree congestion of cographs can be approximated within
a factor four in polynomial time. Furthermore, the spanning tree congestion of chordal
cographs can be determined in linear time.

References

1. A. Bjorklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Mobius: Fast subset
convolution. InProceedings of the 39th Annual ACM Symposium on Theory of Computing
(STOC '07) pages 67—74, 2007.

2. H. L. Bodlaender, K. Kozawa, T. Matsushima, and Y. Otachi. Spanning tree congestion of
k-outerplanar graphs. M/AAC 2010pages 34-39, 2010.

3. H.L. Bodlaender, F.V. Fomin, P.A. Golovach, Y. Otachi, and E.J. van Leeuwen. Parameter-
ized complexity of the spanning tree congestion problem. submitted.

4. A. Brandstéadt, V. B. Le, and J. P. Spinrg@raph Classes: A SurveslAM, 1999.

5. A. Brandstadt and V. V. Lozin. On the linear structure and clique-width of bipartite permu-
tation graphsArs Combin, 67:273—-281, 2003.

6. A. Castejon and M. |. Ostrovskii. Minimum congestion spanning trees of grids and discrete
toruses Discuss. Math. Graph Theor29:511-519, 2009.

7. B. Courcelle and S. Olariu. Upper bounds to the clique width of grafbiscrete Appl.

Math, 101:77-114, 2000.
. F. V. Fomin and D. KratschExact Exponential AlgorithmsSpringer, 2010.
9. M. R. Garey and D. S. JohnsorComputers and Intractability: A Guide to the Theory of

NP-Completeness-reeman, 1979.

10. Martin C. Golumbic. Algorithmic Graph Theory and Perfect Graph®lume 57 ofAnnals
of Discrete MathematicaNorth Holland, second edition, 2004.

11. P. Hlinény, S. Oum, D. Seese, and G. Gottlob. Width parameters beyond tree-width and their
applications.Comput. J.51:326-362, 2008.

12. S. W. Hruska. On tree congestion of grapbséscrete Math,. 308:1801-1809, 2008.

13. K. Kozawa and Y. Otachi. Spanning tree congestion of rook’s graptseuss. Math. Graph
Theory to appear.

14. K. Kozawa, Y. Otachi, and K. Yamazaki. On spanning tree congestion of gr&jiksrete
Math., 309:4215-4224, 2009.

15. H.-F. Law. Spanning tree congestion of the hypercubéscrete Math, 309:6644—-6648,
20009.

[oo]

10

16.

17.

18.
19.

20.

21.

22.

23.

H.-F. Law and M. |. Ostrovskii. Spanning tree congestion of some product graphan J.
Math,, to appear.

C. Loéwenstein, D. Rautenbach, and F. Regen. On spanning tree congBstiorete Math,
309:4653-4655, 2009.

M. 1. Ostrovskii. Minimal congestion tree®iscrete Math, 285:219-226, 2004.

M. I. Ostrovskii. Minimum congestion spanning trees in planar gragbscrete Math,
310:1204-1209, 2010.

Y. Otachi, H. L. Bodlaender, and E. J. van Leeuwen. Complexity results for the spanning
tree congestion problem. WG 2010 volume 6410 of.ecture Notes in Comput. Sghages
3-14. Springer-Verlag, 2010.

S. Simonson. A variation on the min cut linear arrangement probMath. Syst. Theory
20:235-252, 1987.

J.-H. Yan, J.-J. Chen, and G. J. Chang. Quasi-threshold grapiscrete Appl. Math.
69:247-255, 1996.

M. Yannakakis. Computing the minimum fill-in is NP-comple®AM J. Alg. Disc. Mech.
2:77-79, 1981.

11

