
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Type-directed Compilation of ML Supporting

Interoperable Memory Management System

Author(s) Huu-Duc, Nguyen

Citation

Issue Date 2006-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/987

Rights

Description Supervisor:Atsushi Ohori, 情報科学研究科, 博士

Abstract

The major weakness due to that functional languages such as ML become less popular than other
imperative languages such as C is the inefficiency in senses of performance and memory usage.
Developing a function language that can seamlessly interoperate with C (and other imperative
languages) would help programmers to take advantage of both programming styles.

In this thesis, I present a type-directed compilation method of ML for achieving a high level of
interoperability. This compilation method supports a memory management system, where integers,
floating point values and other atomic data have the same natural representations as in other language
implementations. This allows ML and other languages sharing the same heap space without any
additional performance cost. Another advantage of this memory management model is that run-time
system can have a better performance by eliminating all ``boxing'' and ``tagging'' operations appearing
in most of conventional implementations.

In order to achieve this, I first consider an ``unboxed'', ``non-tag'' data representation model in which
• integers, floating point values and other atomic values are naturally represented;
• each a heap block or run-time environment (stack frame) has a ``bitmap'' that describes the

pointer positions in the block;
then develop the compilation method to support this model.

Since a polymorphic function may produce runtime objects of different types with different sizes, the
compiler should be able to generate a function's code so that it has the same behavior for all instance
types and it can compute a correct bitmap for each memory block.
This would require us to insert extra lambda abstractions and applications to pass the bit tags required
in bitmap computation and the sizes required in manipulations on unboxed values.

This compilation process should be done for both stack frames and heap-allocated objects including
function closures and their environment records. I solve the problem of mutual dependency between
this compilation method and closure conversion by developing a combined algorithm that plays both of
the roles. The resulting compilation process is shown to be sound with respect to an untyped
operational semantics with bitmap-inspecting garbage collection.

I also consider several optimization techniques for reducing run-time overhead arising from bitmap
computation and unboxed manipulation. This compilation method, together with the proposed
optimizations, has been implemented in our SML# compiler for the full set of Standard ML language,
demonstrating its practical feasibility.

