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In recent years, Boolean-network-model-based approaches to dynamical analysis of complex biological networks such as gene
regulatory networks have been extensively studied. One of the fundamental problems in control theory of such networks is
the problem of determining whether a given substance quantity can be arbitrarily controlled by operating the other substance
quantities, which we call the controllability problem. This paper proposes a polynomial-time algorithm for solving this problem.
Although the algorithm is based on a sufficient condition for controllability, it is easily computable for a wider class of large-scale
biological networks compared with the existing approaches. A key to this success in our approach is to give up computing Boolean
operations in a rigorous way and to exploit an adjacency matrix of a directed graph induced by a Boolean network. By applying
the proposed approach to a neurotransmitter signaling pathway, it is shown that it is effective.

1. Introduction

Various approaches to modeling, analysis, and control
synthesis of biological networks such as gene regulatory
networks and metabolic networks have been recently devel-
oped in the control community as well as the theoretical
biology community [1]. In these approaches, it is one of
the final goals to develop systematic drug discovery and
cancer treatment [2, 3]. Biological networks in general
can be expressed by ordinary/partial differential equations
with high nonlinearity and high dimensionality. Since such
complexities cause difficulties in analysis and control design,
various simpler models such as Petri nets, Bayesian networks,
Boolean networks, and hybrid systems have been proposed
for dealing with complex and large-scale biological networks
at the expense of rigorous analysis (see e.g., [4, 5]).

This paper discusses the controllability problem of bio-
logical networks. In gene regulatory networks, for example,
the controllability problem is defined as the problem of
determining whether expressions of genes of interest can
be arbitrarily controlled by expressions of a specified set of
the other genes. As far as we know, two approaches to the

controllability analysis of such biological networks have been
developed so far: a piecewise affine model-based approach
and a Boolean network model-based approach. However, the
former approach can be applied to only the class of relatively
low-dimensional systems [6, 7].

On the other hand, a Boolean network model, where
binary state variables are assigned to nodes and the transition
rules of the state are given by Boolean functions [8, 9],
will be more practical for analysis of large-scale biological
networks thanks to its bold simplification. Akutsu et al. have
recently discussed the controllability problem of Boolean
networks with control nodes and controlled nodes and
have proven that this problem is NP-hard in a general
setting [10]. Furthermore, they have proposed a polynomial-
time algorithm for the classes of networks including a tree
structure or at most one loop, and an exponential-time
algorithm for the other classes. Indeed there is a criticism
that a Boolean network model is too simple as a model
of biological networks, but for large-scale networks it will
be able to provide some indication or clue towards further
detailed analysis. Thus various approaches based on this
model have been well-studied so far (see e.g., [11–19]).
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Motivated by the theoretical results in [10], this paper
also focuses on the controllability problem of Boolean
networks with control nodes and controlled nodes and
proposes a sufficient condition for the Boolean network to
be controllable, which can be easily verified by a polynomial-
time algorithm. Our standing point is to give up computing
complex Boolean operations in a rigorous way and to
focus on deriving an easily-checkable sufficient condition for
controllability so as to be applied to large-scale networks.
The obtained algorithm is based on simple operations on an
adjacency matrix of a directed graph induced by a Boolean
network. This is a remarkable point of our approach,
different from the method in [10], and enables us to apply
our approach to a wider class of Boolean networks including
nontree structures.

First, after the definition of controllability of Boolean
network models with control nodes and controlled nodes
is described, a sufficient condition for the controllability is
derived in the form of an algorithm. Next, the computational
complexity for the algorithm is discussed to show that
it is a polynomial-time algorithm. In addition, PC-based
numerical experiments show that the obtained algorithm
is applicable to a class of Boolean networks with at least
1000 nodes. Finally, as an illustrative example, the proposed
algorithm is applied to the Boolean network model of a
neurotransmitter signaling pathway [20], which expresses
an interaction pathway between the glutamatergic and
dopaminergic receptors. Note that the polynomial-time
algorithm proposed in [10] cannot be always applied to
this problem. This Boolean network model consists of 16
nodes, and the problem of simultaneously controlling two
important nodes among them, that is, concentration of
exocytosis and phospholipase C, is discussed based on the
proposed algorithm. As a result, we show that for example,
they can be simultaneously controlled by keeping substance
concentration at the other 4 nodes constant with appropriate
values.

Notation 1. Let N denote the set of nonnegative integers and
{0, 1}m×n the set of m × n matrices consisting of elements
0 and 1. We also denote by In and 0m×n the n × n identity
matrix and them×n zero matrix, respectively. For simplicity
of notation, we sometimes use the symbol 0 instead of 0m×n
and the symbol I instead of In. Let M� express the transpose
of the matrix M.

2. Boolean Network Models

This section provides a brief review on a Boolean network
model [8, 9]. A Boolean network model consists of a set of
nodes and a set of regulation rules for nodes, where each
node expresses a gene, a molecule, or an event in the genetic
network. The state variable ξi at node i takes a Boolean value
of 0 or 1 representing “inactive” or “active” status of the
node, respectively. A regulation rule for each node is given
in terms of a Boolean function, and each node state changes
synchronously.

As an example, we consider a very simple and interesting
Boolean network model of an apoptosis network in Figure 1

IAP, ξ2

NOT
AND

C8a, ξ4C3a, ξ3

ORAND

NOT

TNF, ξ1

Figure 1: Simplified model of an apoptosis network. Activation
(solid), Inhibition (broken).

given by

ξ1(k + 1) = ξ1(k),

ξ2(k + 1) = ξ1(k)∧¬ξ3(k),

ξ3(k + 1) = ¬ξ2(k)∧ ξ4(k),

ξ4(k + 1) = ξ1(k)∨ ξ3(k),

(1)

where ¬, ∧, and ∨ denote logical NOT, AND, and OR,
respectively, k ∈ N denotes the discrete time, the con-
centration level (high or low) of the tumor necrosis factor
(TNF, a stimulus) is denoted by ξ1, the concentration level
of the inhibitor of apoptosis proteins (IAP) by ξ2, the
concentration level of the active caspase 3 (C3a) by ξ3, and
the concentration level of the active caspase 8 (C8a) by ξ4.
Here if the binary variable ξi has the value of “1”, then
the concentration of a certain reactant gets larger than a
prescribed threshold (i.e., it is active), otherwise less than
that. In addition, logical NOT corresponds to inhibition of
gene expressions.

Since the caspase C3a is responsible for cleaving or
breaking many other proteins, a high-level of the C3a
concentration, that is, ξ3 = 1 implies cell near-death;
otherwise, cell survival. As seen in (1), if the concentration
of IAP is high (ξ2 = 1) or the concentration of the caspase
C8a is low (ξ4 = 0), then the concentration of C3a gets low,
that is, ξ3 = 0. On the other hand, ξ2 and ξ4 at the next time
depend on the value of ξ3 as well as ξ1. In this way, some
dynamical interactions exist. See [21, 22] for further details.

A general form of a Boolean network model is given by
the state equation

ξ(k + 1) = fa(ξ(k)), (2)

where ξ(k) = [ξ1(k) ξ2(k) · · · ξl(k)]� ∈ {0, 1}l is the state
vector at time k ∈ N , and fa : {0, 1}l → {0, 1}l is a Boolean
function, where logical operators consist of AND (∧), OR
(∨), NOT (¬), and XOR (⊕).

3. Problem Formulation

In a Boolean network model (2), the state ξ(k) is uniquely
determined by giving the initial state ξ(0) = ξ0 ∈ {0, 1}l,
which implies that (2) is an autonomous system and has no
control nodes.
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On the other hand, this paper will consider the
Boolean network model with control (i.e., input) nodes
and controlled (i.e., output) nodes to discuss the output-
controllability of this model. This model is given by

Σ

⎧
⎨

⎩

x(k + 1) = f (x(k),u(k)),

y(k) = Cx(k),
(3)

where each element of u ∈ {0, 1}m denotes the state of
the control node whose value can be arbitrarily given as an
external control input in the Boolean network, each element
of x ∈ {0, 1}n denotes the state of the node except for the
control nodes in the Boolean network, and each element of
y ∈ {0, 1}r denotes the state of the node to be controlled as
an output in the network. Note here that y does not imply
a measured output. Hereafter according to control theory, x,
u, and y are called a “state”, “control input” and “output”,
respectively. In addition, f : {0, 1}n × {0, 1}m → {0, 1}n is
a Boolean function, and C ∈ {0, 1}r×n is the output matrix
satisfying for each element ci j of C

r∑

i=1

ci j = 1, ∀ j,
n∑

j=1

ci j = 1, ∀i. (4)

Furthermore, the product of C and x in y = Cx expresses
a product operation on matrices/vectors of the real number
field. Thus the above condition on C guarantees that the
output is the state variable itself, that is, for each i there
exists j such that yi = xj holds. The case of y = x is also
included here. This condition on C will not be restrictive in
analyzing controllability of biological networks such as gene
regulatory networks, since the relation on regulation among
genes/molecules will be mainly discussed there.

For the system Σ of (3), the notion of output-controlla-
bility is defined as follows.

Definition 1. Suppose that for the system Σ of (3), the finite
time T ∈ N and the initial state x(0) = x0 ∈ {0, 1}n are
given. Then the system Σ is said to be T-output-controllable
at x0 if for every y f ∈ {0, 1}r , there exists a control input
sequence u(k) ∈ {0, 1}m, k = 0, 1, . . . ,T − 1, such that
y(T) = y f . Furthermore, the system Σ is said to be T-output-
controllable if it is T-output-controllable at every x0.

The above notion of controllability comes from the
fact that, for example, in control of genetic networks we
often would like to determine if expressions of certain
gene of interest (corresponding to y) will be able to be
inhibited (or activated) by means of appropriately adjusting
the expressions of a given set of genes (corresponding to u).
It is remarked that we assume that the control time T is
explicitly specified in the above definition.

Let us get back to the Boolean network model (1) of
an apoptosis network. As discussed in [21, 22], we consider
ξ1(TNF) itself as a control input. So by ignoring the dynamics
on ξ1, that is, ξ1(k + 1) = ξ1(k), we suppose in (1) that

x(k) = [ξ2(k) ξ3(k) ξ4(k)]� and u(k) = ξ1(k), which yields
(3) of the form

x1(k + 1) = ¬x2(k)∧ u(k),

x2(k + 1) = ¬x1(k)∧ x3(k),

x3(k + 1) = x2(k)∨ u(k),

(5)

where xi(k) denotes the i-th element of x(k). As for the
output y = Cx, either case of

C = I3, C =
⎡

⎣
1 0 0

0 1 0

⎤

⎦, C =
⎡

⎣
1 0 0

0 0 1

⎤

⎦,

C =
⎡

⎣
0 1 0

0 0 1

⎤

⎦, C =
[

1 0 0
]

, C =
[

0 1 0
]

,

C =
[

0 0 1
]

(6)

can be treated by assumption. Then let us verify the T-output
controllability of the system (5). As discussed in Section 2,
x2(= ξ3) = 1 expresses cell near-death, and x2(= ξ3) = 0
expresses cell survival. So we would like to know if the system
is T-output-controllable with respect to the output y = x2.
Suppose that x0 = [0 0 0]� (i.e., the initial states of IAP, C3a
and C8a are all low-level), C = [0 1 0] (i.e., y = x2), and
T = 2. Then since y(2) = 0 holds independently of u by
simple calculation, we see that system (5) is not 2-output-
controllable at x0, which implies that we cannot control the
system from the state “cell survival” within 2 time steps no
matter how the control value of u is given.

On the other hand, suppose in (1) that x(k) =
[ξ1(k) ξ2(k) ξ3(k)]� and u(k) = ξ4(k). Then we obtain (3)
of the form

x1(k + 1) = x1(k),

x2(k + 1) = x1(k)∧¬x3(k),

x3(k + 1) = ¬x2(k)∧ u(k),

(7)

where ξ4(k+ 1) = ξ1(k)∨ ξ3(k) is ignored. Suppose that x0 =
[1 0 1]�, T = 2, and

C =
[

0 1 0
0 0 1

]

(8)

(i.e., y = [x2 x3]�(= [ξ2 ξ3]�)). Then since x2(2) = ¬u(0)
and x3(2) = u(1) are obtained, we see that system (5) is 2-
output-controllable at x0, for example, (a) y(2) = [0 0]�

for u(0) = 1, u(1) = 0, (b) y(2) = [0 1]� for u(0) = 1,
u(1) = 1, (c) y(2) = [1 0]� for u(0) = 0, u(1) = 0, and
(d) y(2) = [1 1]� for u(0) = 0, u(1) = 1. This implies we
can simultaneously control the value of x2 and x3 at T = 2.
In this way, the proposed controllability enables us to verify
the existence of a control input sequence such that the output
has the desired value in a given finite time, and the obtained
result indicates how to give the value of a control input
sequence.
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Next, we will explain our basic strategy for deriving the
controllability condition. Let us consider a Boolean network
expressed as the state equation

ξ1(k + 1) = ξ2(k)∧ ξ3(k),

ξ2(k + 1) = ξ1(k),

ξ3(k + 1) = ¬ξ2(k),

(9)

which is given by [10]. Although this model is very simple,
it provides significant clues to address this problem. For the
Boolean network model (9), we can consider three possible
specifications, choosing either ξ1(k), ξ2(k), or ξ3(k) to be the
control input for the system.

First, suppose that x(k) = [ξ1(k) ξ2(k)]� and u(k) =
ξ3(k), that is, ξ3(k) itself is the control input. Then it follows
that

x1(k + 1) = x2(k)∧ u(k),

x2(k + 1) = x1(k).
(10)

Note here that ξ3(k + 1) = ¬ξ2(k) is ignored because we
assume that ξ3(k) itself is the control input. As for the output
y = Cx, either case of C = I2, C = [1 0], C = [0 1] can
be considered in this case. Consider the controllability of the
system (10) with y = x (i.e., C = I2) for T = 2. In this
example, we will consider whether system (10) is T-output-
controllable or not by directly calculating state trajectories of
each system. From (10), we have

x1(2) = x1(0)∧ u(1),

x2(2) = x2(0)∧ u(0).
(11)

So if x1(0) = 0, x1(2) ≡ 0 holds irrespective of the value
of u(1), similarly for the case of x2(0) = 0. Therefore, we
see that system (10) is not 2-output-controllable. In the same
way, we see that system (10) is not T-output-controllable in
every case of C = I2, C = [1 0], and C = [0 1] for T ≥ 2.

Secondly, suppose that x(k) = [ξ1(k) ξ3(k)]� and u(k) =
ξ2(k), that is, ξ2(k) itself is regarded as the control input.
Then we obtain

x1(k + 1) = u(k)∧ x2(k),

x2(k + 1) = ¬u(k),
(12)

where ξ2(k+ 1) = ξ1(k) is ignored. Consider the controllabil-
ity of the system (12) for T = 2. From (12) we have

x1(2) = u(1)∧ (¬u(0)),

x2(2) = ¬u(1).
(13)

Thus we see that the system is not 2-output-controllable for
C = I2, while that the system is T-output-controllable with
T ≥ 2 for both cases of C = [1 0] and C = [0 1].

Finally, suppose that x(k) = [ξ2(k) ξ3(k)]� and u(k) =
ξ1(k). Then we obtain

x1(k + 1) = u(k),

x2(k + 1) = ¬x1(k),
(14)

where ξ1(k + 1) = ξ2(k) ∧ ξ3(k) is ignored. Consider the
system (14) with C = I2. From (14), we have

x1(2) = u(1),

x2(2) = ¬u(0),
(15)

which implies that system (14) is 2-output-controllable.
However, in the case of T = 1, we have

x1(1) = u(0),

x2(1) = ¬x1(0),
(16)

which implies that the system (14) is not 1-output-control-
lable.

Note that for (11) with y = x, we see that the
controllability property does not hold due to the fact that
y(T) directly depends on x(0). On the other hand, for (13)
with y = x, y1(2)(= x1(2)) is adjacent to u(1) and u(0) in
the Boolean network, which implies that y1(2) is arbitrarily
given by u(1) and u(0). In a similar way, y2(2)(= x2(2)) is
adjacent to u(1). However, (y1(2), y2(2)) = (1, 1) cannot be
realized by u(0) and u(1) because y1(2) = 0 always holds
when y2(2) = 1. These examples are very important in
discussing the controllability in a Boolean network, that is,
if the Boolean function of yi(T) includes an initial state x(0),
or includes the same input in the outputs at the same time,
then the system in question is not T-output-controllable. In
the following section, by motivating the above discussion, we
will consider to derive a controllability condition.

Remark 1. In the above example, we assume that when some
genes are identified as control inputs, the original dynamics
of the corresponding genes can be ignored. However, in the
case that the corresponding gene has a strong interaction
with other genes, this assumption may not be suitable. One
of methods for coping with such a case is to add a new gene
(node) that works as the control input [10], where it is called
an external control node. Our approach below can be also
applied to this case.

4. Output-Controllability Condition

4.1. Preliminaries. This section presents a sufficient condi-
tion for the system (3) to be T-output-controllable in the
form of an algorithm.

Consider a simple example given by

x1(k + 1) = u(k),

x2(k + 1) = x1(k)∧ (¬u(k)),

x3(k + 1) = x1(k)∧ x2(k),

y1(k) = x2(k),

y2(k) = x3(k).

(17)

This system has the following relation:

y2(2) = x1(0)∧ {u(0)∧ (¬u(0))} = 0. (18)
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Similarly, we see that y2(T) = 0, T ≥ 2, hold identically. In
Boolean functions, identical equations are in general given
by

h(a)∧ (¬h(a)) ≡ 0, h(a)∨ (¬h(a)) ≡ 1, (19)

where h(·) is any Boolean function of a vector of binary
variables. Obviously such identities on xi or ui affect the
controllability in a Boolean network (note that even if
y(T) = x(0)∨ (¬x(0))∨u(0), y(T) ≡ 1 holds irrespective of
u(0)).

Let us consider again the Boolean network model (5)
of an apoptosis network. If we suppose that x(0) = x0 =
[0 0 0]�, C = [0 1 0] (i.e., y = x2), and T = 2, then by a
simple calculation, we obtain the following identity:

y(2) = (x2(0)∨¬u(0))∧ (x2(0)∨ u(0))

= ¬u(0)∧ u(0)

≡ 0.

(20)

So in Boolean biological networks, there exists the case
that identities are appeared. However, identities may not
be appeared in the real biological relevance. The reasons
why such identities are appeared are that the state is
binarized and that a time-delay of the state is ignored.
To overcome the latter point, a temporal Boolean network
model ξ(k + 1) = fa(ξ(k), ξ(k − 1), . . . , ξ(k − T)) has
been proposed in [23]. However, identities may appear even
in a temporal Boolean network. The output-controllability
condition proposed below can be similarly applied to a
temporal Boolean network model.

Thus first of all, we will focus on finding such identities in
y(T) before discussing a kind of initial condition and a kind
of input-independency. This will require the introduction for
several symbols.

The following assumption is made.

Assumption 1. The Boolean function f in (3) has no
redundant variables.

For example, in the logical function h(a, b) = a∧(b∨¬b),
h(a, 0) = h(a, 1) holds. So b is a redundant variable, and
h(a, b) can be rewritten as h(a) = a. Any given Boolean
function can be changed so as to satisfy Assumption 1: after
it is transformed into an appropriate canonical form (e.g.,
Reed-Muller canonical form (polynomials over the finite
field GF(2))), it is easy to eliminate redundant variables by
expanding based on four operations over GF(2). Also in the
identification of Boolean network models (e.g., see [24]),
since the correlations between variables are checked, the
Boolean function f in (3) will satisfy Assumption 1 in many
cases. By Assumption 1, it is guaranteed that the Boolean
function f itself does not include any identities, although
y(T) may include some identities. Let p denote the number
of the logical NOT appeared in (3), where the logical NOT
operators are distinguished when the corresponding terms
are different even if the corresponding variables are the same.
In addition, consider the fictitious inputs vi(k) = 1, i =
1, 2, . . . , p, which have one-to-one correspondence with the

variables operated by the logical NOT, that is, ¬xi or ¬ui in
(3). Then the system (3) can be equivalently rewritten as the
following system:

Σv

⎧
⎨

⎩

x(k + 1) = fv(x(k),u(k), v(k)),

y(k) = Cx(k).
(21)

where the Boolean function fv does not include the logical
NOT, and

v(k) =
[

v1(k) v2(k) · · · vp(k)
]�

=
[

1 1 · · · 1
]�
.

(22)

For example, system (17) is rewritten as

x1(k + 1) = u(k),

x2(k + 1) = x1(k)∧ (v(k)⊕ u(k)),

x3(k + 1) = x1(k)∧ x2(k),

y1(k) = x2(k),

y2(k) = x3(k),

(23)

subject to v(k) = 1.
Next, consider the adjacency matrix Φ ∈

{0, 1}(n+m+p)×(n+m+p) for the directed graph induced by
the Boolean network of the system (21). For example, the
adjacency matrix for the system (23) is given by

Φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

1
0
0
1
1

1
1
0
0
0

0
0
0
0
0

0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

x1

x2

x3

u
v

x1 x2 x3 u v

, (24)

where if there exists an arc from node i to node j, then
the (i, j)-th element of Φ is 1. Hereafter, without loss of
generality, the i-th element of [x� u� v�]� is assigned to
node i in the directed graph, where i ∈ {1, 2, . . . ,n +m + p}.
In the case of (24), x1, x2, x3, u, and v are assigned to nodes
1, 2, 3, 4, and 5, respectively. Then in Figure 2, which shows a
temporal/spatial network of the system (17), we say that for
example, there exists a path between x2(2) and u(0).

Using the adjacency matrix Φ, we also compute the
matrix ΦtC�0 C�, t = 1, 2, . . . ,T , where

C0 =
[

In 0n×(m+p)

]

∈ {0, 1}n×(n+m+p). (25)

In the case of the system (17), we have

ΦCT
0C

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1
0 1
0 0
1 0
1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

x1

x2

x3

u
v

y1 y2

, (26)

where C = [02×1 I2].
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For the system (21), ΦtC�0 C� expresses whether there
exist paths between y(T) and x(T − t), y(T) and u(T − t),
or y(T) and v(T − t) for any given T . In the case of (26),
we see that y2(2)(= x3(2)) is adjacent to x1(1) and x2(1). In
other words, ΦtC�0 C� expresses which elements of x(T − t),
u(T − t), and v(T − t) are variables of a Boolean function
representing yi(T). However, note here that from ΦtC�0 C�,
we cannot specify an explicit form of the Boolean function
in question.

Furthermore, the following symbol is used:
⎡

⎢
⎣

Xt

Ut

Vt

⎤

⎥
⎦ = ΦtC�0 C

�, (27)

where Xt ∈ N n×r , Ut ∈ N m×r , and Vt ∈ N p×r . Let
also Xt

ix , jx , U
t
iu, ju , and Vt

iv , jv denote each element of Xt, Ut,
Vt, respectively. If Xt

ix , jx ≥ 1 holds, then there exist Xt
ix , jx

paths between yjx (T) and xix (T − t). For the state xix , ix =
1, 2, . . . ,n, of the system (3), let Px express the index set of
elements of xix operated by the logical NOT as ¬xix . In a
similar way, for the control input uiu , iu = 1, 2, . . . ,m, of
the system (3), let Pu express the index set of elements of uiu
operated by the logical NOT as ¬uiu . Here, p = |Px| + |Pu|
holds. In addition, there is a one-to-one correspondence
between each element of Px, Pu and the index iv of v. Let
ν(ix) and ν(iu) express the index iv of v corresponding to
ix ∈ Px and iu ∈ Pu, respectively. In the case of the system
(23), Px = ∅, Pu = {1} hold, and for iu = 1, ν(iu) = 1 holds.

Finally, we define the following matrices:

X0 = C0Φ
TC�0 C

� ∈ N n×r ,

U = BΦC�0 C
� ∈ N mT×r ,

(28)

where

B =

⎡

⎢
⎢
⎣

B 0
. . .

0 B

⎤

⎥
⎥
⎦ ∈ {0, 1}mT×(n+m+p)T ,

B =
[

0m×n Im 0m×p
]

∈ {0, 1}m×(n+m+p),

Φ =

⎡

⎢
⎢
⎢
⎢
⎣

Φ
Φ2

...
ΦT

⎤

⎥
⎥
⎥
⎥
⎦
∈ N (n+m+p)T×(n+m+p).

(29)

4.2. Proposed Algorithm. Now we are in a position to propose
a T-output-controllability test algorithm. Since this kind of
problem is NP-hard [10], we pay our attention on deriving
a sufficient condition for the controllability. Although this
sufficient condition is given in the form of an algorithm, it
is somewhat complex. Thus before describing an algorithm,
we describe the outline of the algorithm.

First, we consider a necessary condition for y(T) to
include identical equations. From Figure 2 of the example
(23), we see that y2(2)(= x3(2)) in (18), which has
no identities, has two paths from u(0), and that v(0) is

k = 0 k = 1 k = 2

x1

x2

x3

u

v

Figure 2: Temporal/spatial network of the system (23).

connected to some node on the paths. In this way, if some
identical equation exists in yj(T), there always exist more
than 2 paths from yj(T) to some state and also the logical-
NOT operations exist on the paths, which is a necessary
condition and not necessarily a sufficient condition. Since it
will spend huge time to rigorously specify the existence of
identities for a large network, we consider here to exclude the
cases satisfying the above necessary condition, that is, we do
not determine here the controllability in such cases.

Next, for the system that includes no identical equations,
we use a kind of input-independency to determine the
controllability. For example, consider the case that neither
identity on u nor x exists in y(T) and that y(T) is expressed
by

y1(T) = h1(u1(0),u2(3)),

y2(T) = h2(u1(1),u2(1),u2(2))
(30)

as a result of recursive calculation (see Section 6 for such
an example), where h1, h2 are some Boolean functions.
This system is obviously T-output controllable because each
yj(T) is expressed by different ui(k) and no x0 exists in yj(T).
From the viewpoint of adjacency relation, this implies that
there exists no path between x(0) and y(T), there exists at
least one path from each yj(T) to some ui(k), and each ui(k)
has a path with only one yj(T) or has no path to any yj(T).
This can be easily found from the adjacency matrix, although
it is a sufficient condition for the controllability. This is a
rough story of our approach.

The proposed algorithm is given as follows.

Algorithm 1 (T-output-controllability test algorithm).

Part A: Check of the Existence of Identical Equations.

Step 1. Set t = 1. Compute X1, U1, and V 1.

Step 2. If T = 1, go to Step 6. Otherwise set t = t + 1.
Compute Xt, Ut, and Vt.

Step 3. If there exists (ix, jx) such that Xt
ix , jx ≥ 2 or (iu, ju)

such that Ut
iu, ju ≥ 2, denote them by (i∗x , j∗x ) or (i∗u , j∗u ),

respectively, and go to Step 4. Otherwise, go to Step 2 if t < T
and go to Step 6 if t = T .
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Step 4. If there exists i∗x such that i∗x ∈ Px or i∗u such that
i∗u ∈ Pu, and Vt

ν(i∗x ), j∗x
≥1 or Vt

ν(i∗u ), j∗u
≥1 holds, go to Step 8.

Otherwise, go to Step 5.

Step 5.

Substep 5.1. Set j = 1.

Substep 5.2. If any element of j∗x -th column or j∗u -th column
in V j is greater than or equal to 1, go to Step 8. Otherwise,
go to Substep 5.3.

Substep 5.3. If j ≤ t − 1, set j = j + 1 and go to Substep 5.2,
or else go to Step 2.

Part B: Check of the Independence of Each y(T).

Step 6. If the following conditions hold for the matrices X0

and U in (28), system (3) is T-output-controllable, or else if
only condition (i) does not hold, then go to Step 7. Otherwise
go to Step 8.

(i) X0 = 0n×r holds;

(ii) each column vector of U is a nonzero vector;

(iii) each row vector of U is a zero vector, or has only one
element with a nonzero value.

Step 7. Suppose x(0) = x0 for a given constant vector x0 ∈
{0, 1}n. Let L(x0) ⊆ {1, 2, . . . ,n} denote the index set of
elements of x(1) = fv(x0,u(0), v(0)) that are constant for
any u(0) (v(0) = 1). Then if the following condition holds,
system (3) is T-output-controllable at x0. Otherwise, go to
Step 8.

(iv) For XT−1(= C0ΦT−1C�0 C�), there exists no l ∈ L(x0)
satisfying XT−1

l, jx ≥ 1.

Step 8. This algorithm cannot determine whether the system
(3) is T-output-controllable or not (at x0).

The above algorithm allows us to determine the T-
output-controllability of the system as follows.

First, noting that the identical equations have the form
in (19), and x(T) is obtained recursively from (21), we see
that the identical equations appeared in x(T) always have the
form

(V1 ⊕w(k))∧ (V2 ⊕w(k))(≡ 0), (31)

(V1 ⊕w(k))∨ (V2 ⊕w(k))(≡ 1), (32)

where w(k) denotes either variable of x(k) or u(k),

V1 = ⊕
(i, j)∈I1

vi
(
k + j

)
, V2 = ⊕

(i, j)∈I2

vi
(
k + j

)
, vi = 1,

V1 ⊕w(k) = w(k), V2 ⊕w(k) = ¬w(k),
(33)

and I1, I2 are some subsets of the index set {(i, j)|i =
1, 2, . . . , p; j = 0, 1, . . . ,T−1}. Then using the forms of (31)

and (32), the following lemma on Part A of Algorithm 1 is
obtained.

Lemma 1. In Step 6, y(T) includes neither identities of (31)
nor identities of (32).

Proof. In Step 3, from Xt
ix , jx ≥ 2 for some t, ix = i∗x , and jx =

j∗x , we see that more than 2 paths from yjx (T) to xix (T − t)
exist, which is necessary for the identity on xix (T − t) to exist
(similarly for the case of Ut

iu, ju ≥ 2). Thus we next focus on
the existence of logical NOT (i.e., vi) in these paths in Step 4
and Step 5.

Consider the case that the logical NOT (i.e., vi) corre-
sponding to xi∗x (T − t) or ui∗u (T − t) obtained in Step 3
exists in (21), in other words, either i∗x ∈ Px or i∗u ∈ Pu

holds. Then the condition Vt
ν(i∗x ), j∗x

≥ 1 implies that the term
vν(i∗x )(T − t)⊕ xi∗x (T − t) is included in the paths in question,
which is a necessary condition for the existence of the identity
in yj∗x (T). Thus we exclude this case (Step 4). (similarly for
the case ui∗u (T − t)).

In the other case, from (31), (32), for v(T − j), some
j ∈ {1, 2, . . . , t − 1}, to exist in the paths in question is
necessary for the existence of identities. If any element of the
j∗x -column or the j∗u -column of V j is greater than or equal
to 1, some element of v(T− j) exists in the paths in question.
Thus we exclude this case (Substep 5.2). Therefore, it follows
that y(T) includes no identities in Step 6.

From Lemma 1, we see that the case that y(T) includes
the identities that have the form of (31) or (32) is excluded
from the viewpoint of a necessary condition for the identity
to exist in y(T). Thus we obtain the following theorem.

Theorem 1. For a given T , the following statements hold.

(i) the system (3) is T-output-controllable if conditions
(i), (ii), and (iii) in Step 6 hold subject to Part A of
Algorithm 1,

(ii) for a given x0 ∈ {0, 1}n, the system (3) is T-output-
controllable at x0 if condition (iv) in Step 7 holds subject
to Part A and Step 6.

Proof. First, the statement (i) is proven for the system
satisfying the condition that y(T) includes neither identities
of (31) nor identities of (32). From Lemma 1, this condition
is satisfied in Step 6. Then condition (i) in Step 6 implies that
there exists no path between each element of x(0) and each
element of y(T), since the (i, j)-th element of X0 expresses if
a path from xi(0) to yj(T) exists or not. On the other hand,
note that (mh+ i, j)-th element of U expresses if a path from
ui(T−h−1) to yj(T) exists or not (h = 0, 1, . . . ,T−1). Thus
condition (ii) in Step 6 implies that there exists at least one
path from each element of y(T) to some ui(k).

Furthermore, condition (iii) in Step 6 means that the
input ui(k) for each i ∈ {1, 2, . . . ,m} and k ∈ {0, 1, . . . ,T−1}
has a path connected to only one element of y(T) or has
no path to any element of y(T). From these conditions, it
follows that each ui(k) affects at most one yj(T) and not
the other yh(T), h /= j. Hence the value of yj(T) can be
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independently specified by the corresponding ui(k), which
implies that system (21) is T-output-controllable.

Next, the statement (ii) is proven. Since condition (i)
in Step 6 does not hold, in this case, there exists a path
between some element of x(0) and some element of y(T).
On the other hand, condition (iv) in Step 7 guarantees
that there exists no path between constant elements of
x(1) = fv(x0,u(0), v(0)) and elements of y(T). Thus y(T) is
not affected by the value of x0. Therefore, from (ii)–(iv), it
follows that system (21) is T-output-controllable at x0. This
completes the proof.

As an example, consider system (17) again. Suppose T =
2. The matrices X1, U1, V 1 of Step 1 are given by (26), and
X2, U2, V 2 of Step 2 are

Φ2C�0 C
� =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1
0 0
0 0
1 2
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (34)

In Step 3, from U2
1,2 = 2, we obtain (i∗u , j∗u ) = (1, 2) and

ν(i∗u ) = 1. In Step 4, from Px = ∅ and Pu = {1}, we have
i∗u ∈ Pu and V 2

1,2 = 1. So go to Step 8, that is, it is impossible
to determine if system (17) is 2-output-controllable. In fact,
from (18), y2(2) includes the identity u(0) ∧ (¬u(0)) = 0.
Thus we see that there exists an identical equation.

Let us also consider the case of y = x2, C = [0 1 0] in the
system (17). Then for T = 2, we have

ΦC�0 C
� = 1 0 0 1 1

�
,

Φ2C�0 C
� = 0 0 0 1 0

�
.

(35)

From Step 1→ Step 2→ Step 3→ Step 6, we can see that
the system (17) is 2-output-controllable. In fact, by simple
calculation, the Boolean function of y(T)(= x2(2)) is derived
as y(T) = u(0)∧¬u(1).

As for identical equations, the proposed algorithm
excludes the case of ¬h(a) ∧ ¬h(a) as well as (19). This is
a weak point of this algorithm. Furthermore, consider the
following system:

x1(k + 1) = x2(k)∧ u2(k)⊕ u1(k),

x2(k + 1) = x1(k)⊕ u2(k),

y(k) = x(k).

(36)

This system is T-output-controllable for T = 1. However, the
proposed algorithm cannot determine whether this system
is 1-output-controllable or not; thus there exists a class of
systems such that the proposed algorithm cannot determine
the controllability. Needless to say, it will not be so easy to
cope with various cases stated above due to high nonlinearity
of Boolean functions.

While the proposed algorithm includes such disadvan-
tages, one of the main advantages of the algorithm is that
the computational complexity of the above algorithm is very
small. This will be discussed in the following section.

5. Computational Complexity Analysis

In this section, we discuss the computational complexity of
the algorithm proposed in the previous section.

First, let us recall the definition of the symbols used
here. The number of the state, the control input, and the
output in (3) are denoted by n, m, and r, respectively. The
number of the logical NOT appeared in (3) is expressed by
p. In addition, T ∈ N expresses the control time. Then the
following result is obtained.

Lemma 2. The computational complexity of the proposed
algorithm is O((n +m + p)3(T − 1) + (n + m + p)nrT) for
T ≥ 2, n,m, p, r ≥ 1.

Proof. The computation of the proposed algorithm consists
of (a) checking each condition of Part A, and (b) checking
whether conditions (i) to (iv) hold or not.

First, (b) is considered. The computational complexity
to compute Φ2 is O((n +m + p)3). So the computational
complexity to compute ΦT and Φ is given by both
O((n +m + p)3(T − 1)). Further, the computational com-
plexity to compute the product of Φ and C�0 C� is O((n +
m + p)nrT). So by simple calculation, the computational
complexity of U is obtained as O((n +m + p)3(T − 1) +
(n + m + p)nrT). The computational complexity of gen-
erating X0 is obviously less than the case of U . Therefore,
the computational complexity to compute X0 and U is
O((n +m + p)3(T−1)+(n+m+ p)nrT), which also includes
the computational complexity to check conditions (i) to (iv)
in Steps 6 and 7 for given X0 and U .

Next, (a) is considered. The matrices Xt, Ut, Vt are
obtained directly from ΦC�0 C�, and the computational
complexity of Step 5 is O(prT). As a result, since the
computational complexity of each checking in Part A
is O((n +m + p)2(T − 1)) + O(prT), the computational
complexity of Part A is less than O((n +m + p)3(T − 1) +
(n +m + p)nrT).

Therefore, the computational complexity of the proposed
algorithm is given byO((n +m + p)3(T−1)+(n+m+p)nrT).

From Lemma 2, we see that the proposed algorithm
is a polynomial-time algorithm. Furthermore, the com-
putational time for performing the proposed algorithm
is evaluated by numerical experiments, where the total
computational time in Part B is measured because from the
proof of Lemma 2 we see that the computational complexity
of Part B is dominant. So the adjacency matrices to be
evaluated are generated randomly for each l(= n + m),
where n = m = l/2, p = 0 are given. The results are
shown in Table 1, where MATLAB on the computer with
the Intel Core 2 Duo CPU 3.0 GHz and the 2 GB memory
is used. In Table 1, the worst computational time implies
the worst value among 100 cases randomly selected for
each l. From Table 1, we see that the proposed algorithm
can be applied to relatively large-scale Boolean network
models.
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6. Application to Neurotransmitter
Signaling Pathway

In this section, the proposed algorithm is applied to a
Boolean network model of interaction pathway between the
glutamatergic and dopaminergic receptors in Figure 3, which
has been proposed in [20]. In this pathway, exocytosis, by
which a cell directs the contents of secretory vesicles out of
the cell membrane, is regulated, depending on the value of
neurotransmitters such as dopamine and glutamate. Then
it is important from the viewpoint of synaptic plasticity to
consider whether exocytosis can be controlled by regulating
other elements. In the Boolean network model of Figure 3,
the dopamine (neurotransmitter, ξ2) is synthesized by tyro-
sine hydroxylase (ξ1) and catabolized by COMT (ξ3). The
dopamine binds to the dopamine receptor 1 (DRD1, ξ4)
and the dopamine receptor 2 (DRD2, ξ5). DRD1 stimulates
adenylate cyclase (ξ6) to activate protein kinase A (ξ7),
which activates DARPP32 (ξ11). DARPP32 inhibits protein
phosphatase 1 (ξ12). By inhibitation of protein phosphatase
1, activation of protein kinase A, and presence of the
glutamate (ξ13), the glutamate receptor (ξ14) is activated
to elevate the concentration of the intracellular calcium
(ξ9). On the other hand, DRD2 inactivates adenylate cyclase
and activates phospholipase C (ξ8) in order to elevate the
concentration of the intracellular calcium. The intracellular
calcium activates calcineurin (ξ10), which inhibits DARPP32.
Also, the intracellular calcium activates packaging proteins
(ξ15) and finally exocytosis (ξ16). The process of exocytosis
of the glutamate receptor expresses one of events in synaptic
plasticity, that is, if exocytosis is activated, then the neu-
rotransmitter is secreted out of the cell membrane. In this
model, the concentration of the above reactants is expressed
by a binary variable ξi, that is, ξi = 1 if it is high, otherwise
ξi = 0. Then the state equations of this system are given as

ξ1(k + 1) = ξ1(k),

ξ2(k + 1) = ξ1(k)∧¬ξ3(k),

ξ3(k + 1) = ξ2(k),

ξ4(k + 1) = ξ2(k),

ξ5(k + 1) = ξ2(k),

ξ6(k + 1) = ξ4(k)∧¬ξ5(k),

ξ7(k + 1) = ξ6(k),

ξ8(k + 1) = ξ5(k),

ξ9(k + 1) = ξ8(k)∨ ξ14(k),

ξ10(k + 1) = ξ9(k),

ξ11(k + 1) = ¬ξ10(k)∧ ξ7(k),

ξ12(k + 1) = ¬ξ11(k),

ξ13(k + 1) = ξ13(k),

ξ14(k + 1) = ξ7(k)∧¬ξ12(k)∧ ξ13(k),

ξ15(k + 1) = ξ9(k),

ξ16(k + 1) = ξ15(k).

(37)

Table 1: Computational time of the proposed algorithm (T = 10).

l n(= m) Worst comp. time [sec]

100 50 0.1

200 100 0.5

300 150 1.5

400 200 3.3

500 250 6.3

600 300 10.2

700 350 15.9

800 400 23.1

900 450 32.4

1000 500 43.6

From Figure 3, we see that this Boolean network includes
at least four loops, for example, the loop of ξ2, ξ4, ξ6,
and ξ5, the loop of ξ11, ξ12, ξ14, ξ9, and ξ10, and so forth.
In synaptic plasticity, it is required that the binary value
of ξ16 expressing exocytosis can be arbitrarily controlled.
Furthermore, phospholipase C (ξ8) is a kind of enzymes that
cleaves phospholipids and as a result protein kinase C as
well as calcium (ξ9) are activated. The former, protein kinase
C, which works outside of the network in Figure 3, is one
of key enzymes in signal transduction pathways. Thus since
phospholipase C affects the other significant network, it will
be important to simultaneously control the value of ξ8 and
the value of ξ16. Therefore ξ8 and ξ16 are regarded as the
output, that is, y = [ξ8 ξ16]�. In addition, we assume that
ξ8 and ξ16 cannot be directly controlled.

For a fixed dimension of u and the fixed output y =
[ξ8 ξ16]�, all combinations of ξi, i = 1, 2, . . . , 7, 9, . . . , 15, are
considered as the control inputs, which we call the input-
combinations. Then for a given T , the proposed algorithm is
applied to the system of the form (3) obtained for each input-
combination of ξi. It is remarked that depending on the
choice of the kind of control inputs, there exist several cases
to which the polynomial-time algorithm proposed in [10]
cannot be applied due to the graph-structure constraints.
Furthermore, it is also remarked that even for fixed control
inputs, the controllability problem is NP-hard. So the
problem of finding efficient control inputs that make the
system controllable is further harder than this problem.

By applying our algorithm to the case of each input-
combination of ξi and each fixed T , we obtain, for example,
the following results. In the case of dimu(k) = 2 and T = 5,
we can find that among 14C2(= 92) input-combinations,
there exist at least 6 input-combinations of ξi that make the
system 5-output-controllable. In this way, since the proposed
algorithm for each input-combination is very efficient, for
example, the computation time via the proposed algorithm
is about 10 [sec] for Boolean networks with 600 nodes
(see Table 1) and T = 10, it enables us to verify the
controllability condition for a certain number of input-
combinations within a practical time; for example, about 3
[hours] will be required for 1000 input-combinations of a
Boolean network with 600 nodes.



10 EURASIP Journal on Bioinformatics and Systems Biology

COMT, ξ3

Tyrosine hydroxylase, ξ1

Dopamine, ξ2

Dopamine receptor 1, ξ4

Adenylate cyclase, ξ6

Protein kinase A, ξ7

Glutamate receptor, ξ14

Calcium, ξ9

Packaging proteins, ξ15

Exocytosis, ξ16

DARPP32, ξ11

Protein phosphatase, ξ12

Calcineurin, ξ10

Dopamine receptor, 2 ξ5

Phospholipase C, ξ8

Glutamate, ξ13

Figure 3: Simplified model of the interaction pathway between the glutamatergic and dopaminergic receptors. Activation (solid), Inhibition
(broken).

In the case of dimu(k) = 4 and T = 6, we can
also find controllable control inputs among 14C4(= 1001)
input-combinations. For example, we obtain as one of
combinations of x(k) ∈ {0, 1}12 and u(k) ∈ {0, 1}4 that
make the system 6-output-controllable

x(k) =
[

ξ1(k) ξ3(k) ξ4(k) ξ5(k) ξ6(k) ξ8(k)

ξ9(k) ξ11(k) ξ12(k) ξ14(k) ξ15(k) ξ16(k)
]�

,

(38)

u(k) =
[

ξ2(k) ξ7(k) ξ10(k) ξ13(k)
]�
. (39)

It is remarked that the polynomial-time algorithm proposed
in [10] cannot be applied to the system with the state (38)
and the input (39) because the network includes the two
loops, that is, the loop of ξ2, ξ4, ξ6, and ξ5, and the loop of
ξ7, ξ11, ξ12, and ξ14. Furthermore, based on the above result
the Boolean function of y(6) can be derived as

y1(6) = u1(4), (40)

y2(6) = u1(1)∨ (u2(2)∧¬u3(0)∧ u4(2)) (41)

which implies that the value of y(6) can be freely given by
control inputs, for example, (a) y(6) = [0 0]� for u1(4) = 0,
u1(1) = 0, u2(2) = 0, u3(0) = 1, u4(2) = 0, and (b)
y(6) = [1 1]� for u1(4) = 1, u1(1) = 1, u2(2) = 0, u3(0) = 1,
u4(2) = 0.

Finally, we discuss the control input sequence realizing
the desired output values. One of criticisms in control of
Boolean networks is to assume that the value of the control
input can be arbitrarily given at each time. In many biological
systems, this assumption is not always satisfied, and input
constraints are frequently imposed. One of input constraints
is that the value of the control input is given as a constant
within a certain sufficiently long time period. Although it
is one of future works to explicitly deal with such an input
constraint, based on the proposed algorithm, we may also
find a constant-valued sequence of control inputs for which
the desired values of outputs are obtained. For example, in
(40) and (41), let us consider to find a control input sequence
satisfying y1(6) = 0 and y2(6) = 1. Since u1(4) = 0,
u1(1) = 0, u2(2) = 1, u3(0) = 0, and u4(2) = 1 are obtained
as one of solutions, it is remarked that the following control
inputs are given as any binary value: u1(0), u1(2), u1(3),
u1(5), and u2(0), u2(1), u2(3), u2(4), u2(5), and u3(1), u3(2),
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u3(3), u3(4), u3(5), and u4(0), u4(1), u4(3), u4(4), u4(5). This
allows us to give the values of the control input sequences
as a constant, that is, u1(k) = 0, u2(k) = 1, u3(k) = 0,
u4(k) = 1, k = 0, 1, . . . , 5. Thus the proposed algorithm
helps us to find a practically useful control input sequence.
Furthermore, this kind of degree of freedom in control
inputs may be used for the optimal control problem. Once
we can determine control input variables by our algorithm,
we can use a tool for finding optimal control input sequences,
which have been developed in hybrid control theory, for
example, [25, 26]. It is expected that such an analysis will
provide one of guidelines in experimental approaches to the
control problem of biological networks.

7. Conclusion

In this paper, the controllability analysis for biological
networks expressed by a Boolean network model with
control nodes (inputs) and controlled nodes (outputs) has
been discussed. First, a sufficient condition for the Boolean
network model to be output-controllable has been derived
by exploiting an adjacency matrix of its network graph.
The obtained condition, which is given in the form of
an algorithm, can be checked in polynomial time with
respect to the state/input dimensions and the control time
period; it will be one of the powerful tools that can provide
some clues for finding effective control inputs to control a
large-scale biological network. Next, by PC-based numerical
experiments, it has been shown that the proposed method
is applicable to large-scale Boolean networks with at least
1000 nodes. Finally, the proposed method has been applied
to the Boolean network model expressing a neurotransmitter
signaling pathway, and has shown that it is controllable
with respect to both exocytosis and phospholipase C when
appropriate control inputs are used.

There are many interesting open problems to be
addressed in the future. It is one of the most important
issues to characterize a class of Boolean networks to which
our algorithm can be applied as a necessary and sufficient
condition. In addition, extensions to the case of systems
with input constraints and uncertainty are also one of the
significant topics.
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