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Abstract

Reuse of existing software components as well as web services by composition can save
time and cost in application development. However, composition with existing compo-
nents always encounters errors called mismatches. A promising solution for mismatches
is adaptation which introduces a special component that controls interactions of compo-
nents by exclusively synchronizing with components. Current approaches of adaptation
focus on behavioral mismatches using automata modeling. With behavior interfaces of
components and specified adaptor contracts designed by developers, adaptors can be au-
tomatically generated. Current approaches work well but still have some disadvantages.
First, behavioral mismatches of behavioral interfaces may result in the need of an adaptor
having non-regular behavior while in current approaches expressing non-regular behavior
is not possible. Second, adaptation contracts are manually designed with limited tool sup-
port. This leads to difficulties especially in dealing with large scale systems or components
need to be dynamically composed such as services in mobile devices.

This thesis analyzes the two disadvantages of current approaches of adaptation and
introduces a novel approach of adaptor generation. The approach uses pushdown systems
model as protocols of adaptors so that non-regular behavior is able to be expressed. In
order to compute and generate adaptors with this new modeling, pushdown model check-
ing is applied to generate suitable traces for further generating adaptors. The idea of
generating suitable traces is letting model checking algorithms searching for the negation
of necessary properties and generating counterexamples satisfying the properties. The
adaptation is called “Coordinator Guided Adaptor Generation” which includes building
a over-behavioral system with a special adaptor called Coordinator and generating adap-
tors from counterexamples returned from pushdown model checking. This way of using
pushdown model checking can leave the design of adaptation contracts to algorithms of
model checking and therefore achieves fully automatic adaptor generation. Additionally,
in order to automatically capture necessary properties, behavior interfaces of components
are remodeled with constraints to force the revelation of implicit information. Properties
for behavioral-mismatch-free and unbounded messages are especially addressed in this
thesis.

The approach is evaluated by experiments on a web service system having ordering
behavioral mismatches. A non-regular behavioral adaptor was successfully and automat-
ically generated. The generated adaptor was further implemented in BPEL processes to
confirm the feasibility of the approach. The experiments shows the approach successfully
performs automatic adaptor generation with non-regular behavior and the modeling using
pushdown system can be easily implemented in BPEL processes as an example of plat-
form of software development. For the generality of the approach, some technical issues
are discussed. Solutions for signature mismatches and branchings are provided so that
the approach is also applicable on general cases of adaptation.
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Chapter 1

Introduction

1.1 Mismatches

1.1.1 Composition of Software Components

Developing software by reusing existing software components has became a common sense
in software engineering. The most ideal and direct way of reusing software components
is software composition. Since software components are basically wrapped within their
interface by mature techniques from object-orient technologies, composition of software
components can be analyzed and computed just by looking into their interfaces. How-
ever, software composition is not as simple as it seems because there are always errors
encountered in composition especially when reusing existing software components. When
building softwares from nothing, we may design all involved software components and
ensure they are going to cooperate perfectly as one system. On the contract, building
softwares using existing software components makes the scenario more complicate. Some
of existing components may be developed with different considerations or under differ-
ent design techniques or even specified by different interface definition languages. These
differences surely result in errors in composition. Since developers usually choose compo-
nents with confidences that the chosen components have desired functionalities and are
worth to be composed for building new softwares, the errors in composition are not real
errors but mismatches needed to be solved.

1.1.2 Levels of Mismatches

Mismatches are caused by gaps between interfaces of software components. How inter-
faces of software components are expressed is essential to clarify which mismatches are
encountered. Furthermore, whether and how the encountered mismatches could be solved
depend on interface descriptions of software components. According to survey work [1, 2],
four levels of mismatches can be categorized:

• Technical mismatches: implementation related.

• Signature mismatches: different method names, parameter, etc.

• Behavioral/Protocol mismatches: deadlock in composition.

• Quality of Service mismatches: timeout setting for example.
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• Semantic mismatches

Considering current technologies of interface description languages, signature and be-
havioral mismatches are taking most focuses. Under current interface descriptions lan-
guages, signatures of software components can be precisely described with behavioral
descriptions using languages similar to automata model. The lowest level of mismatches,
technical mismatches are related to implementation and is not a serious problem in recent
software development paradigm using software components. Implementation details are
encapsulated within a software component and only interface of the software component
is revealed. For the higher levels of mismatches, we need description languages which can
support QoS or Ontology contexts. This means we may need to introduce some specially
designed description language for higher level mismatches and current interface descrip-
tion languages are not qualified for these requirements. Thus, current approaches for
solving mismatches focus on signature and behavioral mismatches by given specifications
of interfaces of software components. For the two levels of mismatches, the behavioral
mismatches are especially interested since we can not detect behavioral mismatches by
simply analyzing each behavioral interfaces but need to composed these interfaces and
find out what is wrong and where is it.

1.1.3 Software Components and Web Services

When mentioned about software components, one may refer to Component Based Soft-
ware Engineering(CBSE). In frameworks of CBSE, software components are encapsulated
within interface specifications. Interface of a software component may also be considered
its signature which includes methods and parameters to be invoked by other software
components. For example, programing languages with object-oriented technologies im-
plemented, such as JAVA and C++, can define interfaces of objects which are recognized
as components. Some advanced interface definitions provide more expressiveness for inter-
actions of components. For example, CORBA and COM provide more precise descriptions
of interfaces which are also called protocols. In such frameworks, the interface descriptions
about a component include not only signatures but also behavior of the component.

On the other hand, web services are considered as next generation of software com-
ponents by introducing the standards of protocols of web services, such as WSDL, and
BPEL, etc. The standards make web services more distributed and platform independent.
Therefore, service oriented computing (SOC) not only inherits features and techniques
from CBSE but also takes new challenges. Unlike software components, the framework
of web services shown in Fig. 1.1 requires web application being developed by finding
and composing web services registered on a repository. Technologies of SOC are there-
fore solutions for how to find and compose web services then create a web application as
designed. In order to build a web application from services registered in the repository,
developers first find services might be suitable for composing the designated web applica-
tion according to interface descriptions of services published in the repository. Then tests
are conducted to make sure the composed service behaves as designed.

It is known that in some aspects such as technologies relating to design and implemen-
tation, software components and web services are different. However, we argue that under
the context of software reuse that developing softwares by composing existing software

2
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component, both software components and web services share the same vision: new soft-
wares/web applications are developed by composing existing software components/web
services. For example, commercial-off-the-shelf (COTS) in CBSE can be considered the
same thing of publishing developed web services in a repository. Therefore, in this the-
sis, we consider software components and web services as same thing: components. In
the rest of this thesis, the common term “component” is used to represent both software
components and web services. Also, terms of “software components”, “web services”, or
“services” should be recognized as just components if not addressed explicitly.

1.2 Adaptation

One of the most popular and promising solution for mismatches is adaptation. As shown
in Fig. 1.2, adaptation introduces a special component called adaptor to coordinate com-
munications of components. In an adapted system, all interactions among components are
through the adaptor so that mismatches could be avoid without modifying given services.
Thus, adaptation provides a non-intrusive way for composition of components with mis-
matches. For adaptation, components are treated as black boxes and only their interfaces
are revealed.

Existing approaches for adaptation are, to our best knowledge, generally based on a

3
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conventional framework of software adaptation [2] called model-based adaptation. The
framework is designed to use behavior interfaces and adaptation contracts to perform
automated adaptor generation. More specifically, behavior interfaces requires specifica-
tions of behavior interfaces of services as finite state automata represented in the form
of labeled transition system (LTS), while adaptation contracts require specifications of
mappings of messages to be interacted and the ordering (i.e., expected interactions coor-
dinated by an adaptor) of these mappings represented in LTS. Fig. 1.3 shows a general
flow of adaptation with verification considered [3]. In conventional approach, adaptation
contracts are required to be designed in advance and adaptor is automatically generated
based on specified adaptation contracts. It should be noticed that adaptation contracts
are usually manually designed with interactive tool support. In the following of this thesis,
when this framework will be called using terms “conventional framework of adaptation”
or “conventional adaptation” for convenience when comparing to the approach in this
thesis.

1.3 Problems

The conventional framework of adaptation works well and ways of computation are ap-
plied on this framework. However, there are still some problems with the conventional
framework which motivates this work. This section presents the two main motivations of
this work: (1) non-regular adaptation; (2) to overcome problems of adaptation contracts.
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1.3.1 Non-regular Adaptation

The conventional framework of adaptation uses model of finite state machines with nota-
tions of LTS for representing behavior interfaces of components. The adaptation contracts
are also specified using finite state machines. Since adaptation contracts describes how
components should communicate/synchronize with each other so that mismatches will not
be encountered. However, we argue that behavioral mismatches, especially ones caused by
reordering of message delivery, may need adaptors with non-regular behavior to solve the
mismatches. Thus, adaptors represented by finite state machines have nothing to do in
this situation. To support adaptors with non-regular behavior, another model which can
express non-regular behavior is needed. As a consequence, the computation of adaptation
has to be changed to support adaptors represented by the new model.

1.3.2 Problems of Adaptation Contracts

It should be noticed and carefully recognized that in the conventional framework of
adaptation, adaptation contracts are manually designed by developers with limited semi-
automatic tool support [4, 5]. The purpose of adaptation contracts is for developers to
specify how components should interact in the composed system so that mismatches will
not be encountered while designated functionalities can be fulfilled. The natural that
adaptation contracts have to be manually designed requires that developers know every-
thing of the system including all provided behavioral interfaces, how interfaces interact.
Though it is obvious that developers have to know well about behavioral interfaces of
components, we argue that existing components makes the design of adaptation contracts
more difficult since existing components are supposed not to be modified. When deal-
ing with large scaled systems, the task of designing adaptation contracts becomes more
complicated and is almost impossible to be manually done.

On the other hand, the recent trend of mobility of components, for example, web
services on mobile devices, are required to be dynamically linked with other services. This
scenario does not allow a step of designing adaptation contracts before composition. Thus,
one may prefer that when a system needs an adaptor, the adaptor could be generated
directly from given behavioral interfaces.

However, since the design of adaptation contracts means developers implant informa-
tions about the behavior of the system coordinated by adaptor. This information may not
be originally included in behavioral interfaces of components. This information should
be forced to be contained in behavioral interfaces in order to directly generate an adap-
tor. Therefore, in order to achieve the objective of directly generating adaptors from
behavioral interfaces of components, a model of behavioral interfaces which are specially
designated for adaptation, i.e., adaptor generation, of components is needed

1.4 Approach Overview

To achieve the two objectives described in Section 1.3, this work proposes a novel approach
for adaptation of behavioral mismatching components. For the first objective, non-regular
adaptation, this approach introduces pushdown systems model for representing behavior
interface of an adaptor. The stack in a pushdown system gives the ability of describing
non-regular behavior. Thus, for a system consists of components which needs an adaptor
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with non-regular behavior, we can describe the adaptor in the approach. Since the model
of an adaptor is different to conventional framework, computations such as synchronous
composition should be re-constructed in the approach.

For the second objective of solving problem of adaptation contracts, the approach
choose to skip the step of designing adaptation contracts but generate adaptors directly
from behavior interfaces of components. In order to fill the lost information from devel-
opers through designing adaptation contracts, extra restrictions on behavior interfaces of
components are introduced. These restrictions force the behavior interface of a component
explicitly reveals information such as the start and end point of execution of a component,
which is essential for generating an adaptor. Thus, the approach defines a modified model
from Interface Automata called “Interface Automata for Adaptation” (IA4AD) as model
of behavior interfaces of components. An IA4AD consists of basic information of behavior
interface of a component represented as interface automata with constraints necessary for
adaptation.

Steps of the approach is shown in Fig. 1.4 and details of these steps are described as
follows:

• Read Behavior Interfaces:

First behavior interfaces of components are specified by IA4ADs and used as input
of the approach. This step not only get the behavior interfaces but also checks
if restrictions of these IA4ADs are correctly specified. Furthermore, the behavior
interfaces have to be tested if they satisfy the compatibility condition. Generally, in
order to perform composition of components, components should meet the condition
that all messages sent by one component must be received by another component.
This means the components are composable or compatibility. By expressing behav-
ior interfaces of components using model of IA4AD, we formally define the condition
of compatibility of IA4ADs. Specified IA4ADs have to meet this condition before
proceeding to further steps in the approach.

• Detection of Behavior Mismatch:

If given components specified as IA4ADs pass the compatibility check, detection
of behavior mismatches is performed to check if behavior mismatches exist. In
the conventional framework of adaptation, behavioral mismatches are defined as
the existence of deadlock states in the synchronous composition of components.
Basically, a deadlock state in an automaton, i.e., the synchronous composition of
components, can be intuitively defined as a state which can not reach final states of
the automaton. Therefore, detecting behavioral mismatches can be considered as a
search problem which checking the reachability to final states in an automaton.

Since model checking techniques [6] are powerful and efficient search algorithms for
transition systems, detecting behavioral mismatches by using model checking should
be efficient than design our own searching algorithm. To apply model checking
techniques, we need two inputs: one is the kripke structure of the automaton M
and Linear-Time Temporal Logic (LTL) property representing reachability to final
states. The kripke structure M can be obtained from the system behavior, i.e., the
synchronous composition of components. Since behavior interfaces of components
are represented by IA4ADs, the synchronous composition of IA4ADs is also an
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IA4AD, which can be converted to the kripke structure M for model checking. The
second input, a LTL formula which represent deadlock free for the system behavior
computed from synchronous composition of components is simple. We may consider
that deadlock free is a property that all traces of the system reach the final states.
Thus, the LTL formula can be written as ♢ = paccept where paccept represents the
acceptance condition of the system behavior, i.e., the current state the final state
of the system. This property is called Behavior Mismatch Free in the approach.

Practically, we use SPIN [7] model checker on detection of behavior mismatch in the
approach. Behavior interfaces of components represented in IA4ADs can be encoded
in Promela with one synchronous message queue for communication. Then SPIN
can do both synchronous composition and model checking for us. The final state of
the system behavior is then the state where current states of all components are their
final states. If the system behavior passes the check, there will be no counterexample
returned. This means the system of components works well by themselves and no
adaptation is needed. Otherwise, there will be a returned counterexample showing
that adaptation is needed and we may proceed to the step of adaptor generation.

• Adaptor Generation:

Adaptor generation in our approach is called coordinator guided adaptor generation.
The idea of adaptor generation in the approach is model checking for negation of
specified property to get a counterexample which is a trace of the system that sat-
isfies specified property. Then the counterexample is used to build the behavior
interface of an adaptor. In order to realize this idea, we introduce a special adap-
tor called Coordinator, i.e., a pushdown system, to synchronously compose with
behavior interfaces of components, i.e., IA4ADs. Coordinator is expected to be an
over-behavioral adaptor so that synchronous composition with Coordinator is also
an over-behavioral adapted system. Thus, as long as we specify proper property for
the desired adaptor, model checking for the negation of the property can give us a
counterexample which is considered the behavior of the desired adaptor. Then an
adaptor is generated according to the counterexample. In the approach, we intro-
duce several properties to form the proper property including Behavior Mismatch
Free used in detection of behavior mismatch. For generating correct non-regular
adaptor, we also introduce the property of Unbounded Messages which is essential
for non-regular behavior.

1.5 Outline of This Thesis

The structure of this paper is as follows. Chapter 2 gives some backgrounds of service
adaptation and model checking, etc. Chapter 3 gives formal definitions of models of adap-
tors and components. Considerations of definitions are explained using a motivational
example. Chapter 4 gives details of detection of behavior mismatch in the approach.
Chapter 5 gives details of adaptor generation in the approach. Chapter 6 gives details of
a tool implemented for the approach. Chapter 7 demonstrates experiments and results for
selected problems of adaptation. Chapter 8 gives the evaluation to the approach based on
results of experiments. Chapter 9 describes related work and compares to the approach
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Verification 
Requests
(Optional)

Output Adaptor
(Interface Pushdown System)

Yes

NoMismatch Detection using
Model Checking (SPIN)

Coordinator Guided Adaptor Generation
using Pushdown Model Checking (MOPED)

No Adaptor
Needed

Read Behavior Interfaces
(Interface Automata)

Verification 
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(Optional)

Output Adaptor
(Interface Pushdown System)

Yes

NoMismatch Detection using
Model Checking (SPIN)

Coordinator Guided Adaptor Generation
using Pushdown Model Checking (MOPED)

No Adaptor
Needed

Read Behavior Interfaces
(Interface Automata)

Figure 1.4: Service adaptation by pushdown model checking

proposed in this work. Chapter 10 summarizes this work by giving conclusions and future
directions.
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Chapter 2

Preliminaries

This chapter gives explanations and definitions of some backgrounds in this work. First we
introduce software adaptation and then give definitions of Interface Automata, Pushdown
Systems, etc. as theoretical base of this work.

2.1 Mismatches

Basically, mismatches between components are caused by gaps between interfaces of com-
ponents, including existing and newly designed ones. Therefore, mismatches can be clas-
sified based on models of interfaces of components. According to S. Becker, et al. [8],
interface models can be hierarchically classified from lowest to highest levels as:

• Signature List Based Interface

• Protocol Enhanced Interface

• Quality of Service Enhanced Interface

Signature list based interface model are interfaces like JAVA interfaces. Protocol
enhanced interfaces are usually specified by finite automata model to reveal behavior of
components such as BPEL for web services. Based on these interface models, mismatches
between interfaces are classified as follows [1, 2]:

• Technical mismatches

• Signature mismatches

• Behavioral/Protocol mismatches

• Quality of Service mismatches

• Semantic mismatches

Technical mismatches are caused by gaps in implementation and are the lowest level
of mismatches. Signature mismatches are caused by differences of signatures, i.e., method
names, parameters, etc. Behavioral mismatches are caused by deadlocks in the composed
system of components. QoS mismatches are caused by differences on non-functional de-
scriptions such as timeout setting for example. Semantic mismatches are relating to
understanding of functionalities, symbols, or keywords in description.
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2.2 Software/Service Adaptation

Generally, service adaptation is considered evolved from software adaptation with ex-
tensions for dealing with web services such as standards of protocols. Therefore, basic
techniques for service adaptation are common to software adaptation. We may call both
service and software adaptation just adaptation for convenience. Also, the terms software
components and services are considered the same things in this section for simplicity.
This section introduces the conventional framework of adaptation based on the approach
proposed by Canal et al. [2].

2.2.1 Behavioral Interfaces

Adaptation is a promising solution for signature and behavioral mismatchings. In a
conventional framework of adaptation [2, 9, 10], the basic two elements for performing
adaptation for software components having signature and/or behavioral mismatches are
behavioral interfaces and adaptation contracts. Behavioral interfaces can be described by
any IDL (Interface Description Language) and then are abstracted into Labeled Transition
Systems (LTSs). A LTS is a kind of finite state machines and its definition is shown in
Def. 1.

Definition 1 (LTS) A labeled transition system is a tuple (A, S, I, F, T ) where

A: an finite set of alphabets.

S: an finite set of states.

I ∈ S: initial state.

F ⊆ S: final states.

T ⊆ S × A× S: transition function.

For a set of given software components, synchronous production are computed to
composed the components. In order to perform the interactions between input and output
alphabets, special symbols are used: !a and ?a represent sending and receiving of messages
a respectively. Since there is no definition of special symbol in LTS, the notation ā is used
to defined oppositional special symbols: !̄a =?a and ?̄a =!a. The synchronous product is
is defined in Def. 2.

Definition 2 (Synchronous Product) The synchronous product of n LTSs
Ci = (Ai, Si, Ii, Fi, Ti), i ∈ [1, n], is the LTS C1∥ . . . ∥Cn = (A, S, I, F, T ) such that

A = A1 ∪ { } × . . .× An ∪ { }
S = S1 × . . .× Sn

I = (I1, . . . , In)

F = F1 × . . .× Fn

T is defined using the following rule:
∀(s1, . . . , sn) ∈ S, ∀i, j ∈ [1, n], i < j, such that ∃(si, a, s′i) ∈ Ti, ∃(sj, ā, s′j) ∈ Tj:
(x1, . . . , xn) ∈ S and ((s1, . . . , sn), (l1, . . . , ln), (x1, . . . , xn)) ∈ T , where ∀k ∈ [1, n]:
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lk = a, xk = s′i if k = i.

lk = ā, xk = s′j if k = j.

lk = , xk = sk otherwise.

It is intuitive that the synchronous product is also a LTS. It should be noticed that in
synchronous production, only interaction of sending and receiving of same alphabet can
be synchronized and be generated as a transition in the product LTS. For a product LTS,
it is intuitive to check if there exists any deadlock state, i.e., a non-final state having no
outgoing transition. If any deadlock state is found, there are behavior mismatches in the
system of software components. To demonstrate how the behavioral interfaces are used,
a example contains two software components is introduced in Example 1.

Example 1 Fig. 2.1 shows a system consists of two components: Library and User.
Library provides search service of books. By receiving title or author, it returns list:
a list of books found in search. On the other hand, User only gives keyword that does not
specify clearly title or author of a book and receives the search result list. The behavioral
interfaces of the two components represented by LTS is as follows:

LTSLibrary

A = { ?author, ?title, !list }
S = { s0, s1, s2 }
I = { s0, }
F = { s0, }
T = { (s0, ?author, s1), (s1, !list, s0), (s0, ?title, s2), (s2, !list, s0) }

LTSUser

A = { !keyword, ?list }
S = { s0, s1, }
I = { s0, }
F = { s0, }
T = { (s0, !keyword, s1), (s1, ?list, s0) }

The synchronous product of the two component is a LTS having only initial state with
no outgoing transitions since neither title or author can synchronize with keyword.
Thus, the two components have signature mismatches.

2.2.2 Adaptation Contracts

When mismatching are found exist, adaptor generation is the next step. In conventional
framework, adaptation contracts are specified manually by developer in the form of syn-
chronous vector. As defined in Def. 3, a synchronous vector is as tuple that shows exchange
of message corresponding to each participating component. We may use just the term
vector in convenience.
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? author

Library User

! list

! keyword

! list

? title

? list

? author

Library User

! list

! keyword

! list

? title

? list

Figure 2.1: Example: Book Search

Definition 3 (Vector) A synchronous vector for a set of components Ci = (Ai, Si,
Ii, Fi, Ti), i ∈ [1, n], is a tuple ⟨e1, . . . , en⟩ with ei ∈ Ai ∪ { }, meaning that a component
does not participate in a synchronization.

Note that vectors should exhaustively list all messages that should be synchronized.
This should include the simplest mapping: sending and receiving of same alphabet. Give
all vectors are specified, adaptation contracts also need the ordering of executing these
synchronizations. This is defined using vector LTS shown in Def. 4. Vectors and the cor-
responding vector LTS form the adaptation contracts for given system of software compo-
nents. It is intuitive that the adaptation contracts is how the system should behave with
no mismatchings encountered. Therefore, with behavior interfaces and adaptation con-
tracts specified, adaptor is generated automatically by synchronizing LTSs of components
with Vector LTS.

Definition 4 (Vector LTS) An vector LTS for a set of vectors V is an LTS where labels
are vectors.

Since the computation of adaptor generation is automated, it is not necessary to show
the detail of algorithms of adaptor generation. It should be noticed that algorithms of
adaptor generation may be different by different approaches. However, all approaches
based on this framework need specifications of behavior interfaces and adaptation con-
tracts. Also, the generated adaptor is also represented as a LTS.

Example 2 Example 2 already showed the two components Library and User have mis-
matches. Now we may design adaptation contracts for the two components. First, three
vectors are specified as follows:

Vtitle = ⟨Library : ?title, User : !keyword⟩
Vauthor = ⟨Library : ?author, User : !keyword⟩
Vlist = ⟨Library : !list, User : ?list⟩

The first two vectors Vtitle and Vauthor are mappings of messages title and author

with keyword. The last vector Vlist shows the mapping of list in both components. Note
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Vauthor

Vlist

Vtitle

Vlist

Vauthor

Vlist

Vtitle
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Figure 2.2: Book Search: vector LTS

? list! title? keyword

! author

! list

? keyword? list

! list

? list! title? keyword

! author

! list

? keyword? list

! list

Figure 2.3: Book Search: adaptor

that Vlist is required to be specified even the names in the mapping are the same. Next
we design vector LTS to decide the ordering of the execution of the three vectors. Since
keyword should be used on any search of books, it is expected keyword be received and
be used to generate list of books twice: one in title search and one in author search.
Therefore, we design a vector LTS shown in Fig. 2.2. The generated adaptor is then
shown in Fig. 2.3. It should be noticed that in the adaptor the special symbols are opposite
to components since the adaptor are supposed to receive messages from components and
sent back to corresponding components.

Though the computation of adaptor generation is skipped in this example, the basic
ideas of adaptation are clearly demonstrated. It is easy to see that the design of adaptation
contracts are most difficult and important task when applying adaptation technique in
real software components.

2.3 Interface Automata

Interface automata [11] defined in Def. 5 captures the input and output characteristic
in behavior of software components. The explicit notation of input, output, and internal
alphabets are especially convenient for expressing interactions between components. Note
that an interface automaton does not have final states defined.

Definition 5 (Interface automata) An interface automaton is a 6-tuple

P = (V, v0, AI , AO, AH ,∆)

where
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V : finite set of states.

v0 ∈ Q: initial state.

AI : finite set of input alphabets.

AO: finite set of output alphabets.

AI : finite set of internal alphabets.

∆ ⊆ V × A× V : set of transition relations, where A = AI ∪ AO ∪ AH

It should be noticed that there is nearly no constraints in defining an Interface Au-
tomaton. Therefore, an Interface Automaton can be considered a general finite state
machine with special notations. However, one condition called compatibility has to be
satisfied when composing two components. As shown in Def. 6, compatibility defines the
condition when two components are composable.

Definition 6 (Compatibility of interface automata) Two interface automata P
and Q are composable if

AH
P ∩ AQ = ∅ AI

P ∩ AI
Q = ∅

AO
P ∩ AO

Q = ∅ AH
Q ∩ AP = ∅

Compatibility means that two components should have disjoint alphabets so that all
shared alphabets are to be synchronized in composition and become internal alphabets.
Therefore, let shared(P,Q) = AP ∩ AQ, shared(P,Q) = (AI

P ∩ AO
Q) ∪ (AO

P ∩ AI
Q) for

two composable components P and Q. Then the product of two Interface Automata is
defined in Def. 7. Shared alphabets are added into internal alphabets and synchronization
is made on corresponding transitions of the two components. Other non-shared alphabets,
including input, output, and internal alphabets, are kept. Their corresponding transitions
are also kept in th fashion of interleaving.

Definition 7 (Product of Interface Automata) Given P and Q are composable in-
terface automata, their composition is an interface automaton

P ⊗Q = (V, v0, AI , AO, AH ,∆)

where

V = VP × VQ

v0 = (v0P , v
0
Q)

AI = (AI
P ∪ AI

Q) \ shared(P,Q), where shared(P,Q) = AP ∩ AQ

AO = (AO
P ∪ AO

Q) \ shared(P,Q)

AH = AH
P ∪ AH

Q ∪ shared(P,Q)
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∆ ⊆ Q× A×Q, where A = AI ∪ AO ∪ AH is defined as follows:
∆ = {((v, u), a, (v′, u))|(v, a, v′) ∈ ∆P ∧ a /∈ shared(P,Q) ∧ u ∈ VQ}
∪ {((v, u), a, (v, u′))|(u, a, u′) ∈ ∆Q ∧ a /∈ shared(P,Q) ∧ v ∈ VP}
∪ {((v, u), a, (v′, u′))|(v, a, v′) ∈ ∆P ∧ (u, a, u′) ∈ ∆Q ∧ a ∈ shared(P,Q)}

In the definition of product of two Interface Automata, it should be noticed that
the three situations of building transitions are not exhaustive. The situation that in a
composite state when an alphabet a is in shared(P,Q) and there is one component having
corresponding transitions while the other component does not. A composite state in this
situation is considered illegal because the synchronization fails when only one component
tries to synchronize. In other word, product of two Interface Automata requires all shared
alphabets being synchronized so that these alphabets become internal alphabets in the
product Interface Automaton. The definition of illegal states is given in Def. 8.

Definition 8 (Illegal States) The set of illegal states in the composition of two Inter-
face Automata P ⊗ Q is defined as follows: Illegal(P,Q) = {(v, u) ∈ VP × VQ |
∃a ∈ shared(P,Q), ((a ∈ AO

P (v) ∧ a /∈ AI
Q(u))∨ (a ∈ AO

Q(u) ∧ a /∈ AI
P (v)))}.

Though the existence of illegal states is not a problem for the product itself, the further
product with another component is required that these illegal states are not included
in any further product. Furthermore, the product of two Interface Automata is called
composition if illegal states and corresponding transitions lead to illegal states are trimmed
off. By using the product of Interface Automata, composition of software components is
treated in a way of incremental manner.

Example 3 A simple example from [11] is demonstrated to show how to compose Inter-
face Automata. At first, there are two components User and Comp represented in Interface
Automata shown in Fig. 2.4 and Fig. 2.5. Basically, Comp receives messages from User
and send back responses. It should be noticed that besides the behavior of each component,
the input and output alphabets are explicitly specified outside the behavior. This means
that in an Interface Automaton the behavior inside and the input/output alphabets outside
are basically independent. Therefore, component User is allowed to have input alphabet
fail but no corresponding transition in its behavior. This directly causes an illegal state
in the product User ⊗ Comp shown in Fig. 2.6. More specifically, the state marked with
number 6 in Fig. 2.6 is illegal state in User⊗Comp because in this state, component Comp
has a transition sending fail but component User does not have transition receiving fail
to synchronize. Furthermore, by trimming off the state 6 and the transition connecting
states 4 and 6, we get the composition of User and Comp which denoted as User∥Comp.
From the experiences of this example, we may consider that by properly manipulating spec-
ifications in input/output alphabets and actual behavior, the system behavior obtained by
computing product of components represented in Interface Automata can be maintained
in control.
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Figure 2.6: Product of User and Comp
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2.4 LTL Model Checking

Model Checking [6] is an technique for verification of hardware/software design. Generally,
given an abstract model represented by a transition system M (e.q. Kripke structure or
finite automata) with a set of atomic propositions AP and a labeling function L : S → 2AP

labels each state with a subset of AP, a model checking problem is to check a specification
φ composed of atomic propositions and temporal logic operators/qantifiers such as CTL
(Computation Tree Logic) or LTL (Linear-Time Temporal Logic) and find all states such
that M, s |= φ, and also check whether initial states are included.

However, LTL model checking is especially interested in software verification. A LTL
formula represents a set of infinite traces and for every LTL formula we can build an Büchi
automaton that accepts these infinite traces. Thus an automata-theoretic approach for
LTL model checking [12] is useful.

The semantics of LTL formulas is as follows: Given an infinite execution trace σ =
s0s1 . . . with a set of atomic propositions AP , a labeling function L : S → 2AP , and
arbitrary LTL formulas φ, φ1, φ2:

• σ |= p iff p ∈ L(s0)

• σ |= ¬φ iff ¬(σ |= φ)

• σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

• σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2

• σ |= �φ iff ∀i ≥ 0, σi |= φ

• σ |= ♢φ iff ∃i ≥ 0, σi |= φ

• σ |= φ1Uφ2 iff ∃i ≥ 0, σi |= φ2 and ∀0 ≤ j < i, σj |= φ1

• σ |= Xφ iff σ1 |= φ

Note that σi means an execution trace starting from i-th state of σ. Operator � means
globally and ♢ means eventally and X means next. Therefore, a LTL model checking
problem is defined as follows: Given a model M with a labeling function L, and an LTL
formula φ, check if all traces of M satisfy φ and return a counterexample if a trace does
not satisfy φ. Since one can build a Büchi automaton that accepts traces of a LTL
formula, the algorithm of LTL model checking on model M includes following steps:

1. Build the Büchi automaton B¬φ for ¬φ.

2. Cmpute product of M and B¬φ. The resule accepts ΣM ∩ Σ¬φ.

3. Check if the product accepts any sequence which is a counter example.

Model checking techniques advances very fast and there are tools supporting software
verification. One of the most popular model checker is SPIN [7] which provides C program
like input language called Promela. Developers can build the model of concurrently
communicating protocols coded in Promela and SPIN can construct the model M using
efficient techniques such as BDD.
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2.5 Model Checking Pushdown Systems

Pushdown systems are simplified pushdown automata that input alphabets are omitted
and focus on the behaviors rather than languages. In general, pushdown systems are
used for representing procedure programs. Pushdown systems are simpler then ordinary
pushdown automata, while the behavior of pushdown systems perfectly capture program
counter of sequential programs especially recursive programs. Therefore, recently model
checking pushdown systems [13] became popular and kept gaining the spotlight in the
field of software verification.

2.5.1 Pushdown Automata

A pushdown Automaton is a finite state automaton with an unbounded stack. Languages
accepted by pushdown automata are context free languages. Languages accepted by
pushdown automata can be defined by final states or empty stack. Definition of pushdown
automata is shown in Def. 9

Definition 9 (Pushdown automata) A pushdown automaton is a 7-tuple

M = (Q, q0, A,Γ, z0,∆, F )

where

Q:finite set of states

q0 ∈ Q: initial state

A: finite set of alphabets

Γ: finite set of stack symbols

z0 ∈ Γ: initial symbol of stack

∆ ⊆ (Q× (A ∪ {ϵ})× Γ)× (Q× Γ∗): set of transitions

F ⊆ Q: finite set of final states.

2.5.2 Pushdown Systems

The definition of pushdown systems is given in Def. 10. It should be noticed that in a
transition rule (p, γ) ↪→ (p′, w) ∈ ∆, w does not represent the stack contents but only the
word that replaces the head stack symbol γ, i.e., the topmost symbol in the stack, after
the transition is fired.

Definition 10 (Pushdown System) A pushdown system is a tuple

P = (Q, q0,Γ,∆, z0)

where

Q: finite set of states.
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q0 ∈ Q: initial state.

Γ: finite set of stack symbols.

z0 ∈ Γ initial stack symbol.

∆ ⊆ (Q× Γ)× (Q× Γ∗) finite set of transition rules.

A configuration of P is denoted by a pair ⟨p, w⟩ where p ∈ P and w ∈ Γ∗. The set of
all configurations of P is denoted by Conf(P).

2.5.3 MOPED Model Checker

Since the stack is unbounded so the set of stack contents as well as the set of configurations
are infinite. In order to apply model checking algorithms, first a pushdown system has
to be transformed into a finite automaton called P-automaton. Then model checking
techniques and algorithms can be applied on P-automaton. Based on the theories and
algorithms, a model checker called MOPED for model checking pushdown systems is
developed [14]. MOPED accepts two kind of inputs: (1) a directed encoded pushdown
system; (2) boolean programs. Boolean programs are abstracted programs that can be
abstracted from programs or built by developers. When the input is a boolean program,
MOPED reads the boolean program and generate a pushdown system to perform model
checking. In the case using a directly encoded pushdown system as input, pushdown
model checking in MOPED basically searches for reachability of states or head stack
symbols. Therefore the set of atomic propositions includes all states and stack symbols.
Thus, we can build LTL formulas using states and stack symbols and logical connectors
to express properties to be checked by MOPED.

Now A simple example of sequential programs from work [14] is demonstrated to show
the usage of MOPED with pushdown system input. The example is called “plotter”
consists of a group of simplified programs shown in Fig. 2.7. Generally, this example
demonstrates a group of programs controlling a plotter device which plots charts or graphs,
etc. on papers. The flow graph of plotter programs is shown in Fig. 2.8. It should be
noticed that m() is a recursive function which calls itself. Therefore, model of finite state
machines can not express the recursion and model of pushdown systems is introduced since
the stack in a pushdown system can express the unbounded levels of recursions. According
to the flow graph shown in Fig. 2.8, we may build a pushdown system P = (Q, q0,Γ,∆, z0)
for the plotter example as follows:

Q = {q0}

Γ = { m0, m1, m2, m3, m4, m5, m6, m7, m8,
s0, s1, s2, s3, s4, s5,
main0, main1,
up0, right0, down0 }

∆ = { (q0,m0) ↪→ (q0,m3), (q0,m0) ↪→ (q0,m7),
(q0,m3) ↪→ (q0, s0m4), (q0,m4) ↪→ (q0, right0m5),
(q0,m5) ↪→ (q0,m1), (q0,m5) ↪→ (q0,m6),
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1 void m() {

2 if (?) {

3 s(); right();

4 if (?) m();

5 } else {

6 up(); m(); down();

7 }

8 }

9

10 void s() {

11 if (?) return;

12 up(); m(); down();

13 }

14

15 void up() {

16 return;

17 }

18

19 void right() {

20 return;

21 }

22

23 void down() {

24 return;

25 }

26

27 main {

28 s();

29 }

Figure 2.7: The plotter example: programs

(q0,m6) ↪→ (q0,m0m1), (q0,m7) ↪→ (q0, up0m8),
(q0,m8) ↪→ (q0,m0m2), (q0,m2) ↪→ (q0, down0m1),
(q0,m1) ↪→ (q0, ϵ),
(q0, s0) ↪→ (q0, s2), (q0, s0) ↪→ (q0, s3),
(q0, s2) ↪→ (q0, up0s4), (q0, s3) ↪→ (q0, ϵ),
(q0, s4) ↪→ (q0,m0s5), (q0, s5) ↪→ (q0, down0s1),
(q0, s1) ↪→ (q0, ϵ),
(q0,main0) ↪→ (q0, s0main1), (q0,main1) ↪→ (q0, ϵ),
(q0, up0) ↪→ (q0, ϵ), (q0, down0) ↪→ (q0, ϵ), (q0, right0) ↪→ (q0, ϵ) }

Note that stack symbols can be mapped with the index numbers to states in flow
graph shown in Fig. 2.8. For example, main0 is the state marked in number 0 in the flow
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Figure 2.8: The plotter example: flow graph

graph of main(). The above pushdown system of plotter can be encoded as the input
pushdown system of pushdown model checker MOPED shown in Fig. 2.9. The input
pushdown system specifies first the initial configuration, i.e., initial state with stack start
symbol, then the transition rules. It is easy to recognize that transition rules in ∆ are
intuitively encoded in the input pushdown system.

Now we can do some model checking. The execution of MOPED is in command line
environment and the command to execute MOPED is in the form of

$ moped option filename property

The part option specifies whether printout trace of counterexample and other setting
such as using specific algorithms. The part filename is the input pushdown system. The
last part property is the property going to be checked. A property is represented as a
LTL formula consists states and stack symbols which connected by logic connectors and
temporal operators. For example, we may execute

$ mopde plot.pds ’[](up0 -> (!down0 U up0 || right0))’

The filename plot.pds is the input file of this plotter example. In this check, the LTL
property [](up0 -> (!down0 U up0 || right0)) means for the plotter, an upwards
movement is never immediately followed by a downward movement. Note that the atomic
propositions in this LTL formula are stack symbols of the pushdown system. For example,
the atomic proposition up0 means the occurrence of stack symbol up0 in the pushdown
system, i.e., a configuration whose stack head is up0 is reached. This LTL property for
the plotter pushdown system is true so MOPED returns the result as follows:
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1 # Plotter example

2

3 (q <main0>)

4

5 # procedure m

6 q <m0> --> q <m3>

7 q <m0> --> q <m7>

8 q <m3> --> q <s0 m4>

9 q <m4> --> q <right0 m5>

10 q <m5> --> q <m1>

11 q <m5> --> q <m6>

12 q <m6> --> q <m0 m1>

13 q <m7> --> q <up0 m8>

14 q <m8> --> q <m0 m2>

15 q <m2> --> q <down0 m1>

16 q <m1> --> q <>

17

18 # procedure s

19 q <s0> --> q <s2>

20 q <s0> --> q <s3>

21 q <s2> --> q <up0 s4>

22 q <s3> --> q <>

23 q <s4> --> q <m0 s5>

24 q <s5> --> q <down0 s1>

25 q <s1> --> q <>

26

27 # procedure main

28 q <main0> --> q <s0 main1>

29 q <main1> --> q <>

30

31 # procedures up, down, right

32 q <up0> --> q <>

33 q <down0> --> q <>

34 q <right0> --> q <>

Figure 2.9: The plotter example: pushdown system
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NO.

--- START ---

q <main0>

q <s0 main1>

--- LOOP ---

q <s2 main1>

q <up0 s4 main1>

q <s4 main1>

q <m0 s5 main1>

q <m3 s5 main1>

q <s0 m4 s5 main1>

Figure 2.10: The plotter example: counterexample

YES

Also, we may try another check for the termination of the plotter programs, i.e.,
whether stack symbol main1 is reachable. We may write a LTL formula <>main1 to see
if the plotter programs always terminates and execute

$ mopde plot.pds ’<>main1’

and get the negative answer NO. We may also want to see the counterexample so we
can execute with the option -t to ask MOPED to output the trace of counterexample.

$ mopde -t plot.pds ’<>main1’

We can get both the negative answer and a counterexample shown in Fig. 2.10. The
counterexample is a trace with two parts: START and LOOP. By checking the counterex-
ample, we may understand that the plotter programs may not terminate. It should be
noticed that the configuration at the end of LOOP seems not consist with the first con-
figuration of LOOP. To figure this out, we might confirm that the head symbol of the
configuration right before LOOP is the same as the head symbol of the configuration at
the end of LOOP. Then we may realize that the trace is the execution of the plotter
programs so this trace indeed shows a never ending execution of plotter programs.
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Chapter 3

Formal Definitions

This chapter introduces formal definitions of components and adaptors. In this work, ex-
isting models are modified for adaptation in the approach. Components are represented
by Interface Automata for Adaptation (IA4AD) modified from Interface Automata. Adap-
tors are represented by Interface Pushdown Systems modified from pushdown systems. In
this chapter, first a motivational example is given for demonstration of a typical non-
regular adaptation problem. The motivational example will be used to explain details of
formal definition including the modifications and the derivative definitions.

3.1 Motivational Example

During the survey of verification of services, we found an interesting example called “Fresh
Market Update Service” in the work by X. Fu et al. [15]. The example is shown in Fig. 3.1
and descriptions of the example is in Example 4. We call this example FMUS service in
short from now on. Detailed descriptions of SMUS service is shown in Example 4

Example 4 (FMUS service) In the system shown in Fig. 3.1, there are three services
in FMUS service. Online Stock Broker is supposed to send a list of RawData to Research
Department for further analysis. Investor waits for the analyzed data Data from Re-
search Department. It should be pay attention how Research Department processes the
data analysis: once Research Department receives a RawData from Online Stock Broker,
the raw data is processed and corresponding analyzed data Data is immediately sent out to
Investor. When all RawData in the list are sent, Online Stock Broker will send EndOfData

to Research Department to set the end of data transmission. Then Online Stock Broker

will send Start to Investor as a signal telling Investor to start receiving analyzed data
from Research Department. Similarly, Research Department sends Complete to inform
Investor the finish of sending analyzed data. Finally, Investor confirms all analyzed data
are received and sends Ack as acknowledgment. Therefore, current round of data process-
ing is finished and the next round is ready to be started.

In FMUS service, it should be noticed that each message is prefixed a special symbol “!”
or “?” to indicate whether the transition represents a message sending or receiving. If we
are going to synchronize the three services using synchronous composition, we encounter
a problem that Investor enforces that Start has to be first received before any Data can
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Online Stock Broker Research Department

?RawData

?RawData!Complete
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?EndOfData

?Data

?Complete

?Data

!Ack

Investor

!Data

Figure 3.1: Fresh Market Update Service

be received. Thus, a behavioral mismatch caused by protocols of services is encountered
in FMUS service.

We may try to apply the conventional framework of adaptation introduced in Sec-
tion 2.2 to solve the behavioral mismatch in FMUS service. First three LTS correspond-
ing to the three service is built and described in Example 5. Then we may design the
adaptation contracts for the FMUS service. The adaptation contracts is constructed in
Example 6. For the FMUS service, vectors are simple since there is no signature mismatch
so we just write down pairs for all messages and make sure special symbols representing
sending and receiving are correctly mapped in every pair. The vector LTS is designed to
behave like the ω-regular language (R∗ESD∗CA)ω where the capitals stand for the first
alphabets of messages and represent corresponding vectors. For example, R represents
VRawData, and so on. By the LTSs and the adaptor contracts, the approach by C. Canal
et al. can compute and generate an adaptor for us. The generated adaptor is shown in
Fig. 3.3. It is easy to recognize the language expressed by the adaptor is (?R !R ?R∗

?E ?S !S ?D !D (!R ?D !D)∗ !E ?C !C ?A !A)ω

Example 5 (LTSs in FMUS service) Three LTSs can be built corresponding to the
three services in FMUS service shown in Fig. 3.1:

Online Stock Broker:
P1 = (A1, S1, I1, F1, T1) where

A1 = { !RawData, !EndOfData, !Start, ?Ack }.
S1 = { s0, s1, s2, s3 }.
I1 = s0.

F1 = { s0 }.
T1 = { (s0, !RawData, s1), (s1, !RawData, s1), (s1, !EndOfData, s2),

(s2, !Start, s3), (s3, ?Ack, s0) }.
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Research Department:
P2 = (A2, S2, I2, F2, T2) where

A2 = { ?RawData, !Data, ?EndOfData, !Complete }.
S2 = { s0, s1, s2, s3, s4 }.
I2 = s0.

F2 = { s0 }.
T2 = { (s0, ?RawData, s1), (s1, !Data, s2), (s2, ?RawData, s3),

(s3, !Data, s2), (s2, ?EndOfData, s4), (s4, !Complete, s0) }.

Online Stock Broker:
P3 = (A3, S3, I3, F3, T3) where

A1 = { ?Start, ?Data, ?Complete, !Ack }.
S1 = { s0, s1, s2, s3 }.
I1 = s0.

F1 = { s0 }.
T1 = { (s0, ?Start, s1), (s1, ?Data, s2), (s2, ?Data, s2),

(s2, ?Complete, s3), (s3, !Ack, s0) }.

Example 6 For the FMUS service shown in Fig. 3.1 with behavior interfaces of the three
services represented in LTSs shown in Example 5, adaptation contracts are designed as
follows:

Vectors:

VRawData = ⟨P1 : !RawData, P2 : ?RawData⟩
VData = ⟨P2 : !Data, P3 : ?Data⟩
VEndOfData = ⟨P1 : !EndOfData, P2 : ?EndOfData⟩
VComplete = ⟨P2 : !Complete, P3 : ?Complete⟩
VStart = ⟨P1 : !Start, P3 : ?Start⟩
VAck = ⟨P3 : !Ack, P1 : ?Ack⟩

Vector LTS:

See Fig. 3.2

Recall the problems of conventional framework of adaptation mentioned in Section 1.3,
we now give more concrete discussions using the FMUS service example.

• Non-regular Adaptation:
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Figure 3.2: Vector LTS for FMUS service
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Figure 3.3: adaptor (LTS) for FMUS service

27



The generated adaptor shown in Fig. 3.3 seems quite appropriate and correctly
reflects the structures of the three behavior interfaces of services. However, with
carefully checking the behavior of the three services described in Fig. 3.1, the behav-
ior of generated adaptor is not exactly the behavior the system is looking for. Note
that in the description of functionalities of FMUS service in Section 3.1, Research
Department does data analysis in the following fashion: for every RawData received,
corresponding Data is generated and sent out to Investor. Therefore, numbers of
RawData and Data must be the same so that all data in the list of raw data received
from Online Stock Broker is analyzed and sent out to Investor. Thus, the FMUS
service actually expects an adaptor which expresses non-regular ω-languages such
as (?R !R ?D)n ?E !E ?S !S !Dn ?C !C ?A !A)ω, n > 1. Note that the natural
number n in the language is the key factor that makes the behavior of expected
adaptor non-regular. We may call the adaptor with non-regular behavior the ex-
pected adaptor and the adaptor shown in Fig. 3.3 the LTS adaptor for convenience.
The LTS adaptor expressing the regular ω-language (?R !R ?R∗ ?E ?S !S ?D !D
(!R ?D !D)∗ !E ?C !C ?A !A)ω does not maintain the numbers of RawData and Data

in its behavior. This is the limitation of LTS and all other finite state machines.
Thus, another model that supports non-regular behavior like the expected adaptor
is necessary for solving the behavioral mismatch in FMUS service. This gives us
another motivation in this work: select and use a model that expresses non-regular
languages suitable for representing adaptors. We need to investigate elements that
characterize the non-regular behavior in adaptors.

• Problems of Adaptation Contracts:

Despite the computation of automated adaptor generation, the most valuable task in
doing adaptation for the FMUS service is the design of adaptor contracts, especially
the vector LTS shown in Fig. 3.2. It is reasonable to consider that the correctness
of a generated adaptor mostly count on the design of adaptation contracts. How-
ever, designing adaptation contracts requires a thorough understanding for all given
components. The understanding is required to include behavior and functionali-
ties of each separate component and the synchronous composition of components.
When dealing with large scale systems, manually designing adaptation contracts is
nearly impossible especially in the case of solving reordering behavior mismatch like
the FMUS service. If we can force the behavior interfaces of components reveals
necessary consideration of adaptation contracts, especially behavior of an adaptor,
we might be able to generate adaptors directly from behavior interfaces of compo-
nents. Therefore adaptation contracts is no longer needed in adaptation and fully
automatic adaptor generation is possible.

It should be noticed that above discussions are not independent issues. The model
we use to represent an adaptor, the way we generate an adaptor, and the way we specify
behavior interfaces of components are all coupled together.

3.2 Model of Components

As mentioned in Section 3.1, models of components and adaptors are closely coupled.
Thus, selection of the model of components should consider about what model of adaptors
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Figure 3.4: FMUS service: the expected adaptor

we want, and vice versa. For convenience of discussing considerations about selection of
models of components and adaptors, we may give some assumptions of the model of
adaptors and then discuss the model of components. Lets take a look again on the
behavior of the expected adaptor (?R !R ?D)n ?E !E ?S !S !Dn ?C !C ?A !A)ω, n > 1
mentioned in Section 3.1. Though we will define the model of adaptors as Interface
Pushdown Systems in the Section 3.3 later, we may say here that the model suitable
for expressing this behavior is pushdown automata model. Thus, we can still catch the
ideas of the model of components in the approach and leave the detailed discussions
about the model of adaptors in Section 3.3 later. Since the objective is to generate an
adaptor which behaves like the expected adaptor, we try to build a pushdown automaton
for expressing the behavior of the expected adaptor. We may assume the three services
in FMUS services are defined in LTS following the conventional framework, then build
a pushdown automaton shown in Fig. 3.4. For convenience, labels on transitions are
demonstrated by sending and receiving of messages using special symbols “?” and “!”
as prefix. The detailed definition of the pushdown automaton of the expected adaptor
is shown in Example 7. This definition as an pushdown automaton can be considered
as a first tempt of formalization non-regular adaptors using the expected adaptor as an
example. The key part is how to encode message receptions and deliveries in an adaptor in
to transitions involving operations of pushing an popping stack symbols. It is intuitive to
connect receiving a message with pushing a symbol into the stack and similarly delivering
a message with popping a symbol at the head of the stack. Therefore, in Example 7, the
alphabets are not prefixed with special symbols and the sending and receiving of messages
are defined as pushing and popping stack symbols.

Example 7 (Expected Adaptor of FMUS service) The expected adaptor with be-
havior

(?R !R ?D)n ?E !E ?S !S !Dn ?C !C ?A !A)ω, n > 1

is defined as a pushdown automaton

Dexpected = (Q, q0, A,Γ, z0,∆, F )
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where

Q = { q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12, q13 }.

q0 = q0.

A = { RawData, Data, EndOfData, Complete, Start, Ack }.

Γ = A ∪ { z }.

z ∈ Γ is initial symbol of stack.

∆ = { (q0, RawData, ϵ) ↪→ (q1, RawData),
(q1, RawData, RawData) ↪→ (q2, ϵ),
(q2, Data, ϵ) ↪→ (q3, Data),
(q3, RawData, ϵ) ↪→ (q4, RawData),
(q5, RawData, RawData) ↪→ (q5, ϵ),
(q5, Data, ϵ) ↪→ (q3, Data),
(q3, EndOfData, ϵ) ↪→ (q6, EndOfData),
(q6, EndOfData, EndOfData) ↪→ (q7, ϵ),
(q7, Start, ϵ) ↪→ (q8, Start),
(q8, Start, Start) ↪→ (q9, ϵ),
(q9, Data, Data) ↪→ (q10, ϵ),
(q10, Data, Data) ↪→ (q10, ϵ),
(q10, Complete, ϵ) ↪→ (q11, Complete),
(q11, Complete, Complete) ↪→ (q12, ϵ),
(q12, Ack, ϵ) ↪→ (q13, Ack),
(q13, Ack, Ack) ↪→ (q0, ϵ) }

F = { s0 }.

However, using this way of definition may cause a serious issue: the defined pushdown
model in Example 7 does not exactly express the behavior of the expected adaptor. This
issue is related to unbound messages which are sending and receiving arbitrary multiple
times. Comparing the behavior of the expected adaptor with the pushdown automaton we
built, we may find that the arbitrary natural number n is defined as loop transitions in the
pushdown automaton. Therefore, n is not explicitly expressed but implicitly constrained
by the stack. Generally with the help of the stack, all pushed symbols are supposed
being popped out later so that n should be promised. Unfortunately, the structure of the
pushdown automaton that define the initial and the final states as same state leads to
unexpected behavior such as

((?R !R ?D)3 ?E !E ?S !S !D2 ?C !C ?A !A

(?R !R ?D)2 ?E !E ?S !S !D3 ?C !C ?A !A))ω

The numbers 3 and 2 shown in the above behavior should be carefully recognized. In this
behavior, one Data is kept in the stack while the three services proceed to next execution.
In the second execution, the Data kept in the first execution is popped out so that the
stack is empty at the end of the second execution. This results that two executions of the
system makes one “execution” of the above behavior. Furthermore, the above behavior is
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Figure 3.5: Sessional Fresh Market Update Service

only one of many variations that use multiple executions of the system as one “execution”
in adaptors. This is not acceptable since in the system of FMUS service, all RawData and
Data sent have to be consumed by their target services at the end of one execution.
Though this is not explicitly specified, we should make the end of execution explicitly
clear to avoid unexpected behavior like the above behavior.

Therefore, we demand that all components have to define their end of execution explic-
itly clear. The end of execution of a component means the point where the achievement
of its functionalities is done. In this work, a component is not allowed to define its initial
state and final state as same state. The initial and final states should be defined separately
in different states so that the end of execution of a component can be easily recognized.
According to this requirement, the behavior of the expected adaptor now becomes

(?R !R ?D)n ?E !E ?S !S !Dn ?C !C ?A !A), n > 1

where the ω is removed. The three services in the FMUS service should also make clear
their end of execution and are re-specified as shown in Fig. 3.5. We may call components
having initial and final states distinctly without re-start from the final state components
as one session process. It should be noted that though a component is defined having
only one final state, the execution is looped in implementation. This means when the final
state of a component is reached, the current state is expected to be shifted to the initial
state for the next execution to be proceeded. Now we may call the FMUS service shown
in Fig. 3.5 sessional FMUS service for references in the rest of this thesis. Similarly, we
use the behavior of the expected sessional adaptor to distinguish from the first one with
ω.

Now we start to give formal definitions of the model of components. As already
mentioned in Section 1.4, the model of components in this work is modified from the
definition of Interface Automata. The reason of using Interface Automata instead of
using usual automata model is described as follows:
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• Interface Automaton introduce the notations for input, output, and internal alpha-
bets. This explicitly expresses the feature of communicating services/components.
Compare to LTS model in conventional framework that only applies special sym-
bols as prefixes, the use of input/output notations in Interface Automata makes
it easier in defining interactions of services/components. We argue that the syn-
chronous product in the conventional framework defined in Def. 2 is not easy to be
understand because there are too many additional symbols used in the definition
where not explicitly defined in definition of LTS model. On the other hand, the
definition of synchronous product of Interface Automata defined in Def. 7 can be
easily understand without additional explanation.

• Furthermore, Interface Automata provide definition of compatibility in Def. 6 that
makes clear constraints of composing Interface Automata. Since automated adaptor
generation is one of the main objectives in this work and there are some constraints
needed for this objective, we may adopt the constraints in Interface Automata to fit
the constraints needed in this work. Therefore, we argue that Interface Automata
model is better than LTS model.

We call the model of components in this work “Interface Automata for Adaptation”
which is written as IA4AD in short and defined in Def. 11. To keep the generality of
Interface Automata, the definition keeps internal alphabets to allow internal transitions
which does no communication. This also makes it intuitive and easy to apply on models
expressed using process algebra. Furthermore, in some cases, there may be needs of
expressing indeterministic behavior where using internal transitions may help.

Definition 11 (IA4AD) An interface automaton for component is defined as

P = (Q, q0, AI , AO, AH ,∆, qf )

where

Q: finite set of states.

q0 ∈ Q: initial state.

AI : finite set of input alphabets.

AO: finite set of output alphabets.

AH : finite set of internal alphabets.

∆ ⊆ Q× A×Q: set of transition relations,
where A = AI ∪ AO ∪ AH

qf ∈ Qi: final state.

An IA4AD has to satisfy the following conditions:

q0 ̸= qf

̸ ∃t ∈ ∆, t = (q, a, q′), q, q′ ∈ Q, q = qf ∨ q′ = q0

∀a ∈ A. ∃t ∈ ∆, t = (q, a, q′), q, q′ ∈ Q
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Note that IA4AD has q0 and qf representing start and end of a component while in
original Interface Automata there is only initial state but no final/accepting state. Recall
the considerations mentioned in Section 3.1, we put the idea of component as one session
process into the definition of model of components as constraints for adaptation. The
constraint that the start and end state of a component are required to be different states
to make it clear where a component starts and ends. Let L(P ) is the set of traces start
from q0 and end at qf , we can define runs and acceptance runs of IA4AD in Def. 12 and
Def. 13. According to the two definitions, the acceptance condition of an IA4AD is the
reachability of its final state qf .

Definition 12 (Runs of IA4AD) A finite trace σ = s0s1s2 . . . sk is a run of an IA4AD
P = (Q, q0, AI , AO, AH ,∆, qf ) if s0 = q0 and ∀i ∈ [1, k − 1]. ∃δ ∈ ∆, δ = (si, a, si+1),
a ∈ A.

Definition 13 (Accepting Runs of IA4AD) A run σ = s0s1s2 . . . sk of an IA4AD
P = (Q, q0, AI , AO, AH ,∆, qf ) is an accepting run if sk = qf .

Now we can define the three web services in the sessional FMUS service shown in
Fig. 3.5. The three services of the sessional FMUS service are defined using IA4AD in
Example 8. Note that prefixes in labels of transition relations are not necessary and only
for convenience of recognition.

Example 8 (IA4ADs in FMUS service) Three IA4ADs can be built corresponding to
the three services in sessional FMUS service shown in Fig. 3.5:

Online Stock Broker:
P1 = ( Q1, q01, AI

1, AO
1 , AH

1 , ∆1, qf1 ) where

– Q1 = { q01, q11, q21, q31, q41}.
– q01 = q01.

– AI
1 = { Ack }.

– AO
1 = { RawData, EndOfData, Start }.

– AH
1 = ∅.

– qf1 = q41.

– ∆1 = { (q01, !RawData, q11), (q11, !RawData, q11),
(q11, !EndOfData, q21), (q21, !Start, q31),
(q31, ?Ack, q41) }.

Research Department:
P2 = ( Q2, q02, AI

2, AO
2 , AH

2 , ∆2, qf2 ) where

– Q2 = { q02, q12, q22, q32, q42, q52}.
– q02 = q02.

– AI
2 = { RawData, EndOfData }.
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– AO
2 = { Data, Complete }.

– AH
2 = ∅.

– qf2 = s52.

– ∆2 = { (q02, ?RawData, q12), (q12, !Data, q22), (q22, ?RawData, q32),
(q32, !Data, q22), (q22, ?EndOfData, q42), (q42, !Complete, q52) }.

Online Stock Broker:
P3 = ( Q3, q03, AI

3, AO
3 , AH

3 , ∆3, qf3 ) where

– Q3 = { q03, q13, q23, q33, q43}.
– q03 = q03.

– AI
3 = { Start, Data, Complete }.

– AO
3 = { Ack }.

– AH
3 = ∅.

– qf3 = q41.

– ∆3 = { (q03, ?Start, q13), (q13, ?Data, q23), (q23, ?Data, q23),
(q23, ?Complete, q33), (q33, !Ack, q43) }.

Since the purpose in the approach is composition of components, we also need require-
ments on set of components. For a given set of components represented by IA4ADs, it
is required that for every alphabet in the set of input/output alphabets of an IA4AD,
there must be at least one transition whose label is the alphabet. This is to make sure
that all input/output alphabets are supposed to be synchronized with transitions in other
components. This is intuitive because when signatures of sending or receiving of a mes-
sages is specified in behavior interfaces of components, the message is expected to be
synchronized in the composition with other components. Furthermore, this consistency
between alphabets and transition labels is also essential for adaptation generation in our
approach since the alphabets in an adaptor is supposed to be the union of all alphabets
of all services. Thus, we need to define a condition for a set of IA4ADs to be composed.
This is called compatibility in the approach. Recall that there is already the condition of
compatibility defined in Def. 6 of Section 2.3 which considers two Interface Automata.
Since the purpose of our approach is to compute composition of a set of components,
we would like to consider the compatibility for all components. Therefore, we adopted
the definition of compatibility of Interface Automata and define our own definition of
compatibility shown in Def. 14. Generally speaking, our compatibility requires that for
all output alphabets, there are corresponding input alphabets so that every output tran-
sition can synchronize with a corresponding input transition. More specifically, first, in a
component, the input and output alphabets are not allowed to have common alphabets.
Second, every input alphabet of a component is distinguishable from other input alphabets
of other components. The same condition for output alphabets is required too. Finally,
union of all input alphabets of components is equal to the union of all output alphabets
of components. Thus, the system of components defined in the approach should form a
closed system so that all messages are potentially exchangeable through synchronization
of components.
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Definition 14 (Compatibility of IA4AD) A set of interface automata for web ser-
vices Pi = (Qi, q

0
i , A

I
i , A

O
i , A

H
i ,∆i, q

f
i ) ,i ∈ [1, n], are composable if

AI
i ∩ AO

i = ∅
AI

i ∩ AI
j = ∅, i ̸= j

AO
i ∩ AO

i = ∅, i ̸= j∪
iA

I
i =

∪
iA

O
i∪

iA
H
i ∩

∪
i A

I
i = ∅

The definition of composition of IA4AD is given in Def. 15. In this work, we only con-
cern about the result of composition of all participating services. Thus, the synchronous
composition in this work is defined as directly composing all services. Therefore, the
result IA4AD should have only internal transitions so there is no need of defining illegal
states. Instead, we should check if there is any deadlock state to see whether behavioral
mismatches exist or not.

Definition 15 (Synchronous composition of IA4AD) Synchronous composition of
a set of composable IA4AD Pi = (Qi, q

0
i , A

I
i , A

O
i , A

H
i ,∆i, q

f
i ), i ∈ [1, n] is an IA4AD:

ΠiPi = (Q, q0, AI , AO, AH ,∆, qf )

where

Q = Q1 × . . .×Qi × . . .×Qn: finite set of states.

q0 = (q01, . . . , q0i , . . . , q0n): initial state.

AI = AO = ∅.
AI =

∪
iAi: finite set of alphabets.

∆ ⊆ Q× A×Q: set of transition relations defined in fig 3.6.

qf = (qf1 , . . . , qfi , . . . , qfn): accepting state.

Example 9 For the three services in the sessional FMUS service defined in Example 8,
the synchronous composition of the three services is an IA4AD

P1∥P2∥P3 = (Q, q0, AI , AO, AH ,∆, qf )

Q = {q01, q11, q21, q31, q41} × {q02, q12, q22, q32, q42, q52} × {q03, q13, q23, q33, q43}

q0 = (q01, q02, q03)

AI = AO = ∅.

AH = {RawData, EndOfData, Start,Data, Complete, Ack}
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∆ = {
{((q1, . . . , qi, . . . , qj, . . . , qn), a, (q1, . . . , q′i, . . . , q′j, . . . , qn)) |
(q1, . . . , qi, . . . , qj, . . . , qn), (q1, . . . , q

′
i, . . . , q

′
j, . . . , qn) ∈ Q ∧

(qi, a, q
′
i) ∈ ∆i ∧ (qj, a, q

′
j) ∈ ∆j ∧

(a ∈ AI
i ∧ a ∈ AO

j ) ∨ (a ∈ AO
i ∧ a ∈ AI

j)}
∪
{((q1, . . . , qi, . . . , qn), a, (q1, . . . , q′i, . . . , qn)) |
(q1, . . . , qi, . . . , qn), (q1, . . . , q

′
i, . . . , qn) ∈ Q ∧

(qi, a, q
′
i) ∈ ∆i ∧ a ∈ AH

i }
}

Figure 3.6: Definition of transition relations in Def. 15

∆ = { ( (q01, q02, qk3), RawData, (q11, q12, qk3) ) }
{ ( (q11, q02, qk3), RawData, (q11, q12, qk3) ) }
{ ( (q01, q22, qk3), RawData, (q11, q32, qk3) ) }
{ ( (q11, q22, qk3), RawData, (q11, q32, qk3) ) }
{ ( (q11, q22, qk3), EndOfData, (q21, q42, qk3) ) }
{ ( (q21, qk2, q03), Start, (q31, qk2, q13) ) }
{ ( (q31, qk2, q33), Ack, (q41, qk2, q43) ) }
{ ( (qk1, q12, q13), Data, (qk1, q22, q23) ) }
{ ( (qk1, q12, q23), Data, (qk1, q22, q23) ) }
{ ( (qk1, q32, q13), Data, (qk1, q22, q23) ) }
{ ( (qk1, q32, q23), Data, (qk1, q22, q23) ) }
{ ( (qk1, q42, q23), Complete, (qk1, q52, q33) ) }

qf = (q41, q52, q43)

To demonstrate transition relations concisely and keep them easily to be understood,
we use the arbitrary index k to group transition relations with all indexes of states of
corresponding component in the composite state. For example, in transition relation
( (q01, q02, qk3), RawData, (q11, q12, qk3) ), qk3 in the composite state (q01, q02, qk3) refer
to a group of states:

(q01, q02, q03), (q01, q02, q13), (q01, q02, q23), (q01, q02, q33), (q01, q02, q43)

Therefore, transition relation ( (q01, q02, qk3), RawData, (q11, q12, qk3) ) expresses a
group of transition relations:

( (q01, q02, q03), RawData, (q11, q12, q03) ),
( (q01, q02, q13), RawData, (q11, q12, q13) ),
( (q01, q02, q23), RawData, (q11, q12, q23) ),
( (q01, q02, q33), RawData, (q11, q12, q33) ),
( (q01, q02, q43), RawData, (q11, q12, q43) )
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One may notice that in a grouped transition relation, the arbitrary index k is expressing
the state of the component which does not participate in synchronization.

3.3 Model of Adaptors

In this section, the formal definition of the model for adaptors is introduced. Basically,
the model is modified from pushdown systems with considerations of adaptor generation
with non-regular behavior. We follow the discussions in Section 3.1 and the definitions
of the model of components in Section 3.2 for giving definitions of the model of adaptors
in the approach. Remember now the objective is to generate an adaptor behaving like
the expected sessional adaptor mentioned in Section 3.2 for the sessional FMUS service
shown in Fig. 3.5.

Again, by examining the behavior of expected sessional adaptor (?R !R ?D)n ?E !E
?S !S !Dn ?C !C ?A !A), n > 1 mentioned in Section 3.2, and take consideration about
general cases, we should be able to find out characteristics which are essential to non-
regular behavior of the expected sessional adaptor. Discussions about the observations
are given as follows:

• It is easy to recognize that for every message, it comes first the reception of the mes-
sage and later the delivery of the same message. For example, messages EndOfData,
Start, Complete, and Ack appear in the behavior of the expected adaptor first be-
ing received and then being sent right after reception. In FMUS service, the four
messages only show once in interactions so that they are only received and delivered
by the adaptor once. Now we may check the rest two messages RawData and Data

which appear in the behavior of the expected adaptor n times. Still, it is easy to
figure out RawData and Data also appear first being received and later being sent
by the expected adaptor. Furthermore, the number of appearance of RawData and
Data as being received and being sent are the same. Thus, we can conclude our ob-
servation about the receiving and delivery in the behavior of the expected adaptor:
(1) a messages is first being received and later being delivered by an adaptor; (2)
the numbers of reception and delivery of a message are the same in the behavior of
an adaptor.

• It is easy to confirm that in the behavior of the expected adaptor, all messages
appeared are messages from the three services in FMUS service. This means that the
expected adaptor should not create new messages. Furthermore, by examining one
“round” of execution in the behavior of the expected adaptor, all messages appeared
complete being received and delivered when the end of the round is reached. The
number of completing being received and delivered is the same with the number
of appearance. Thus, we can conclude that (1) an adaptor should not create new
messages; (2) behavior of an adaptor must send all received messages when finishing
a round of execution.

Thus, according to above observations, we give the following requirements for the
model of adaptors:

(1) An adaptor does not generate any message by itself.
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(2) An adaptor only receives messages sent from services.

(3) An adaptor only sends previously received messages.

(4) An adaptor is expected to send all received messages eventually.

From above requirements, pushdown automata model should be a good choice since
the stack can satisfy these requirements. More specifically, we give some discussions about
reasons of choosing pushdown automata model and finally leads to definition of the model
of adaptors in the approach.

• The requirements (3) and (4) are asking for models having memory capacity. Con-
sidering behavioral mismatches with reordering of messages, a stack that works in
the fashion of First-In-Last-Out (FILO) is better than a queue that works in the
fashion of First-In-First-Out (FIFO). It is easy to understand that queues can not
do reordering of messages. One may argue why not using more complex models such
as extended automata with multiple queues, or even Tuning machines. However,
more complexities lead to more difficulties in reasoning, analysis, and computation.
Thus, we prefer starting from simplest types of memories, i.e., a stack.

• The requirements (1), (2), and (4) show what kind of adaptor is suitable for adapta-
tion in service composition. This is effected by how we define service adaptation in
this work. As mentioned in Section 1.3, adaptor generation without designing adap-
tation contracts in advance is one of the objective of this work. Therefore, we have
to distinguish between parts that are able to be automated and parts that are not
in adaptation contracts. Since adaptation contracts consist two parts: synchronous
vectors and vector LTS, we may discuss the two cases concerning the vectors and
vector LTS respectively. Vectors are basically a group of messages that the de-
veloper want participating services to interact in one or more message exchanges.
In the situation that no signature mismatch exists, vectors are just pairs of mes-
sages consist of two messages of the same name except one with prefix “!” and the
other with prefix “?” therefore the design of vector LTS can be simple. Develop-
ers may just follow the structure of behavior interfaces and decide how to execute
all synchronizations of transitions and make sure that no deadlocks encountered.
Thus, adaptor generation can be automated while no signature mismatch exist in
the system of services. This means fully automated adaptor generation is possible
for pure behavioral mismatching services. On the other hand, when there are signa-
ture mismatches, criteria of deciding what messages are to be mapped together in
a synchronization have to take references of specifications other than just behavior
interfaces. These specifications, however, include semantic or ontological descrip-
tions in general so that manual decision is still necessary when only behavioral
interfaces are available. We may conclude that in order to perform fully automated
adaptor generation which is one of the objectives of this work, we assume a sys-
tem of services providing behavioral interfaces with no signature mismatch. Thus,
requirements (1) and (2) make sense since all messages are received and delivered
by an adaptor should not be modified. Also, requirement (4) gives a condition that
all received messages will and must be delivered by adaptors. This can be taken
as all expected functionalities of services are fulfilled through adaptation since all
messages sent are consumed with helps of an adaptor.
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• All the requirements given above do not ask an adaptor to have abilities other then
receiving messages and send received messages. Thus, it is easily to imagine an
adaptor being represented by a pushdown automata whose set of alphabets and
set of symbols are the same. We do not need to use general pushdown automata
model but use pushdown systems model since pushdown system do not have labels
but only stack symbols which simplified the model of adaptors. Furthermore, since
only transitions that push and pop messages into the stack matter in an adaptor, it
is easy to distinguish from push and pop transitions by only observing the changes
in stack head. This means pushdown systems model is sufficient for representing
adaptors in this work.

• The behavior of an adapted system of services and their adaptor with non-regular
behavior is also non-regular. Therefore, ordinary verification techniques are useless,
or model transformation as well as abstraction is required. By choosing pushdown
systems model as the model of adaptors, verification purpose can be easily satisfied
thanks for recently developed techniques of pushdown model checking mentioned in
Section 2.5. Choosing pushdown systems model gives the approach advantages on
both expressing non-regular behavior and model checking.

According to above discussions, we choose pushdown systems model as the model
of adaptors in the approach. To cooperate with components expressed by IA4ADs, a
modified pushdown system is used in the approach. We call the model of adaptors in
the approach Interface Pushdown System (IPS) which is defined in Def. 16. Generally, an
IPS is a pushdown system enhanced with notations of input and output alphabets from
Interface Automata. Note that in a transition rule (p, γ) ↪→ (p′, w), w does not represent
the contents of the stack but only the word that replaces the head symbol of stack γ
after transition is fired. Transitions of an IPS are restricted in three kinds: push, pop
and internal to follow the notations in Interface Automata. Push transitions represent
message reception and pop transitions represent message delivery. Internal transitions
does not related to message exchange with services and the stack head symbols remains
same after transitions are fired.

Definition 16 (Interface Pushdown System) An interface pushdown system is de-
fined as tuples:

S = (Q, q0,Γ, z, T, F )

where

Q: finite set of states.

q0: initial state.

Γ: finite set of stack symbols.

z: stack start symbol representing bottom of stack. z ∈ Γ.

T ⊆ (Q× Γ)× (Q× Γ∗): set of transition relations.

F : finite set of final states.

T is restricted to the following three patterns:

< p, γ >↪→< p′, aγ >: push transition,

39



< p, a >↪→< p′, ϵ >: pop transition,

< p, γ >↪→< p′, γ >: internal transition,

where a, γ ∈ Γ, a ̸= z.

Furthermore, considering an adaptor is supposed to interact with components repre-
sented by IA4ADs, we may add one constraint on an IPS defined in Def 16 for representing
an adaptor. Since the condition of compatibility of IA4ADs defined in Def 14 demands
that given components must form a closed system that all transitions labeled with output
alphabets are expected to be synchronized with transitions labeled with corresponding
input alphabets in different components. Recall that an adaptor does not generate mes-
sages, i.e., requirement (1), an IPS representing an adaptor should have its set of stack
symbols as the union of all alphabets of given components represented by IA4ADs.

Similar to IA4AD, runs and accepting runs can be defined as shown in Def. 17 and
Def. 18. Note that the accepting condition of accepting runs includes both the state is in
final state and the stack is empty, i.e., stack head symbols is the stack start symbol z.

Definition 17 (Runs of IPS) A finite trace σ = c0c1c2 . . . ck is a run of an IPS S =
(Q, q0,Γ, z, T, F ) if c0 = (q0, z) and ∀ci = (qi, wi), i ∈ [1, k−1], ∃ t ∈ T , t = (qi, wi(0)) ↪→
(qi+1, w), where wi+1 = ww′.

Definition 18 (Accepting Runs of IPS) A run σ = c0c1c2 . . . ck of an IPS S =
(Q, q0,Γ, z, T, F ) is an accepting run if ck = (q, z), q ∈ F .

It should be noticed that Interface Pushdown Systems model defined in Def. 16 is
pushdown systems model with constraints on transitions especially for communicating
with services represented in IA4ADs. However, additional constraints are necessary for
adaptors. Since the alphabets of an adaptor is the union of all alphabets of given services,
we may define an adaptor as an IPS with an additional constraint on its alphabets. As
shown in Def. 19, an adaptor is closely related to given services so that services represented
in IA4ADs are required in defining an adaptor. Furthermore, since it is not the adaptor
that decides the accepting state of an adapted system but the given services, all states are
considered as final states in an adaptor. Therefore, an adaptor only decides acceptance
by the accepting condition of empty stack.

Definition 19 (Adaptor as an IPS) Given a set of composable IA4ADs: Pi = (Qi, q
0
i ,

AI
i , A

O
i , A

H
i ,∆i, q

f
i ), i ∈ [1, n]. An adaptor for Pi, i ∈ [1, n] is an IPS:

D = (QD, q
0
D,Γ, z, TD, FD)

where ΓD = AD ∪ {z}, AD =
∪

iA
I
i =

∪
iA

O
i , and FD = QD.

In Example 10, the definition of expected sessional adaptor is demonstrated. Com-
paring to the pushdown automata definition demonstrated in Example 7, The definition
using IPS is more compact without loosing the expressing power on adaptors.
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Example 10 (Expected Sessional Adaptor as an IPS) The expected sessional
adaptor with behavior

(?R !R ?D)n ?E !E ?S !S !Dn ?C !C ?A !A), n > 1

of the three services defined in Example 8 is defined as an IPS

Dexpected = (QD, q
0
D,Γ, z, TD, FD)

where

• QD = { q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14 }.

• q0D = q0.

• Γ = { RawData, Data, EndOfData, Complete, Start, Ack } ∪ { z }.

• z ∈ Γ is initial symbol of stack.

• TD = { (q0, ϵ) ↪→ (q1, < RawData >),
(q1, RawData) ↪→ (q2, ϵ),
(q2, ϵ) ↪→ (q3, < Data >),
(q3, ϵ) ↪→ (q4, < RawData >),
(q5, RawData) ↪→ (q5, ϵ),
(q5, ϵ) ↪→ (q3, < Data >),
(q3, ϵ) ↪→ (q6, < EndOfData >),
(q6, EndOfData) ↪→ (q7, ϵ),
(q7, ϵ) ↪→ (q8, < Start >),
(q8, Start) ↪→ (q9, ϵ),
(q9, Data) ↪→ (q10, ϵ),
(q10, Data) ↪→ (q10, ϵ),
(q10, ϵ) ↪→ (q11, < Complete >),
(q11, Complete) ↪→ (q12, ϵ),
(q12, ϵ) ↪→ (q13, < Ack >),
(q13, Ack) ↪→ (q14, ϵ) }

• FD = QD.

Now we need to define the behavior of an adapted system which is the synchronous
composition of services with their adaptor. The definition of adapted synchronous com-
position is shown in Def. 20. The result of composition is also an IPS. As shown in
Fig. 3.7, the resulted transitions are synchronized in two cases: output transitions in ser-
vices are synchronized with push transitions in coordinator; input transitions in services
are synchronized with pop transitions in coordinator. For internal transitions in services,
coordinator remains same state and same stack content. Note that in the composition of
IA4ADs with IPS, the resulted IPS has transitions of pushing and popping stack symbols
which looks like receiving and sending messages. However, these transitions should not
be recognized as transitions for synchronization with services. These transitions should
be considered as only replacing stack symbols in the stack head. In Example 11, we show
the adapted composition of the three services in the sessional FMUS service represented
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T ′ = {
{((q1, . . . , qi, . . . , qn, qD), γ) ↪→ ((q1, . . . , q

′
i, . . . , qn, q

′
D), aγ) |

(q1, . . . , qi, . . . , qn, qD), (q1, . . . , q
′
i, . . . , qn, q

′
D) ∈ Q ∧

(qi, a, q
′
i) ∈ ∆i ∧ a ∈ AO

i ∧ (qD, γ) ↪→ (q′D, aγ) ∈ TD ∧ γ ∈ Γ}
∪
{((q1, . . . , qi, . . . , qn, qD), a) ↪→ ((q1, . . . , q

′
i, . . . , qn, q

′
D), ϵ) |

(q1, . . . , qi, . . . , qn, qD), (q1, . . . , q
′
i, . . . , qn, q

′
D) ∈ Q ∧

(qi, a, q
′
i) ∈ ∆i ∧ a ∈ AI

i ∧ (qD, a) ↪→ (q′D, ϵ) ∈ TD}
∪
{((q1, . . . , qi, . . . , qn, qD), a, (q1, . . . , q′i, . . . , qn, qD)) |
(q1, . . . , qi, . . . , qn, qD), (q1, . . . , q

′
i, . . . , qn, qD) ∈ Q ∧

(qi, a, q
′
i) ∈ ∆i ∧ a ∈ AH

i }
}

Figure 3.7: Definition of transition relations in Def. 20

in IA4ADs with the expected sessional adaptor we designed. We may compare the two
IPS: the expected sessional adaptor and the resulted of adapted synchronous composi-
tion. In the IPS of expected sessional adaptor, the transitions of pushing stack symbols,
i.e., receiving messages from services, does not have the stack head symbols specified in
the left side of arrow. On the other hand, in the transition of pushing stack symbols
in the resulted IPS, the stack head symbols to be replaced are all specified due to the
computation of adapted synchronous composition.

Definition 20 (Adapted Synchronous Composition) Given a set of composable
IA4AD: Pi = (Qi, q

0
i , A

I
i , A

O
i , A

H
i ,∆i, q

f
i ), i ∈ [1, n], with an adaptor D = (QD, q

0
D,Γ,

z, TD, FD). The adapted synchronous composition is an interface pushdown system

ΠD
i Pi = (Q, q0,Γ, z, T ′, F )

where

Q = Q1 × . . .×Qi × . . .×Qn ×QD: finite set of states.

q0 = (q01, q
0
2, . . . , q0n, q

0
D): initial state.

T ′ ⊆ (Q× Γ)× (Q× Γ∗): set of transition relations defined in Fig. 3.7.

F = {(qf1 , . . . , qfi , . . . , qfn)} × FD: finite set of final states.

Example 11 (Synchronous composition with expected sessional adaptor) The
adapted synchronous composition of the three services of the sessional FMUS service de-
fined in Example 8 with the expected sessional adaptor defined in Example 10 is an IPS

S = (Q, q0,Γ, z, T, F )

where
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• Q = Q1 ×Q2 ×Q3 ×QD.

• q0 = (q01, q
0
2, q

0
3, q

0
D).

• Γ = { RawData, Data, EndOfData, Complete, Start, Ack } ∪ { z }.

• T = {
(((q01, q02, q03, q0D), z) ↪→ ((q11, q02, q03, q1D), < RawData z >)),
(((q11, q02, q03, q1D), RawData) ↪→ ((q11, q12, q03, q2D), < ϵ >)),
(((q11, q12, q03, q2D), z) ↪→ ((q11, q22, q03, q3D), < Data z >)),
(((q11, q12, q03, q3D), Data) ↪→ ((q11, q22, q03, q4D), < RawData Data >)),
(((q11, q22, q03, q4D), RawData) ↪→ ((q11, q32, q03, q5D), < ϵ >)),
(((q11, q32, q03, q5D), Data) ↪→ ((q11, q22, q03, q3D), < Data Data >)),
(((q11, q22, q03, q3D), Data) ↪→ ((q21, q22, q03, q6D), < EndOfData Data >)),
(((q21, q22, q03, q6D), EndOfData) ↪→ ((q21, q42, q03, q7D), < ϵ >)),
(((q21, q42, q03, q7D), Data) ↪→ ((q31, q42, q03, q8D), < Start Data >)),
(((q31, q42, q03, q8D), Start) ↪→ ((q31, q42, q13, q9D), < ϵ >)),
(((q31, q42, q13, q9D), Data) ↪→ ((q31, q42, q23, q10D), < ϵ >)),
(((q31, q42, q23, q10D), Data) ↪→ ((q31, q42, q23, q10D), < ϵ >)),
(((q31, q42, q23, q10D), z) ↪→ ((q31, q52, q23, q11D), < Complete z >)),
(((q31, q52, q23, q11D), Complete) ↪→ ((q31, q52, q33, q12D), < ϵ >)),
(((q31, q52, q33, q12D), z) ↪→ ((q31, q52, q43, q13D), < Ack z >)),
(((q31, q52, q43, q13D), Complete) ↪→ ((q41, q52, q43, q14D), < ϵ >))
}

• FD = { (q01, q02, q03) } ×QD.
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Chapter 4

Detection of Behavioral Mismatches

This chapter gives details of detection of behavior mismatch. First, detection by finding
deadlock states is introduced. Then detection by model checking for property of Behavior
Mismatch Free is introduced. Also, detection of behavioral mismatches using SPIN model
checker is demonstrated with the sessional FMUS service.

4.1 Detection by Finding Deadlock States

Basically, behavior mismatches can be detected only in composition of components.
Therefore, we should first synchronously compose given components represented by IA4ADs
to detect existence of behavior mismatches. As mentioned in Section 2.1 and Section 2.2,
behavior mismatches are confirmed exist when deadlock states are found in the syn-
chronous composition of given components. Therefore, detection of behavior mismatches
are basically have two steps:

• Compute synchronous composition of components.

• Check existence of deadlock states in the above composition.

For given components represented by IA4ADs, the synchronous composition is defined
in Def. 15 We may call the synchronous composition of components the system behavior
since this composition is the behavior of the system if there is no behavior mismatch in the
components. Furthermore, recall in the overview of the approach described in Section 1.4,
given behavior interfaces of components are supposed to pass the compatibility check. The
condition of compatibility of components defined in Def. 14 generally means all messages
can be potentially synchronized when the behavior interfaces of components are given.
Thus, signature mismatches are not exist in given behavior interfaces since names of
messages are already confirmed matching. Mismatches in the system behavior of given
components are only behavior mismatches.

To demonstrate with the sessional FMUS service, recall that we have showed the
synchronous composition of IA4ADs of the three services in Example 9. The synchronous
composition gives the system behavior of the FMUS services and the first step of detection
of behavior mismatch is done. We may proceed to the second step to check the existence
of deadlock states. Basically, deadlock states can be defined as states that are reachable
from the initial state but can not reach the final state in the system behavior. Def. 21
defines deadlock states in an IA4AD. It should be noticed that states not reachable from
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the initial state is ignored. It is possible that such a state exists in the system behavior
where no deadlock state exists. States not reachable from the initial state are never
reached in the system behavior and effect nothing in the system.

Definition 21 (Deadlock states of an IA4AD) Deadlock states of an IA4AD P =
(Q, q0, AI , AO, AH ,∆, qf ) are states reachable from the initial state q0 but can not reach
the final state qf :

QDeadlock = { q | ∃q0 →∗ q } \ { q | ∃q →∗ qf }

where q0 →∗ qn is a sequence of transition relations δ1δ2 . . . δn connecting q0 and qn:
δ1 = (q0, a1, q1), δ2 = (q1, a1, q2), . . . , δn = (qn−1, a1, qn).

According to Def. 21, we may check the synchronous composition in Example 9 and
conclude that all states in the synchronous composition are deadlock states. Only state
(q11, q12, q03) is reachable from the initial state and all states can not reach the final state.
Therefore, (q11, q12, q03) is the deadlock state of the system behavior of the sessional
FMUS service and we can confirm the existence of behavioral mismatches. Algorithm
of searching for deadlock states in an IA4AD is quite intuitive and not necessary to be
mentioned here. Instead, we would like to introduce a different computation using model
checking technique which will be given in Section 4.2.

4.2 Detection by Model Checking

The definition of deadlock states in an IA4AD shown in Def. 21 may be represented
by another form using traces of executions of an IA4AD. Recall that we have defined
acceptance runs of an IA4AD in Def. 13. Comparing to definitions of deadlock states
and acceptance runs, we can conclude that if there is a state which is not a deadlock,
there is at least an acceptance run corresponding to the state. Furthermore, if there is no
deadlock state in an IA4AD, then all runs of the IA4AD are acceptance runs. We define
this condition in Def. 22 and call this condition Behavior Mismatch Free.

Definition 22 (Behavior Mismatch Free of an IA4AD) Behavior Mismatch Free of
an IA4AD P = (Q, q0, AI , AO, AH ,∆, qf ) is all runs of P are acceptance runs.

The problem of determining Behavior Mismatch Free of an IA4AD is basically a reach-
ability check problem which checks the reachability to the final state of the IA4AD. Since
model checking algorithms are generally searching for reachability of specified states, it is
intuitive to apply model checking techniques on detection of behavioral mismatches.

In order to apply LTL model checking introduced in Section 2.4, we need to prepare
the following:

1. A transition system M .

2. Atomic propositions AP .

3. labeling function L.
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By Def. 15, we can compute the synchronous composition, i.e., the system behavior,
of given components represented by IA4ADs so preparation of M is done. For the atomic
propositions AP , we only need a proposition which represents the acceptance condition
and denoted it as paccept. Finally we need to define a labeling function which assigns
propositions in AP to states of M ,i.e., the IA4AD. The answer is intuitive and simple
that paccept is assigned only to the final sate qf . Thus, we define a LTL property which
represents the property of Behavior Mismatch Free in Def. 23.

Definition 23 (Property of Behavior Mismatch Free of an IA4AD) Given an
IA4AD: P = (Q, q0, AI , AO, AH ,∆, qf ), the property of Behavior Mismatch Free is written
as a LTL formula

♢paccept
where paccept is an atomic proposition. The labeling function for state q ∈ Q is defined as

L(q) : {paccept | q = qf}

If a system behavior, i.e., synchronous composition of given IA4ADs which is also an
IA4AD, passes the property of Behavior Mismatch Free in model checking, the system
behavior is then declared has no behavioral mismatch since we can not find a trace
that is not an acceptance run in the system. Otherwise, if the model checking for the
property of Behavior Mismatch Free fails by returning a counterexample, there exist
behavior mismatches in the system behavior and therefore an adaptor is needed in order
to compose given components. It should be noticed that a counterexample is a trace that
violates the specified property. In the case of the property of Behavior Mismatch Free, a
counterexample shows a trace that starts from the initial state but ends at a state which
is not the final state. Thus, the states where the trace of the counterexample stops is
simply a deadlock state.

Improvements of model checking techniques make it easy to apply model checking in
the approach. We can apply model checking using model checkers such as SPIN [7]. SPIN
is one of the most popular model checkers. The input model Promela is similar to C pro-
grams which is easy to learn and apply. Thus, instead of directly applying algorithms of
LTL model checking, we use SPIN model checker. The only problem is how to encode the
Promela model for SPIN. Practically, behavior interfaces of components represented by
IA4ADs can be implemented in Promela as a system of processes communicating through
one synchronous message queue. Then SPIN can do both synchronous composition and
model checking for us. If the system behavior passes the check, there will be no coun-
terexample returned. This means the given components works well by themselves and
no adaptation is needed. Otherwise, there will be a returned counterexample showing a
trace leading to a deadlock state. In this case, adaptation is needed and we proceed to
the next step of adaptor generation.

It should be noticed that the detection of behavioral mismatches on software compo-
nents represented in LTSs is already proposed in the conventional framework. The way of
detection of behavior mismatches in the conventional framework is similar to the compu-
tation introduced in Section 4.1. However, in this work, the approach intentionally uses
model checking for the purpose of integrating verification processes in adaptation. This
means we may specify other properties and apply model checking for these properties and
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the property of Behavior Mismatch Free. Therefore, verification purpose could also be
fulfilled in the process of detecting behavior mismatches.

Here the session FMUS service shown in Fig. 3.5 is used to demonstrate how to use
SPIN to detect behavior mismatches. Recall that the three services of the sessional
FMUS service are defined as IA4ADs in Example 8, and their synchronous composition,
i.e., the system behavior, is shown in Example 9. To use SPIN, we do not encode the
system behavior into Promela model directly but instead encoding a system of three
components synchronously communicating through a synchronous channel. The Promela
model includes four parts parts. The first part defines some basic settings which can
be further divided into three parts. The first setting defines the acceptance propositions
of the three services. These propositions are defined as state indexes of active states
where the state indexes are the numbers assigned for the final states of corresponding
services. These propositions will be used also in building LTL formula of the property
of behavior mismatch free. The second setting defines the set of messages in mtype so
that we may treat each name as an entity in communication. The third setting defines
a synchronous queue. When we set the length of a queue to zero in Promela, the queue
becomes synchronous since it can hold only one element so that no new element can be
put into the queue until the held element is consumed. The second and third settings
define the synchronous communication environment in the Promela model.

#define accept_OnlineStockBroker (OnlineStockBroker:active_state==4)

#define accept_ResearchDepartment (ResearchDepartment:active_state==5)

#define accept_Investor (Investor:active_state==4)

/* define names of messages */

mtype = {RawData, EndOfData, Start, Data, Complete, Ack};

/* one synchronous channel for all services */

chan sync_chan = [0] of { mtype };

The second part of the Promela code is the definition of behavior interfaces of the
three services. The behavior of a services is defined as a process in Promela. Since the
behavior interface of a service is defined in IA4AD, it is intuitive to encode the behavior
of the three services in the following fashion. First states are represented as numbers
assigned to an variable active state which defines the current active state of a service.
Thus, the transitions are executed by putting or getting messages from the synchronous
queue then assigning a state number to active state. It should be noticed that the
putting and getting messages from a queue in Promela is written using special symbols
“!” and “?” which shares the same meaning in representing output and input transitions
of services.

/* interface protocol of OnlineStockBroker */

proctype OnlineStockBroker(chan q) {

short active_state;

active_state = 0; /* initial state */
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do

:: (active_state == 0) ->

if

:: q!RawData -> active_state = 1

fi;

:: (active_state == 1) ->

if

:: q!RawData -> active_state = 1

:: q!EndOfData -> active_state = 2

fi;

:: (active_state == 2) ->

if

:: q!Start -> active_state = 3

fi;

:: (active_state == 3) ->

if

:: q?Ack -> active_state = 4

fi;

od

}

/* interface protocol of ResearchDepartment */

proctype ResearchDepartment(chan q) {

short active_state;

active_state = 0; /* initial state */

do

:: (active_state == 0) ->

if

:: q?RawData -> active_state = 1

fi;

:: (active_state == 1) ->

if

:: q!Data -> active_state = 2

fi;

:: (active_state == 2) ->

if

:: q?RawData -> active_state = 3

:: q?EndOfData -> active_state = 4

fi;

:: (active_state == 3) ->

if

:: q!Data -> active_state = 2

fi;

:: (active_state == 4) ->
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if

:: q!Complete -> active_state = 5

fi;

od

}

/* interface protocol of Investor */

proctype Investor(chan q) {

short active_state;

active_state = 0; /* initial state */

do

:: (active_state == 0) ->

if

:: q?Start -> active_state = 1

fi;

:: (active_state == 1) ->

if

:: q?Data -> active_state = 2

fi;

:: (active_state == 2) ->

if

:: q?Data -> active_state = 2

:: q?Complete -> active_state = 3

fi;

:: (active_state == 3) ->

if

:: q!Ack -> active_state = 4

fi;

od

}

The third part sets the initial state of the system described in Promela. The initial
setting is a process which assigns all processes, i.e., behavior of services, the queue for
communication then call the start of all processes. Note that the queue assigned for the
three processes is the synchronous queue define in the first part of Promela.

/* init process */

init {

run OnlineStockBroker(sync_chan);

run ResearchDepartment(sync_chan);

run Investor(sync_chan);

}
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Figure 4.1: FMUS service: Detection of Behavior Mismatches by SPIN - Verification
Screen

The detection of behavioral mismatches using model checking by SPIN also need a
LTL formula representing the property of behavior mismatch free. The LTL formula is
defined below and is constructed by connecting the three acceptance propositions of the
three services. Then the negation of the formula is transformed to a Büchi automaton
call never claim by SPIN. Then SPIN performs LTL model checking to check the system
for the property of behavior mismatch free.

<> ( accept_OnlineStockBroker &&

accept_ResearchDepartment &&

accept_Investor )

The verification of the Promela model of the FMUS service is shown in Fig. 4.1.
SPIN provides graphical user interface called iSPIN for developers to conduct verifications
easier. The result shows some technical information including that a violation to the
property of Behavior Mismatch Free is found and output as a trail for further use. iSPIN
also provides a simulation mode for demonstrating generated trails. As shown in Fig. 4.2,
iSPIN can read the trail information and generate a graph for us. For mode details, the
graph of the generated trail is shown in Fig. 4.3. It is easy to confirm that only the first
synchronization between Online Stock Broker and Rreserach Department is executed
and there is no further execution. Thus, we may conclude that the FMUS service encoded
in Promela model fails to satisfy the property of Behavior Mismatch Free, which confirms
the existence of behavior mismatches.
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Figure 4.2: FMUS service: Detection of Behavior Mismatches by SPIN - Trail Simulation
Screen

MSC 0 OnlineStockBroker:1

1!RawData20 ResearchDepartment:2

1?RawData21

Figure 4.3: FMUS service: Detection of Behavior Mismatches by SPIN - The trail
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Chapter 5

Coordinator Guided Adaptor
Generation

5.1 Overview of Adaptor Generation

Recall that in Section 3.1, components are required to be expressed in the fashion of one
session process. We may start to skip the word sessional in the rest of this thesis for
convenience. Thus, the FMUS service means the system shown in Fig. 3.5 from now on.
Also, when demonstrating adaptor generation using the FMUS service, it may become too
complicate to show the demonstration in full detail. Therefore, a much simpler example
consists of two services Sender and Receiver shown in Fig. 5.1 is introduced. We may call
this simple example SR service in short for convenience. In the SR service, Sender sends
three messages a, b and c to Receiver. It is easy to recognize that the behavior interfaces
of Sender and Receiver causes a behavior mismatch. The ordering of messages a and b

being received by Receiver is reversed to the ordering being sent by Sender. Also the self
transitions of sending and receiving c in the two services causes non-regular behavior in
adaptors. The expected adaptor is designed to have behave like the languages

?a ?cn ?b !b !cn ?a

.

The adaptor generation in the approach is called Coordinator Guided Adaptor Gen-
eration. The overview of adaptor generation is shown in Fig. 5.2. The core idea is as
follows:

• An over-behavioral adaptor called Coordinator is first generated from given com-
ponents represented by IA4ADs. Coordinator is then composed with given compo-
nents which give us an Interface Pushdown System, i.e., the system behavior with
Coordinator. The system behavior is also over-behavioral because of Coordinator.

• Pushdown model checking is applied to the above system behavior, an IPS. We may
assume a property ϕ represents the requirements of an adaptor for given components.
In the approach, the pushdown model checking is performed for the negation of
ϕ. This gives us a counterexample which is a trace satisfies ϕ and therefore is a
candidate of adaptors for the system.
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!a

Sender Receiver

!c

!b

?b
?c

?a

!a

Sender Receiver

!c

!b

?b
?c

?a

Figure 5.1: SR service

• The property ϕ is the most essential part in adaptor generation of the approach.
We need property of Behavior Mismatch Free and property for Unbounded Messages
to guarantee the correctness of an adaptor. The former is for solving behavior
mismatches and the later is for non-regular behavior of adaptors.

• If there exist adaptors for given components, pushdown model checking for negation
of ϕ should return a counterexample. The counterexample is a trace that satisfies
the property ϕ and is used to build an adaptor as and IPS.

Details of each step of adaptor generation in the approach will be described in the
following sections along with demonstrations with the SR service and FMUS service.

5.2 Coordinator

First, Coordinator is a special adaptor which is capable of (1) receiving any message sent
from a component in the system; (2) sending any message happen to be the head symbol
of the stack to a component which is ready to receive it. Thus, we say that the behavior
of Coordinator is over-behavioral. This means Coordinator provides the maximum of pos-
sible interactions of given components under adaptation. To build Coordinator for given
components, it is easy to imagine an IPS with only one state that has all combinations of
pushing and popping transitions. The definition of coordinator is shown in Def. 24. Note
that it does not matter how the coordinator behave so Coordinator only has one state. It
only matters that Coordinator has all combinations of pushing and popping transitions
for all messages in the system of given components.

Definition 24 (Coordinator) Given a set of composable IA4ADs Pi = (Qi, q
0
i , A

I
i , A

O
i ,

AH
i ,∆i, q

f
i ), i ∈ [1, n]. A coordinator is an IPS C = (QC , q

0
C ,Γ, z, TC , FC), where

QC = {q0C} is the finite set of states has only the initial state q0C;
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Generation Fails

No Counterexample

Generate Property of Behavior Mismatch Free 

Build Coordinator

Compute Synchronous Composition with Coordinator

Pushdown Model Checking (MOPED)
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Generation Fails

No Counterexample
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Build Negation of Property

Figure 5.2: Overview of adaptor generation
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AC =
∪

iA
I
i =

∪
iA

O
i is the finite set of alphabets;

Γ = AC ∪ {z} ∪ {ϵ} is the finite set of stack symbols;

z is the stack start symbol representing bottom of stack;

FC = QC is the finite set of final states.

TC = (QC×AC×Γ)× (QC×Γ∗) is the set of transition relations defined as follows:

(q0C , γ) ↪→ (q0C , aγ) is a push transition,

(q0C , a) ↪→ (q0C , ϵ) is a pop transition,

where a ∈ AC, γ ∈ Γ is the head symbol of stack.

The synchronous composition of components and their Coordinator is also over-behavioral
which has both good behavior, i.e., behavior with no behavioral mismatch, and bad behav-
ior, i.e., behavior with behavioral mismatches. By the definition of adapted synchronous
composition in Def. 20 and the definition of Coordinator in Def. 24, we can compute the
synchronous composition of components and their Coordinator, the over-behavioral IPS.
The over-behavioral IPS should contain two kinds of behavior: behavior consists of traces
can reach the final state, i.e., the good behavior, and behavior consists of traces can not
reach the final state, i.e., the bad behavior. The criteria of distinguishing good and bad
behavior in the over-behavioral IPS is Behavior Mismatch Free. It should be noticed that
any trace in the good behavior could be the behavior an adaptor for given components.
Thus, the objective of adaptor generation in the approach is to pick up traces in good
behavior and build an adaptor for the system of given components.

Example 12 demonstrates Coordinator for the FMUS services. In the Coordinator,
there is only one state and transitions are all self transitions. The self transitions can be
classified into two categories: pushing and popping. The pushing transitions can push
any stack symbol in Γ. The stack head symbols to be replaced in pushing transitions are
all ϵ which means the pushing transition adds a stack symbol γ to the stack no matter
what stack symbol is in the head of the stack. Therefore, there are six pushing transitions
in Coordinator for FMUS service since there are six different messages in the system.
On the other hand, there are six popping transitions in which the stack head symbols to
be replaced are the six messages respectively. The replacing stack symbol in a popping
transition is ϵ which means the deletion of the stack head symbol in the left side of the
transition.

Example 12 (Coordinator for FMUS service) Coordinator for the three services de-
fined in Example 8 for the FMUS services shown in Fig. 3.5 is defined as an IPS

C = (QC , q
0
C ,Γ, z, TC , FC)

where

QC = { q0C }.

q0C = q0C.

Γ = { RawData, Data, EndOfData, Complete, Start, Ack } ∪ { z }.
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z ∈ Γ is initial symbol of stack.

TC = { (q0C , ϵ) ↪→ (q0C , < RawData >),
(q0C , ϵ) ↪→ (q0C , < Data >),
(q0C , ϵ) ↪→ (q0C , < EndOfData >),
(q0C , ϵ) ↪→ (q0C , < Complete >),
(q0C , ϵ) ↪→ (q0C , < Start >),
(q0C , ϵ) ↪→ (q0C , < Ack >),
(q0C , RawData) ↪→ (q0C , ϵ),
(q0C , Data) ↪→ (q0C , ϵ),
(q0C , EndOfData) ↪→ (q0C , ϵ),
(q0C , Complete) ↪→ (q0C , ϵ),
(q0C , Start) ↪→ (q0C , ϵ),
(q0C , Ack) ↪→ (q0C , ϵ) }

FC = QC.

The adapted synchronous composition of the three services in the FMUS service with
coordinator will have incredibly more transitions than the composition with expected
adaptor shown in Example 11. Since coordinator provides all combinations for synchro-
nization with given components, the number of transition relations should reach more
than the number of one hundred and fifty. It is easy to calculate and get this number
since there are five, six, and five states in each of the three service that have transitions
being able to synchronize with coordinator, i.e., 5 × 6 × 5 = 150. This number should
further times for number of services and adds the counts of multiple transitions from a
state. Therefore, the list of full transition relations in the composition with coordina-
tor for FMUS service is skipped. Instead we demonstrate with the SR service shown in
Fig. 5.1. Example 13 demonstrates the over-behavioral system behavior from synchronous
composition of services Sender and Receiver with their Coordinator. One may count the
number of transition relations and get a number eighteen.

Example 13 (Synchronous composition with coordinator for SR service) The two
services shown in Fig. 5.1 is represented in IA4AD as follows:

Sender:
P1 = ( Q1, q01, AI

1, AO
1 , AH

1 , ∆1, qf1 ) where

Q1 = { q01, q11, q21 }.
q01 = q01.

AI
1 = ∅.

AO
1 = { a, b, c }.

AH
1 = ∅.

qf1 = q21.

∆1 = { (q01, !a, q11), (q11, !c, q11), (q11, !b, q21) }.

Receiver:
P2 = ( Q2, q02, AI

2, AO
2 , AH

2 , ∆2, qf2 ) where
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Q2 = { q02, q12, q22 }.
q02 = q02.

AI
2 = { a, b, c }.

AO
2 = ∅.

AH
2 = ∅.

qf2 = q22.

∆1 = { (q02, ?b, q12), (q12, ?c, q12), (q12, ?a, q22) }.

Then Coordinator for the SR service C = (QC , q
0
C ,Γ, z, TC , FC) is designed as follows:

QC = { q0C }.
q0C = q0c.

Γ = { a, b, c } ∪ { z }.
z ∈ Γ is initial symbol of stack.

TC = { (q0C , ϵ) ↪→ (q0C , < a >),
(q0C , ϵ) ↪→ (q0C , < b >),
(q0C , ϵ) ↪→ (q0C , < c >),
(q0C , a) ↪→ (q0C , ϵ),
(q0C , b) ↪→ (q0C , ϵ),
(q0C , c) ↪→ (q0C , ϵ) }

FC = QC.

Thus, the adapted synchronous composition of the two services with their coordinator
is computed and shown as an IPS S = (Q, q0,Γ, z, T, F ) where

Q = Q1 ×Q2 ×QC.

q0 = (q01, q02, q0C).

Γ = { a, b, c } ∪ { z }.
T = {

(((q01, q02, q0C), ϵ) ↪→ ((q11, q02, q0C), < a >)),
(((q01, q02, q0C), b) ↪→ ((q01, q12, q0C), ϵ)),
(((q01, q12, q0C), ϵ) ↪→ ((q11, q12, q0C), < a >)),
(((q01, q12, q0C), c) ↪→ ((q01, q12, q0C), ϵ)),
(((q01, q12, q0C), a) ↪→ ((q01, q22, q0C), ϵ)),
(((q01, q22, q0C), ϵ) ↪→ ((q11, q22, q0C), < a >)),
(((q11, q02, q0C), ϵ) ↪→ ((q11, q02, q0C), < c >)),
(((q11, q02, q0C), ϵ) ↪→ ((q21, q02, q0C), < b >)),
(((q11, q02, q0C), b) ↪→ ((q11, q12, q0C), ϵ)),
(((q11, q12, q0C), ϵ) ↪→ ((q11, q12, q0C), < c >)),
(((q11, q12, q0C), ϵ) ↪→ ((q21, q12, q0C), < b >)),
(((q11, q12, q0C), c) ↪→ ((q11, q12, q0C), ϵ)),
(((q11, q12, q0C), a) ↪→ ((q11, q22, q0C), ϵ)),
(((q11, q22, q0C), ϵ) ↪→ ((q11, q22, q0C), < c >)),
(((q11, q22, q0C), ϵ) ↪→ ((q21, q22, q0C), < b >)),
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(((q21, q02, q0C), b) ↪→ ((q21, q12, q0C), ϵ)),
(((q21, q12, q0C), c) ↪→ ((q21, q12, q0C), ϵ)),
(((q21, q12, q0C), a) ↪→ ((q21, q22, q0C), ϵ)),
}

F = { (q21, q22, q0C) }.

5.3 Behavior Mismatch Free

For detection of behavior mismatches in Section 4.2, the property of Behavior Mismatch
Free for the system of components is already given in Def. 23. This property is also nec-
essary for adaptor generation in the approach. However, the property is not suitable for
the synchronous composition of components with Coordinator, i.e., an adaptor, because
of the stack in the composition. Therefore, we need to redefine the property of Behavior
Mismatch Free for the IPS computed from adapted synchronous composition with Coor-
dinator. There is no need to redefine the proposition paccept itself. Instead the labeling
function needs to be redefined for taking the stack into consideration. Recall the accep-
tance condition of an IPS defined in Def. 18, the condition of empty stack is necessary.
Therefore we redefine the labeling function by adding the empty stack condition. The
redefined property of Behavior Mismatch Free is shown in Def. 25. Note that γ = z is
added to express the condition of empty stack since z is the start stack symbol. Also note
that the labeling function is defined for a pair consists of the state and the head stack
symbol.

Definition 25 (Property of Behavior Mismatch Free for IPS) Given an IPS S =
(Q, q0,Γ, z, T, F ), the property of Behavior Mismatch Free is written as a LTL formula

♢paccept

paccept is an atomic proposition and a labeling function for state s and stack head γ is
defined as

L((s, γ)) : {paccept | s ∈ F ∧ γ = z}

where z is the start symbol of stack.

Since all given components have only one final state which goes to no other state and
there is only one state in Coordinator, the synchronous composition with coordinator
has only one composite final state. Thus, condition of paccept can be expressed by the
conjunction of propositions that all IA4ADs is at their final states and the empty stack.
The definition is given in Def. 26.

Definition 26 (Property of Adapted Behavior Mismatch Free) Given an IPS S =
(Q, q0,Γ, z, T, F ) which is the adapted synchronous composition of a set of compos-
able IA4ADs Pi = (Qi, q

0
i , AI

i , A
O
i , A

H
i ,∆i, q

f
i ), i ∈ [1, n] and their Coordinator C =

(QC , q
0
C ,Γ, z, TC , FC), the property of Behavior Mismatch Free is written as a LTL formula

♢paccept
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paccept is an atomic proposition and a labeling function for composite state (q1, q2, . . . , qn, q
0
C)

and stack head γ is defined as

L(((q1, q2, . . . , qn, q
0
C), γ)) : {paccept |

∧
i=1...n

qi = qf ∧ γ = z}

where z is the start symbol of stack.

Here we demonstrate the property of Behavior Mismatch Free for the FMUS service
and SR service in Example 14.

Example 14 (Property of Adapted Behavior Mismatch Free) For the FMUS ser-
vice shown in Fig. 3.5, we may define the property of Behavior Mismatch Free using in-
formation in Example 8 and Example 12. The LTL formula is ♢paccept where the labeling
function is

L((q1, q2, q3, q
0
C), γ) = { paccept | q1 = qf1 ∧ q2 = qf2 ∧ q3 = qf3 ∧ γ = z }

Similarly, for the SR service shown in Fig. 5.1, we may define the property of Behavior
Mismatch Free using information in Example 13. The LTL formula is still ♢paccept where
the labeling function is

L((q1, q2, q
0
C), γ) = { paccept | q1 = qf1 ∧ q2 = qf2 ∧ γ = z }

5.4 Unbounded Messages

In the non-regular behavior of the expected adaptor (?R !R ?D)n ?E !E ?S !S !Dn ?C !C
?A !A), n > 1 introduced in Section 3.2, the arbitrary natural number n indicating the
numbers of messages RawData and Data being sent and received are the same. The reason
for the equality is not because of the expected adaptor makes the numbers the same but
because of the structures of behavior interfaces of the three services which are decided
by the functionalities the services are supposed to achieve. Therefore in other cases there
may be one analyzed Data after receiving two RawData, which makes number related to
RawData and Data 2n and n. However, though the equality of natural numbers is actually
decided by components themselves, it is the arbitrary natural number n, instead of just ∗,
that characterizes non-regular behavior in adaptors. More specifically, if there is no such
arbitrary natural number in the behavior of an adaptor, LTS model is already enough
since the behavior is regular in this case. Thus, it is essential to make sure the arbitrary
natural number n appear whenever the system of services has an adaptor with non-regular
behavior. Note that this arbitrary natural number n indicates the corresponding message
sent and received arbitrary multiple times. We may call the messages being sent/received
arbitrary multiple times Unbounded Messages and informally define the set of Unbounded
Messages as

AUB = {a | a ∈ A ∧ ∀σ,∃σ′, Occ(σ′, a) > Occ(σ, a)}

where σ and σ′ are accepting traces of the system behavior and Occ(σ, a) represents the
number of occurrence of message a in σ. The meaning of this definition says that for a
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message a, given any trace that a occurs n times, there is always another trace in which
a occurs more than n times.

To clarify the specification of unbounded messages, we may first try to define unbounded
messages formally. Recall that runs and accepting runs of an IPS are already defined in
Def. 17 and Def. 18. We may start from tracing stack symbols in accepting runs to
define number of occurrences of a message. Accepting stack traces of accepting runs of
an IPS can be defined as Def. 27 by extracting stack head symbols in configurations of
an accepting run. By counting numbers of a specific message in a specific accepting stack
trace, we can define the function of number of occurrences in Def. 28. Note that messages
are abbreviated in stack symbols. Therefore, the formal definition of unbounded messages
can be defined as shown Def. 29.

Definition 27 (Accepting Stack Trace of IPS) Given a finite trace σ = c0c1c2 . . . ck
which is an accepting run of an IPS S = (Q, q0,Γ, z, T, F ), ci = (qi, wi). The correspond-
ing stack trace of σ is w = γ0γ1 . . . γk, where γi = wi(0).

Definition 28 (Number of Occurrences) Given an IPS S = (Q, q0,Γ, z, T, F ), the
number of occurrences of stack symbol a ∈ Γ in an accepting run σ is defined as a function

Occ(σ, a) = | { γi | i ∈ [1, k], wi(0) = a } |

Definition 29 (Unbounded Messages) Given an IPS S = (Q, q0,Γ, z, T, F ), the set
of unbounded stack symbols, i.e., Unbounded Messages is defined as

ΓUB = { a | a ∈ γ ∧ ∀σ, ∃σ′, σ, σ′ ∈ L(S), Occ(σ′, a) > Occ(σ, a) }

where σ and σ′ are accepting runs of S.

Following the definition of Unbounded Messages in Def. 29, locating Unbounded Mes-
sages has to examine all traces exhaustively of an IPS for the numbers of occurrences of
all messages. This is unrealistic since an IPS has potentially infinite traces because of
unbounded stack length. Thus, we would like to use another strategy for locating Un-
bounded Messages in the approach. Since an IPS, i.e., the system behavior computed
from adapted synchronous composition of components with Coordinator, has only finite
number of states, while traces of an IPS that has some messages occur arbitrary multiple
times imply the length of some traces may be infinite. We may conclude that messages
occur arbitrary multiple times are resulted by loops in the IPS. Therefore, locating Un-
bounded Messages is considered the same task of finding out loops in an IPS. Furthermore,
the IPS representing the system behavior is composed from components and Coordinator.
Considering composite states in the IPS, loops in traces of the IPS are also loops in each
component of the system. Since Coordinator has only one state, finding loops in given
components simply meets the purpose of finding loops in the IPS representing system
behavior.

Now we go for techniques of finding loops in components represented by IA4ADs. We
would like to introduce the idea by locating strongly connected components (SCCs) using
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the Tarjan’s algorithm [16]. Generally, a SCC is a set of states in a finite state machine.
According to the definition of a SCC, all members of a SCC are able to reach each other
through transitions among them. It is intuitive that loops are constructed from transition
within every SCC of given services. We call these transitions Looped Transitions and build
an algorithm for locating them using Tarjan’s algorithm of locating SCCs. The algorithm
is shown in Algorithm 1 where the sub process is modified from Tarjan’s algorithm by
adding the part of building the set of Looped Transitions ∆loop when a SCC is found (line
16 to 18). Therefore, we can now locate Unbounded Messages by gathering the labels in
∆loop.

Algorithm 1: Locating Loop Involved Transitions

Input: an IA4AD P = (Q, q0, AI , AO, AH ,∆, qf )
Output: set of loop involved transitions: ∆loop

1 Procedure SCC(q)
2 begin
3 Lowlink(q) := Number(q) := index := index+ 1;
4 push stack(D, q);
5 foreach (q, a, q′) ∈ ∆ do
6 if Number(q′) is not defined then
7 SCC(q’);
8 Lowlink(q) := min(Lowlink(q), Lowlink(q′));

9 else if Number(q′) < Number(q) then
10 if on stack(D, q’) then
11 Lowlink(q) := min(Lowlink(q), Number(q′));

12 if Lowlink(q) = Number(q) then
13 while q′ = top stack(D), Number(q′) ≥ Number(q) do
14 pop stack(D);
15 Qscc ←− Qscc ∪ {q′};
16 foreach δ = (q, a, q′) ∈ ∆, a ∈ AI ∪ AO do
17 if q, q′ ∈ Qscc then
18 ∆loop ←− ∆loop ∪ {δ};

19 Qscc ←− ∅;

20 ∆loop ←− ∅; Qscc ←− ∅;
21 empty stack(D);
22 index := 0;
23 foreach q ∈ Q− {q0, qf} do
24 if Number(q) is not defined then
25 SCC(q);

26 return ∆loop

Example 15 and Example 16 demonstrate the algorithm of locating Unbounded Mes-
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sages for the FMUS service and the SR service. Note that a SCC may consist only one
state. According to the Tarjan’s algorithm, if there is no other states which can form a
SCC with a certain state, the state itself is marked and returned as a SCC. Also note that
for an one state SCC have self transitions, these self transitions are Looped Transitions
since a self transition connect a state to the state itself. On the other hand, if an one
state SCC has no self transitions, there is no Loop Transition in the SCC. In this case,
the one state SCC is ignored.

Example 15 (Unbounded Messages of FMUS service) For the FMUS service show
in Fig. 3.5 where the three services are represented in IA4ADs shown in Example 8, we
can locate SCCs of the three services. Note that SCCi represents set of SCCs where a
SCC is represented by a set of states. Also, ∆loop

i represents the set of looped transitions;
AUB

i represents the unbounded messages.

Online Stock Broker:

SCC1 = { {q01}, {q11}, {q21}, {q31}, {q41} }
∆loop

1 = { (q11, !RawData, q11) }
AUB

1 = { RawData }

Research Department:

SCC2 = { {q02}, {q12}, {q22, q32}, {q42}, {q52} }
∆loop

2 = { (q22, ?RawData, q32), (q32, !Data, q22) }
AUB

2 = { RawData, Data }

Online Stock Broker:

SCC3 = { {q03}, {q13}, {q23}, {q33}, {q43} }
∆loop

3 = { (q23, ?Data, q23) }
AUB

3 = { Data }

Example 16 (Unbounded Messages of SR service) For the SR service show in Fig. 5.1
where the two services are represented in IA4ADs shown in Example 13, we can locate
SCCs of the two services. Note that SCCi represents set of SCCs where a SCC is rep-
resented by a set of states. Also, ∆loop

i represents the set of looped transitions; AUB
i

represents the unbounded messages.

Sender:

SCC1 = { {q01}, {q11}, {q21} }
∆loop

1 = { (q11, !c, q11) }
AUB

1 = { c }

Receiver:

SCC2 = { {q02}, {q12}, {q22} }
∆loop

2 = { (q12, ?c, q12) }
AUB

2 = { c }
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5.5 Pushdown Model Checking

To filter out the behavior that avoids behavior mismatches in the synchronous composi-
tion of services with Coordinator, the over-behavioral system behavior, pushdown model
checking [13] is introduced in the approach. The idea of using pushdown model checking
in adaptor generation is similar to detection of behavior mismatches using model checking
described in Section 4.2. This time we need the property of Behavior Mismatch Free for
the IPS composed by components and Coordinator. This is already described in Sec-
tion 5.3 and a LTL formula represent the property of adapted Behavior Mismatch Free
can be generated for given components.

However, in adaptor generation of the approach, pushdown model checking is used to
give us a counterexample which indicates an execution trace where no behavior mismatch
is encountered. This can be simply achieved by model checking the negation of the
property of adapted Behavior Mismatch Free. Since the system behavior composed by
the given components and their Coordinator is an over-behavioral IPS as described in
Section 5.2. This over-behavioral IPS consists of both good and bad behavior. The
counterexample we want is a trace from the good behavior of the IPS. As long as we can
specify a property ϕ necessary for adaptors, and the over-behavioral IPS does contain good
behavior, the counterexample we want is guaranteed to be returned by pushdown model
checking for the negation of the property. This trace is considered a candidate behavior
of adaptors for given behavioral mismatching components and an adaptor can then be
generated from the counterexample. Note that we do not directly use the property of
adapted Behavior Mismatch Free for representing the property ϕ necessary for adaptors.
This is simply because only the property of adapted Behavior Mismatch Free is not enough
for representing suitable property for adaptors. Actually we also need the property of
Unbounded Messages mentioned in Section 5.4. We may use the SR service to demonstrate
the reason why the property of Behavior Mismatch Free is not enough.

Now we discuss about how to perform pushdown model checking. In this work, push-
down model checking is performed using MOPED [14]. MOPED is a pushdown model
checker which can accept directly encoded pushdown system model and perform model
checking for a property represented by a LTL formula. However, the propositions in LTL
formulas have to be defined using only states or stack symbols. The usage of MOPED
is demonstrated in Section 2.5.3. For convenience and avoiding ambiguities, when men-
tioned in the rest of this thesis, pushdown model checking for a given property refers to
pushdown model checking the negation of the given property even the word negation is not
explicitly mentioned. Also, a counterexample returned by pushdown model checking or
MOPED should be recognized as the result of pushdown model checking for the negation
of given property.

For the SR service shown in Fig. 5.1, we can encode the IPS composed from the two
services with their Coordinator shown in Example 13 as a pushdown system model for
MOPED. The pushdown system model is shown in Fig. 5.3 which include two parts. The
first part is the initial configuration which is the initial states coupled with the initial
stack symbol z. The second part lists transition relations of the pushdown system. Note
when encoding pushing transitions like (q, ϵ) ↪→ (q′, < a >) where a can be arbitrary
message of the pushdown system, we have to concretely specify all possible messages as
the stack head symbol a. This means the pushing transition (q, ϵ) ↪→ (q′, < a >) is
encoded as a group of transitions and the number of transitions is the size of the set of
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stack symbols, i.e., messages of the system. Actually, the number of transitions built by
the encoding should also consider the case when z is the stack head symbol. This makes
the number of transitions built from encoding becomes the size of stack symbols plus one.
For example, the SR service has three messages so for every pushing transition there are
four transitions that using a, b, c, and z as the stack head symbols separately. For a
popping transition like (q, < a >) ↪→ (q′, ϵ), the encoded transition relation is one to
one mapping since in the case of popping a message, the popped message has to be the
stack symbol in the stack head. To demonstrate, Fig. 5.3 shows the pushdown system
model for MOPED which is encoded from the IPS computed by adapted synchronous
composition of the two services and their Coordinator in Example 13. Composite states
are encoded as states with indexes indicates corresponding states of the two services and
Coordinator. Transition rules of pushing transitions are grouped to make it easy to com-
pare with transitions computed in Example 13. For example, the first transition of the
IPS (q01, q02, q0C), ϵ) ↪→ ((q11, q02, q0C), < a >) is encoded as the first four transition
rules where the first composite state (q01, q02, q0C) is encoded as state q0 0 c0. It should
be noted that the last transition rule q2 2 c0 <z> --> q2 2 c0 <z> is a self transition
connecting the final state q2 2 c0 with the empty stack symbol z. This is because algo-
rithms of MOPED require the input pushdown system model behavior continuously or
the LTL pushdown model checking will fail even correct property is specified.

We may now build the property of adapted Behavioral Mismatch Free defined in
Def. 25 as follows:

<> ( q2 2 c0 && z )

In this formula, q2 2 c0 is the final state of the IPS and z is the empty stack symbol.
Now we may apply pushdown model checking using MOPED for the negation of the
property of adapted Behavior Mismatch Free given above. The LTL formula has to be
converted to a Never Claim which is a Büchi automaton equal to the formula. This can be
done by SPIN providing the functionality of translating a LTL formula to a Never Claim.
Note that a Never Claim usually is translated from the negation of specified property so
that returned counterexample shows the trace violating the specified property. In the
approach, since we perform pushdown model checking for the negation of property ϕ,
we directly translate ϕ into a Never Claim. Then MOPED reads both the pushdown
system model shown in Fig. 5.3 and the Never Claim converted from the LTL formula
and perform pushdown model checking. The result of pushdown model checking is a
counterexample shown in Fig. 5.4. By observing the trace, we may confirm that the
trace correctly reorders messages a and b so behavior mismatches in SR service are not
encountered following this trace.

However, by carefully examining the counterexample, it is disappointing that message
c is not shown in the trace. Thus, from this trace we can only figure out and build an
adaptor with behavior ?a ?b !b !a. This behavior is not correct comparing to Fig. 5.1. The
expected adaptor for SR service should be ?a ?cn ?b !b !cn ?a as mentioned in Section 5.1.
Therefore, the property of adapted Behavior Mismatch Free is clearly not enough for
generating desired adaptors. We need to combine other properties to build the property
ϕ necessary for adaptors. The property ϕ should make the message c appear in the
counterexample. Recall that the message c is an Unbounded Message of the SR service
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#initial state

(q0_0_c0 <z>)

#transition rules

q0_0_c0 <a> --> q1_0_c0 <a a> q0_0_c0 <c> --> q1_0_c0 <a c>

q0_0_c0 <b> --> q1_0_c0 <a b> q0_0_c0 <z> --> q1_0_c0 <a z>

q0_0_c0 <b> --> q0_1_c0 <>

q0_1_c0 <a> --> q1_1_c0 <a a> q0_1_c0 <c> --> q1_1_c0 <a c>

q0_1_c0 <b> --> q1_1_c0 <a b> q0_1_c0 <z> --> q1_1_c0 <a z>

q0_1_c0 <c> --> q0_1_c0 <>

q0_1_c0 <a> --> q0_2_c0 <>

q0_2_c0 <a> --> q1_2_c0 <a a> q0_2_c0 <c> --> q1_2_c0 <a c>

q0_2_c0 <b> --> q1_2_c0 <a b> q0_2_c0 <z> --> q1_2_c0 <a z>

q1_0_c0 <a> --> q1_0_c0 <c a> q1_0_c0 <c> --> q1_0_c0 <c c>

q1_0_c0 <b> --> q1_0_c0 <c b> q1_0_c0 <z> --> q1_0_c0 <c z>

q1_0_c0 <a> --> q2_0_c0 <b a> q1_0_c0 <c> --> q2_0_c0 <b c>

q1_0_c0 <b> --> q2_0_c0 <b b> q1_0_c0 <z> --> q2_0_c0 <b z>

q1_0_c0 <b> --> q1_1_c0 <>

q1_1_c0 <a> --> q1_1_c0 <c a> q1_1_c0 <c> --> q1_1_c0 <c c>

q1_1_c0 <b> --> q1_1_c0 <c b> q1_1_c0 <z> --> q1_1_c0 <c z>

q1_1_c0 <a> --> q2_1_c0 <b a> q1_1_c0 <c> --> q2_1_c0 <b c>

q1_1_c0 <b> --> q2_1_c0 <b b> q1_1_c0 <z> --> q2_1_c0 <b z>

q1_1_c0 <c> --> q1_1_c0 <>

q1_1_c0 <a> --> q1_2_c0 <>

q1_2_c0 <a> --> q1_2_c0 <c a> q1_2_c0 <c> --> q1_2_c0 <c c>

q1_2_c0 <b> --> q1_2_c0 <c b> q1_2_c0 <z> --> q1_2_c0 <c z>

q1_2_c0 <a> --> q2_2_c0 <b a> q1_2_c0 <c> --> q2_2_c0 <b c>

q1_2_c0 <b> --> q2_2_c0 <b b> q1_2_c0 <z> --> q2_2_c0 <b z>

q2_0_c0 <b> --> q2_1_c0 <>

q2_1_c0 <c> --> q2_1_c0 <>

q2_1_c0 <a> --> q2_2_c0 <>

#self-loop for final state

q2_2_c0 <z> --> q2_2_c0 <z>

Figure 5.3: SR service: pushdown system model for MOPED
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--- START ---

q0_0_c0 <z>

q1_0_c0 <a z>

q2_0_c0 <b a z>

q2_1_c0 <a z>

q2_2_c0 <z>

q2_2_c0 <z>

--- LOOP ---

q2_2_c0 <z>

Figure 5.4: SR service: counterexample for adapted Behavior Mismatch Free

described in Example 16. Thus, we should now consider the property of Unbounded
Messages introduced in Section 5.4.

For the purpose of building a LTL property that ensure the appearance of Unbounded
Messages in the counterexample returned from MOPED, Looped Transitions obtained
from Algorithm 1 are useful. It is intuitive that a fairness property for all the Looped
Transitions found in given components should ensure the returned counterexample from
pushdown model checking is a trace that goes through all the Looped Transitions at
least once. If the returned counterexample is guaranteed traveling through all Looped
Transitions, loops in the trace are then established and the arbitrary natural number n
indicating Unbounded Messages will also appear. Thus, our purpose of generating suit-
able adaptors with non-regular behavior can be fulfilled. We call this fairness property
the property for Unbounded Messages or the property for Looped Transitions. Practically,
in the set of Looped Transitions, every input transition should have corresponding output
transition(s) and vice versa. A Looped Transition without corresponding Looped Tran-
sition to be synchronized is considered no use in the system and should be deleted from
the set.

As mentioned before, MOPED can only accept LTL formulas in which propositions
are expressed using states or stack symbols in the input pushdown system model. There-
for, it is impossible to express the property for Looped Transitions since propositions for
transition rules are not allowed in MOPED. To solve this situation, special stack sym-
bols for marking Looped Transitions are introduced. Transition rules related to Looped
Transitions are modified to insert corresponding special stack symbols. Thus, we can still
specify propositions for Looped Transitions through these special stack symbols. For the
SR service, the Looped Transitions obtained in Example 15 is the union of ∆loop

1 and
∆loop

2 . The set of Looped Transitions of the SR service is as follows:

∆loop
SR = { (q11, !c, q11), (q12, ?c, q12), }

According to the above two Looped Transitions of the SR service, we can build the
property for Looped Transitions, i.e., property for Unbounded Messages, for MOPED as
follows:

( <> push c ) && ( <> pop c )
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Note that push c and pop c are special stack symbols for Looped Transitions ∆loop
SR .

push c corresponds to the pop transition (q11, !c, q11). pop c corresponds to the push
transition (q12, ?c, q12). Using the two special stack symbols, we modify the correspond-
ing transition rules in the pushdown system model for MOPED shown in Fig. 5.3. The
modified pushdown system model is shown in Fig. 5.5. The pattern of modification of
transition rule is as follows:

• For a push transition rule s1 <a> --> s2 <b a> which pushes a symbol b, the
transition is modified as two transition rules: s1 <a> --> s2 <push b a> and s2

<push b> --> s2 <b> where push b is a special stack symbol.

• For a pop transition rule s1 <a> --> s2 <> which pops a symbol a, the transition
is modified as two transition rules: s1 <a> --> s1 <pop a> and s1 <pop a> -->

s2 <> where pop a is a special stack symbol.

For example, transition rule q1 0 c0 <a> --> q1 0 c0 <c a> in Fig. 5.3 is modi-
fied as two transition rules q1 0 c0 <a> --> q1 0 c0 <push c a> and q1 0 c0 <c> -->

q1 0 c0 <push c c>. It should be noted that for the SR service, not every transition
rules pushing or popping message c is needed to be modified. Composite states in both
sides of a transition rule is checked to confirm whether the modification is needed.

Now we can define the property ϕ necessary for adaptors: the conjunction of the
property of adapted Behavior Mismatch Free and the property for Looped Transitions.
For the SR service, ϕ is as follows:

( <> ( q2 2 c0 && z ) ) && ( <> push c ) && ( <> pop c )

The counterexample returned by pushdown model checking for the negation of the
property ϕ using MOPED is shown Fig. 5.6. If a configuration has the special symbols
push c or pop c in its stack, this configuration is no use and can be ignored. By ex-
amining this trace, we can confirm that this time the Unbounded Message c appears in
the counterexample. Therefore, the counterexample is correct for the SR service and a
suitable adaptor for the SR service can be generated from this trace.

5.6 Adaptor Generation from Counterexample

In Section 5.5, the process of obtaining a counterexample by pushdown model checking
is introduced. The obtained counterexample is a trace representing good behavior in the
over-behavioral system behavior composed from given components and their Coordina-
tor. The so called good behavior means the behavior whose execution avoids behavior
mismatches of given components as well as make sure the Unbounded Messages of given
components appear. This is achieved by pushdown model checking for the property ϕ
necessary for adaptors of given components where ϕ consists of two properties: the prop-
erty of Behavior Mismatch Free and the property for Unbounded Messages or Looped
Transitions. In this section, we will show how to generate the behavior interface of an
adaptor, i.e., an IPS, from a counterexample returned by pushdown model checking.
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#initial state

(q0_0_c0 <z>)

#transition rules

q0_0_c0 <a> --> q1_0_c0 <a a> q0_0_c0 <c> --> q1_0_c0 <a c>

q0_0_c0 <b> --> q1_0_c0 <a b> q0_0_c0 <z> --> q1_0_c0 <a z>

q0_0_c0 <b> --> q0_1_c0 <>

q0_1_c0 <a> --> q1_1_c0 <a a> q0_1_c0 <c> --> q1_1_c0 <a c>

q0_1_c0 <b> --> q1_1_c0 <a b> q0_1_c0 <z> --> q1_1_c0 <a z>

q0_1_c0 <c> --> q0_1_c0 <pop_c>

q0_1_c0 <pop_c> --> q0_1_c0 <>

q0_1_c0 <a> --> q0_2_c0 <>

q0_2_c0 <a> --> q1_2_c0 <a a> q0_2_c0 <c> --> q1_2_c0 <a c>

q0_2_c0 <b> --> q1_2_c0 <a b> q0_2_c0 <z> --> q1_2_c0 <a z>

q1_0_c0 <a> --> q1_0_c0 <push_c a> q1_0_c0 <c> --> q1_0_c0 <push_c c>

q1_0_c0 <b> --> q1_0_c0 <push_c b> q1_0_c0 <z> --> q1_0_c0 <push_c z>

q1_0_c0 <push_c> --> q1_0_c0 <c>

q1_0_c0 <a> --> q2_0_c0 <b a> q1_0_c0 <c> --> q2_0_c0 <b c>

q1_0_c0 <b> --> q2_0_c0 <b b> q1_0_c0 <z> --> q2_0_c0 <b z>

q1_0_c0 <b> --> q1_1_c0 <>

q1_1_c0 <a> --> q1_1_c0 <push_c a> q1_1_c0 <c> --> q1_1_c0 <push_c c>

q1_1_c0 <b> --> q1_1_c0 <push_c b> q1_1_c0 <z> --> q1_1_c0 <push_c z>

q1_1_c0 <push_c> --> q1_1_c0 <c>

q1_1_c0 <a> --> q2_1_c0 <b a> q1_1_c0 <c> --> q2_1_c0 <b c>

q1_1_c0 <b> --> q2_1_c0 <b b> q1_1_c0 <z> --> q2_1_c0 <b z>

q1_1_c0 <c> --> q1_1_c0 <pop_c>

q1_1_c0 <pop_c> --> q1_1_c0 <>

q1_1_c0 <a> --> q1_2_c0 <>

q1_2_c0 <a> --> q1_2_c0 <push_c a> q1_2_c0 <c> --> q1_2_c0 <push_c c>

q1_2_c0 <b> --> q1_2_c0 <push_c b> q1_2_c0 <z> --> q1_2_c0 <push_c z>

q1_2_c0 <push_c> --> q1_2_c0 <c>

q1_2_c0 <a> --> q2_2_c0 <b a> q1_2_c0 <c> --> q2_2_c0 <b c>

q1_2_c0 <b> --> q2_2_c0 <b b> q1_2_c0 <z> --> q2_2_c0 <b z>

q2_0_c0 <b> --> q2_1_c0 <>

q2_1_c0 <c> --> q2_1_c0 <pop_c>

q2_1_c0 <pop_c> --> q2_1_c0 <>

q2_1_c0 <a> --> q2_2_c0 <>

#self-transition from final state(s)

q2_2_c0 <z> --> q2_2_c0 <z>

Figure 5.5: SR service: pushdown system model for MOPED with special stack symbols
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--- START ---

q0_0_c0 <z>

q1_0_c0 <a z>

q1_0_c0 <push_c a z>

q1_0_c0 <c a z>

q1_0_c0 <push_c c a z>

q1_0_c0 <c c a z>

q2_0_c0 <b c c a z>

q2_1_c0 <c c a z>

q2_1_c0 <pop_c c a z>

q2_1_c0 <c a z>

q2_1_c0 <pop_c a z>

q2_1_c0 <a z>

q2_2_c0 <z>

q2_2_c0 <z>

--- LOOP ---

q2_2_c0 <z>

Figure 5.6: SR service: counterexample for adapted Behavior Mismatch Free and Un-
bounded Messages

Generally, a counterexample is a trace of execution represented by a sequence of con-
figurations. A configuration is a pair consists of a composite state and the corresponding
stack contents represented by a sequence of stack symbols. In the approach, we provide
an algorithm which directly converts the sequence of configurations into the behavior
interface of an adaptor represented by an IPS. The idea of adaptor generation from a
counterexample is quite simple. First, for each configuration in the counterexample, the
composite state could be taken as a state of an IPS, i.e., the adaptor we want to generate.
Then transitions are generated to connect these states following the order of the sequence
of configurations. Recall there are three kinds of transitions in an IPS: push, pop, and
internal. Generally, we generation transitions by checking the corresponding stack con-
tents to figure out which kind of transition should be generated and then generate the
transitions with information in corresponding configurations.

For more detailed explanation, Algorithm 2 shows the algorithm for generating an
adaptor from a counterexample obtained from pushdown model checking using MOPED
for negation of the property ϕ. In the algorithm, the input is a finite sequence of configu-
rations which are pairs of states and stack contents. Configurations in the counterexample
are denoted by ci = (si, wi), i ∈ [0,m]. The natural number m indicates the number of
configurations. Note that the last input is a natural number k indicates the loop start
index of the counterexample. The natural number k is important because a counterexam-
ple returned by model checkers is actually expressed by two sequences of configurations
and the second one shows a looped trace of the counterexample. Thus, a counterexample
is actually an ω infinite trace

c0c1c2 . . . ck−1 (ckck+1 . . . cm)
ω
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According to the above sequence of configurations, the configuration next to the last
configuration cm is ck which is the configuration starting the looped trace. Now we may
explain the details in Algorithm 2 as follows:

Algorithm 2: Counterexample to adaptor

Input: A set of composable IA4AD: Pi = (Qi, q
0
i , A

I
i , A

O
i , A

H
i ,∆i, q

f
i ), i ∈ [1, n];

Configurations ci = (si, wi), i ∈ [0,m]; Loop start index k.
Output: Adaptor D = (QD, q

0
D,ΓD, z, TD, FD)

1 QD ←− {sk}; q0D ←− s0; T ←− ∅;
2 ΓD :=

∪
i A

O
i ∪ {z} ∪ {ϵ};

3 foreach ci = (si, wi), i ∈ [0,m] do
4 if i = m then
5 (s′i, w

′
i) = (sk, wk)

6 else
7 (s′i, w

′
i) = (si+1, wi+1)

8 QD ←− QD ∪ {si};
9 if |wi| − |w′

i| = 1 then
10 TD ←− TD ∪ {(si, wi(0)) ↪→ (s′i, ϵ)};
11 if |wi| − |w′

i| = −1 then
12 TD ←− TD ∪ {(si, wi(0)) ↪→ (s′i, w

′
i(0)wi(0))};

13 if |wi| − |w′
i| = 0 ∧ s′i ̸= q0D then

14 TD ←− TD ∪ {(si, wi(0)) ↪→ (s′i, w
′
i(0)), (s′i, w

′
i(0)) ↪→ (si, wi(0))};

15 FD ←− QD;
16 return D = (QD, q

0
D,ΓD, z, TD, FD)

1. First, we choose a pair of adjacent two configurations ci = (si, wi) and ci+1 =
(si+1, wi+1) then do the following actions:

(a) Put the two states s1 and si+1 into the set of states of the IPS, i.e., the adaptor
(line 8);

(b) Compare the two stack contents wi and wi+1 for building a transition connect-
ing the above two states (line 9 to 14).

2. Choose another pair of adjacent two configurations and start over until all pairs of
adjacent configurations are processed.

In the step of 1-(b), since an IPS only has push, pop, and internal transitions, adjacent
stack contents are differed by 1 or equal in length. This means, if length of wi is longer
than of wi+1 by 1, the transition connecting si and si+1 is a pop transition; if length of wi is
shorter than of wi+1 by 1, the transition connecting si and si+1 is a push transition. Also, if
length of wi is equal to wi+1, the transition connecting si and si+1 is an internal transition.
Internal transition are actually corresponding to internal actions of given components
and make no communication. Note that the algorithm generates internal transitions
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( si <a b z> )

( si+1 <c a b z> )

( si+2 <a b z> )

?c (push transition)

!c (pop transition) !c <c>

?c <a>

Si

Si+1

Si+2

( si <a b z> )

( si+1 <c a b z> )

( si+2 <a b z> )

?c (push transition)

!c (pop transition) !c <c>

?c <a>

Si

Si+1

Si+2

!c <c>

?c <a>

Si

Si+1

Si+2

Figure 5.7: Counterexample to Adaptor: illustrating for a segment of counterexample

bidirectional (line 14) for the possibility of indetermination of internal transitions in given
components. Also note that we do not generate internal transitions that goes to the
initial state (line 13). This violates the One Session Process Policy in the approach. The
generated IPS, i.e., the adaptor, is then ready to guide the system of components avoiding
behavior mismatches and guaranteeing the appearance of Unbounded Messages.

For more demonstration, Fig. 5.7 shows a graphical illustration for easier understand-
ing. The left part is a segment of counterexample consists of three configurations. The
middle part is the decision from comparison of the stack contents of adjacent two con-
figurations. By Comparing , <a b z> and <c a b z>, the stack contents of the first
and second configurations, we may conclude that si and si+1 are connected by a push
transition which pushes message c into the stack. Similarly, we may conclude that si+1

and si+2 are connected by a pop transition which pops message c from the stack. The
right part is the segment of an IPS showing the states and translations we generated for
the adaptor.

Finally, we would like to give another demonstration on generating an adaptor for the
SR example. The demonstration is shown in Example 17.

Example 17 We follow Algorithm 2 to generate an adaptor from the counterexample
generated by MOPED shown in Fig. 5.6. Note that we ignore configurations having special
stack symbols, i.e., push c and pop c since they are no use in adaptor generation. The
generated adaptor D = (QD, q

0
D,Γ, z, TD, FD) is shown as follows:

• QD = { q0D, q1D, q2D, q3D, q4D }.
• q0D = q0D.

• Γ = { a, b, c } ∪ { z }.
• z ∈ Γ is initial symbol of stack.

• TC = { (q0D, z) ↪→ (q1D, < a >),
(q1D, a) ↪→ (q1D, < c a >),
(q1D, a) ↪→ (q2D, < b a >),
(q1D, c) ↪→ (q2D, < b c >),
(q2D, b) ↪→ (q3D, ϵ),
(q3D, c) ↪→ (q3D, ϵ),
(q3D, a) ↪→ (q4D, ϵ) }

• FD = QD.
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? a <z>

?c <a>

? b <c> ! b <b>

! c <c>

! a <a>

?c <c>

? a <z>

?c <a>

? b <c> ! b <b>

! c <c>

! a <a>

?c <c>

Figure 5.8: SR service: the generated adaptor

Note that q0 D to q4 D represent composite states q 0 0 c0, q 1 0 c0, q 2 0 c0, q 2 1 c0,
and q 2 2 c0. The generated adaptor is drawn in Fig. 5.8. Also note that transition label
?c <a> means a pushing transition that pushes message c into stack while the stack head
symbol is a; transition label !c <c> means a popping transition that pops message c from
stack head while the stack head symbol is c.
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Chapter 6

Tool Implementation

6.1 Overview

For conducting experiments with the approach, a tool is implemented. The architecture
of the tool is shown in Fig. 6.1. As the architecture shows, the tool has two parts. The
first part reads behavior interfaces of components and generates a pushdown system and
LTL properties for MOPED. The second part then reads the counterexample produced
by MOPED after pushdown model checking and generate an adaptor using Algorithm 2.
In general, after reading the input, i.e., behavior interfaces of components, following steps
are processed:

1. Perform compatibility check.

2. Output the Promela model along with the LTL formula of behavior mismatch free
for SPIN.

3. Locate looped transitions in all services.

4. Compute adapted synchronous composition of services with coordinator and output
the pushdown system model for MOPED.

5. Output the LTL formula of property of behavior mismatch free and fairness property
of looped and branching transitions for MOPED.

6. After a counterexample is generated by MOPED, read the counterexample and
generate an IPS, i.e. the adaptor of given services.

Note that in the architecture, the part of detection of behavior mismtach using SPIN
is not shown. This means in the tool, the step of detection of behavior mismatch free
can be omitted if existence of behavior mismatches is already confirmed. In the following
sections, we will describe details of the tool.

6.2 Read Input

First of all, behavior interfaces of components are encoded as input of the tool. The input
file specifies behavior interfaces of components with the following information: a) initial
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Read Input
(Behavior Interfaces)

Compute Coordinator

Compute
Synchronous Composition

with Coordinator
Adaptor

Generation
Generate 

Necessary Property

Pushdown System
& LTL property

Output
Behavior Interface

of Adaptor

Counterexample
Pushdown

Model Checking
(MOPED)

Parse input & Build Pushdown System

Parse Counterexample & Build Adaptor
Read Input

(Behavior Interfaces)

Compute Coordinator

Compute
Synchronous Composition

with Coordinator
Adaptor

Generation
Generate 

Necessary Property

Pushdown System
& LTL property

Output
Behavior Interface

of Adaptor

Counterexample
Pushdown

Model Checking
(MOPED)

Parse input & Build Pushdown System

Parse Counterexample & Build Adaptor

Figure 6.1: Tool Architecture

state; b) final state; c) transitions having labels with prefix of “!” or “?” or no prefix.
The grammar of the input is shown in BNF as follows.

defs

: service defs

| service

component

: START_DEF service_name INIT init_state FINAL final_state transitions

service_name

: IDENTIFIER

init_state

: IDENTIFIER

final_state

: IDENTIFIER

transitions

: transition transitions

| transition

transition
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: ’(’ state ’,’ ’?’ message ’,’ state ’)’

| ’(’ state ’,’ ’!’ message ’,’ state ’)’

| ’(’ state ’,’ message ’,’ state ’)’

state

: IDENTIFIER

message

: IDENTIFIER

The input consists of blocks of specifications of behavior interfaces of components.
Each component has the following information specified:

• service name: name of the component

• init state: the initial state of the component.

• final state: the final state of the component.

• transition: transition rule. tranisions shows sequence of transitions rules. A
transition rule is expressed in the form of (s1, a, s2) where s1 and s2 are state
names and a is the message name with ! or ? prefixed.

• state: state name.

• message: message name.

Note that keywords expressed by capital letters are tokens. START DEF indicats the
start of specification of a component and is expressed as service:: in the input. INIT

indicats the start of specification of initial state and is expressed as init:: in the input.
FINAL indicats the start of specification of initial state and is expressed as final:: in the
input. IDENTIFIER indicates a sequence of alphabets and digits which shows names of
components, states, and messages. In the input, the input/output/internal alphabets of
a components are not explicitly specified. The tool will calculate sets of alphabets from
transitions and generate arraies to keep the alphabets. This should save the efforts of
developers in encoding behavior interfaces of components in the input for the tool.

After the input is read and parsed, the tool will start the first task: compatibility
check. Compatibility check is based the condition of compatibility defined in Def. 14
which includs the following checks:

• Inputs and outputs of a component must be exclusive.

• Different components have exclusive inputs and exclusive outputs.

• Union of inputs and union of outputs are the same set.

• Initial and final states are different states.
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The last check is in the definition of condition of compatibility but defined in constraint
of IA4AD which requires a component be represented as an IA4AD with different initial
and final states. As an example, we use the simple SR service demonstrated in Example 13.
The behavior interfaces of the two services in SR service is encoded as input of the tools
as follows:

# Sender Receiver Example

service:: Sender

init::S0

final::S2

(S0,!a,S1)

(S1,!c,S1)

(S1,!b,S2)

service:: Receiver

init::S0

final::S2

(S0,?b,S1)

(S1,?c,S1)

(S1,?a,S2)

The line started with # is a comment line and is ignored while read by the tool. In the
input, we may use same state names in different components without causing problems in
computation. The tool may display a result of parsing the input which shows contents of
each components including states names, messages, and the result of compatibility check.
The result of parsing is shown as follows:

project_name : sr

num_service : 2

num_message_io: 3

num_message_h : 0

---messages_IO[0]: a

---messages_IO[1]: c

---messages_IO[2]: b

service name: Sender

num_state: 3

---states[0]: S0

---states[1]: S1

---states[2]: S2

init_state : 0

final_state : 2

num_T_i : 0

num_T_o : 3

num_T_h : 0
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T_o[0] : ( 0, 0, 1 )

T_o[1] : ( 1, 1, 1 )

T_o[2] : ( 1, 2, 2 )

service name: Receiver

num_state: 3

---states[0]: S0

---states[1]: S1

---states[2]: S2

init_state : 0

final_state : 2

num_T_i : 3

num_T_o : 0

num_T_h : 0

T_i[0] : ( 0, 2, 1 )

T_i[1] : ( 1, 1, 1 )

T_i[2] : ( 1, 0, 2 )

compatibility check OK!!

initial and final states check OK!!

By reviewing the result of parsing, developers can confirm if components are correctly
specified. For example, if the number of messages are wrong or compatibility check is
failed, there might be typos in names of messages. Also, one may notice that all names
of messages and states are stores as integer numbers which can save execution time in
computation such as comparing message names for synchronization.

6.3 Promela Model for SPIN

After parsing the input, Promela model is generated by the tool for detection of behavior
mismatches. In Promela model, components are intuitively encoded as automata commu-
nicating through a synchronous channel. For example, Promela model for the SR service
is demonstrated below:

#define accept_Sender (Sender:active_state==2)

#define accept_Receiver (Receiver:active_state==2)

/* define names of messages */

mtype = {a, c, b};

/* one synchronous channel for all services */

chan sync_chan = [0] of { mtype };

/* interface protocol of Sender */

proctype Sender(chan q) {
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short active_state;

active_state = 0; /* initial state */

do

:: (active_state == 0) ->

if

:: q!a -> active_state = 1

fi;

:: (active_state == 1) ->

if

:: q!c -> active_state = 1

:: q!b -> active_state = 2

fi;

od

}

/* interface protocol of Receiver */

proctype Receiver(chan q) {

short active_state;

active_state = 0; /* initial state */

do

:: (active_state == 0) ->

if

:: q?b -> active_state = 1

fi;

:: (active_state == 1) ->

if

:: q?c -> active_state = 1

:: q?a -> active_state = 2

fi;

od

}

/* init process */

init {

run Sender(sync_chan);

run Receiver(sync_chan);

}

The structure is same as the Promela model for the FMUS service demonstrated in
Section 4.2. The first two lines define the propositions of acceptance condition of the
two services. The two propositions are also used to define the LTL formula of Behavior
Mismatch Free as follows:

<> ( accept Sender && accept Receiver )

Behavior of components are defined as processes in Promela separately within the
block marked by do and od. Processes in Promla model are communicating through a
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synchronous channel q as declared after keyword proctype with parameter (chan q).
Then we can perform detection of behavior mismatches by model checking using SPIN.

6.4 Pushdown Systems Model for MOPED

Note that since MOPED only accepts a pushdown system model as input, the tool has
to generate the Coordinator for input components and then compute the adapted syn-
chronous composition of the components and their Coordinator. The tool then output the
composed IPS as a pushdown system model for MOPED. The tool also prepares a LTL
formula which is the conjunction of the property of adapted Behavior Mismatch Free and
the property for Unbounded Messages / Looper Transitions. As mentioned in Section 5.4,
Looped Transitions are obtained following Algorithm 1 through finding SCCs using the
Tarjan’s algorithm. Then pushdown model checking is performed to check the pushdown
system model for the LTL property.

The pushdown system model for the SR service is already shown in Fig. 5.5 and ex-
planations about the pushdown system model are already given in Section 5.5. Therefore,
demonstration on the SR service is skipped here. However, we would like to address
again that since MOPED does not provide functionality of labeling transitions but only
states and stack symbols can be used as propositions, modifications on transition rules
are necessary for expressing fairness property of Looped Transitions. For a push transi-
tion rule, for example s1 <a> --> s2 <b a> which pushes a symbol b, the transition is
modified as two transitions: s1 <a> --> s2 <push b a> and s2 <push b> --> s2 <b>.
Similarly, for a pop transition , for example s1 <a> --> s2 <> which pops a symbol a,
the transition is modified as two transitions: s1 <a> --> s1 <pop a> and s1 <pop a>

--> s2 <>. The two symbols push b and pop a are then specified as atomic propositions
in the fairness property.

6.5 Adaptor Generation from Counterexample

When MOPED returned a counterexample after pushdown model checking, the tool reads
the counterexample and generate the adaptor from the counterexample. The computation
follows steps in Algorithm 2. First, the tool read the counterexample and parse the trace
for adaptor generation. Recall a counterexample is a finite sequence of configurations.
The tool parse a counterexample using the following BNF syntax:

trace

: TRACE_START configurations TRACE_LOOP configurations

configurations

: config configurations

| config

config

: state ’<’ stack_contents ’>’

stack_contents
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: stack_symbol stack_contents

| stack_symbol

state

: IDENTIFIER

stack_symbol

: IDENTIFIER

Basically, a counterexample consists of two sequences of configurations. We use to-
kens TRACE START and TRACE LOOP to express the starting of the two sequences separately.
Each sequence of configurations consists of a list of configurations. Each configuration
consists of a pair of state and stack contents. A stack contents is a list of stack symbols.
Finally, states and stack symbols are marks by token IDENTIFIER. For easier understand-
ing, one may refer to the counterexample for the SR service shown in Fig. 5.6 to confirm
the above syntax.

After the tool reads and parses the counterexample. A result is generated for confirm-
ing correctness of the parsing. For example, the result of parsing the counterexample of
the SR service shown in Fig. 5.6 is listed as follows:

num_messages : 4

num_states : 5

num_config[0], num_config[1] : 10, 1

---messages[0]: z

---messages[1]: a

---messages[2]: c

---messages[3]: b

---states[0]: q0_0

---states[1]: q1_0

---states[2]: q2_0

---states[3]: q2_1

---states[4]: q2_2

---config[0][0]:

------state = 0 (q0_0_c0)

------stack_length = 1

---------stack[0] = 0 (z)

---config[0][1]:

------state = 1 (q1_0_c0)

------stack_length = 2

---------stack[0] = 1 (a)

---------stack[1] = 0 (z)

---config[0][2]:

------state = 1 (q1_0_c0)
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------stack_length = 3

---------stack[0] = 2 (c)

---------stack[1] = 1 (a)

---------stack[2] = 0 (z)

---config[0][3]:

------state = 1 (q1_0_c0)

------stack_length = 4

---------stack[0] = 2 (c)

---------stack[1] = 2 (c)

---------stack[2] = 1 (a)

---------stack[3] = 0 (z)

---config[0][4]:

------state = 2 (q2_0_c0)

------stack_length = 5

---------stack[0] = 3 (b)

---------stack[1] = 2 (c)

---------stack[2] = 2 (c)

---------stack[3] = 1 (a)

---------stack[4] = 0 (z)

---config[0][5]:

------state = 3 (q2_1_c0)

------stack_length = 4

---------stack[0] = 2 (c)

---------stack[1] = 2 (c)

---------stack[2] = 1 (a)

---------stack[3] = 0 (z)

---config[0][6]:

------state = 3 (q2_1_c0)

------stack_length = 3

---------stack[0] = 2 (c)

---------stack[1] = 1 (a)

---------stack[2] = 0 (z)

---config[0][7]:

------state = 3 (q2_1_c0)

------stack_length = 2

---------stack[0] = 1 (a)

---------stack[1] = 0 (z)

---config[0][8]:

------state = 4 (q2_2_c0)

------stack_length = 1

---------stack[0] = 0 (z)

---config[0][9]:

------state = 4 (q2_2_c0)

------stack_length = 1

---------stack[0] = 0 (z)

---config[1][0]:

------state = 4 (q2_2_c0)
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------stack_length = 1

---------stack[0] = 0 (z)

The result list shows the data gained from the input counterexample. First, there is a
summary which lists global information got from parsing: number of messages, number of
states, and number of configurations. Note that there are two numbers of configurations
in which the second is the looped trace. In the SR service, since we only allow one final
states in each component, the is also only one composite final state which is the one itself
constructs the looped trace. Then names of messages and states corresponding to their
indexes assigned by the tool is listed. Finally, details of read configurations are listed with
following data:

• Index of configuration.

• Index and name of the composite state of the configuration.

• Length of the stack of the configuration.

• Stack contents of the configuration which lists the index and name of every stack
symbol.

Developers can check the result and see if the parse is correctly done by the tool. Right
after the parsing result, a briefing of generated adaptor is also listed. The information of
the generated adaptor can then be used for further use such as implementation or drawing
a graph for illustration. As an example the adaptor generated from the counterexample
of the SR service shown in Fig. 5.6 is listed as follows:

---adaptor

------num_state : 5

------num_T_i : 4

------num_T_o : 3

------num_T_h : 0

---------T_i[0] : ( 0 < 0 > --> 1 < 1, 0 > )

---------T_i[1] : ( 1 < 1 > --> 1 < 2, 1 > )

---------T_i[2] : ( 1 < 2 > --> 1 < 2, 2 > )

---------T_i[3] : ( 1 < 2 > --> 2 < 3, 2 > )

---------T_o[0] : ( 2 < 3 > --> 3 < -1, -1 > )

---------T_o[1] : ( 3 < 2 > --> 3 < -1, -1 > )

---------T_o[2] : ( 3 < 1 > --> 4 < -1, -1 > )

Note that in above adaptor, zero and positive integers in transitions represent mes-
sages while -1 represents empty, i.e., ϵ. For example, the last transition T o[0]: (3 <1>

--> 4 <-1,-1>) is a pop transition which pops the message a indexed by 1. This transi-
tion is actually expressing q2 1 <a> --> q2 2 <> in the form of transitions in pushdown
system model for MOPED. Though the adaptor is shown using integers, we may refer
to the parsing result to confirm the names of messages and states in each transition of
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q0_0

q1_0

?a<z>

?c<a>?c<c>

q2_0

?b<c>

q2_1

!b

!c

q2_2

!a

Figure 6.2: SR service: adaptor drawn by Graphviz

the adaptor. We may further compare withe the adaptor of the SR service shown in Ex-
ample 17 to confirm that the adaptor generated by the tool is the one we are expecting.
Also, the adaptor of the SR service generated by the tool listed above can be drawn in
graph which is just the one already showed in Fig. 5.8. Also, the tool provides an output
for drawing graph of generated adaptor using Graphviz [17] so that we may see the gen-
erated adaptor being demonstrated graphically as soon as it is generated. The output for
Graphviz for the SR services is shown below and the drawing using Graphviz is shown in
Fig. 6.2. Actually the adaptor shown in Fig. 5.8 is based on the graph shown in Fig. 6.2.

digraph Adaptor {

q0_0 -> q1_0 [label="?a<z>"];

q1_0 -> q1_0 [label="?c<a>"];

q1_0 -> q1_0 [label="?c<c>"];

q1_0 -> q2_0 [label="?b<c>"];

q2_0 -> q2_1 [label="!b"];

q2_1 -> q2_1 [label="!c"];

q2_1 -> q2_2 [label="!a"];

}
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Chapter 7

Experiments

This chapter demonstrates some experiments for the approach. All the experiments are
conducted using the tool introduced in Chapter 6. The purpose of the experiments is to
test the approach proposed in this work on the following aspects:

• To confirm the solution to the motivational example, the FMUS service

The FMUS service is a typical problem with reordering behavior mismatches which
need an adaptor with non-regular adaptor. We want to see if the approach can
successfully solve this problem.

• To examine the feasibility of implementing adaptors on real platforms of
software development

The approach uses pushdown systems model to represent adaptors which is unusual
in software design. We want to make sure the modeling in the approach is applicable
on real platform of software development. For the FMUS services, we choose the
BPEL implementation of web services and give some direction on developing BPEL
adaptors.

• To examine if the approach is applicable on common adaptation problems

The motivational example is typical but not representative of common adaptation
problems. We want examine other problems of adaptation commonly encountered
and see if the approach is still applicable. According to our investigation, adaptation
problems in which components have signature mismatches and/or branchings are
enumerated.

7.1 Fresh Market Update Service

In this section, the motivational example Fresh Market Update Service shown in Fig. 3.5 is
subject for the experiments. The behavior interface of the three services to be composed
are encoded in an input file shown in Fig. 7.1. For each service, the service name as well as
initial and final states are explicitly specified. Then transitions are specified with special
symbols “!” and “?” to define input and output transitions respectively. This input file
is read and parse by the tool. The parsing result is shown below. We may confirm the
parsing is correct and the compatibility check is passed.

84



service:: OnlineStockBroker

init::S0

final::S4

(S0,!RawData,S1) (S1,!RawData,S1) (S1,!EndOfData,S2)

(S2,!Start,S3) (S3,?Ack,S4)

service:: ResearchDepartment

init::S0

final::S5

(S0,?RawData,S1) (S1,!Data,S2) (S2,?RawData,S3)

(S3,!Data,S2) (S2,?EndOfData,S4) (S4,!Complete,S5)

service:: Investor

init::S0

final::S4

(S0,?Start,S1) (S1,?Data,S2) (S2,?Data,S2)

(S2,?Complete,S3) (S3,!Ack,S4)

Figure 7.1: FMUS service: input file

project_name : fmus

num_service : 3

num_message_io: 6

num_message_h : 0

---messages_IO[0]: RawData

---messages_IO[1]: EndOfData

---messages_IO[2]: Start

---messages_IO[3]: Data

---messages_IO[4]: Complete

---messages_IO[5]: Ack

service name: OnlineStockBroker

num_state: 5

---states[0]: S0

---states[1]: S1

---states[2]: S2

---states[3]: S3

---states[4]: S4

init_state : 0

final_state : 4

num_T_i : 1

num_T_o : 4

num_T_h : 0

T_i[0] : ( 3, 5, 4 )

85



T_o[0] : ( 0, 0, 1 )

T_o[1] : ( 1, 0, 1 )

T_o[2] : ( 1, 1, 2 )

T_o[3] : ( 2, 2, 3 )

service name: ResearchDepartment

num_state: 6

---states[0]: S0

---states[1]: S1

---states[2]: S2

---states[3]: S3

---states[4]: S4

---states[5]: S5

init_state : 0

final_state : 5

num_T_i : 3

num_T_o : 3

num_T_h : 0

T_i[0] : ( 0, 0, 1 )

T_i[1] : ( 2, 0, 3 )

T_i[2] : ( 2, 1, 4 )

T_o[0] : ( 1, 3, 2 )

T_o[1] : ( 3, 3, 2 )

T_o[2] : ( 4, 4, 5 )

service name: Investor

num_state: 5

---states[0]: S0

---states[1]: S1

---states[2]: S2

---states[3]: S3

---states[4]: S4

init_state : 0

final_state : 4

num_T_i : 4

num_T_o : 1

num_T_h : 0

T_i[0] : ( 0, 2, 1 )

T_i[1] : ( 1, 3, 2 )

T_i[2] : ( 2, 3, 2 )

T_i[3] : ( 2, 4, 3 )

T_o[0] : ( 3, 5, 4 )

compatibility check OK!!

initial and final states check OK!!
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After parsing the input file, the tool generates Promela model for SPIN to perform de-
tection of behavior mismatches by model checking for the property of Behavior Mismatch
Free. This part is already described in detail in Section 4.2 and the existence of behavior
mismatches is confirmed in the FMUS service by the approach. Thus, there is no need
to explain this part again. We may proceed to the part of pushdown model checking and
adaptor generation.

The tool also computes Coordinator for the FMUS service as already shown in Ex-
ample 12 and generates a pushdown system model for MOPED which partly shown in
Fig. 7.2. Recall that the synchronous composition of the three services with their coor-
dinator is an IPS, this pushdown system model is basically encoded from the IPS by the
tool. The LTL formula shown in Fig. 7.3 is the conjunction of behavior mismatch free <>
( q4 5 4 c0 && z ) and fairness property of Looped Transitions. As already explained
in Section 5.5 and Section 6.4, to express the fairness property of Looped Transitions
found, modification on transition rules using special stack symbols are introduced to the
pushdown system model.

After pushdown model checked by MOPED for the negation of the LTL formula, a
counterexample returned and shown in Fig. 7.4. As already mentioned in Section 5.5, in
order to satisfy fairness property of Looped Transitions, Looped Transitions are traveled
in the trace. This can be confirmed by the existence of special symbols shown in stack
contents of configurations in the counterexample. The counterexample then is read by the
tool and an adaptor represented by IPS is generated. Behavior interface of the generated
adaptor returned by the tool is shown in Fig. 7.5. The data can be used to constructed
an IPS shown in Fig. 7.6 and draw a graphical illustration showed in Fig. 7.7.

Comparing to the expected adaptor of the FMUS service in Example 10, the generated
adaptor has the following behavior:

?R !R ?D (?R !R ?D)n−1 ?R !R ?E ?S !S ?D !D !E !Dn ?C !C ?A !A, n > 1

It is easy to confirm that in both behavior, all messages received by the two adaptors
are finally sent, which satisfies the basic requirement of an adaptor, i.e., the property
of adapted Behavior Mismatch Free. Now we look at the part related to Unbounded
Messages. In the generated adaptor, the Unbounded Messages are emphasized by natural
numbers n and n−1. This means the Unbounded Messages are successfully captured while
recalling that the expected adaptor is designed for the purpose of showing Unbounded
Messages. It should be noticed that in the behavior of the generated, n and n−1 actually
are resulted by the structures of behavior interfaces of the three services where messages
RawData and Data are not all packed in one group but separated. We may conclude that
the approach is successful on generating adaptors with non-regular behavior for behavioral
mismatching components.

7.2 BPEL implementation

Since the approach uses pushdown system model for representing adaptors which is un-
usual to general implementation of software components or web services. We should
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#initial state

(q0_0_0_c0 <z>)

#transition rules

q0_0_0_c0 <RawData> --> q1_0_0_c0 <RawData RawData>

q0_0_0_c0 <EndOfData> --> q1_0_0_c0 <RawData EndOfData>

q0_0_0_c0 <Start> --> q1_0_0_c0 <RawData Start>

q0_0_0_c0 <Data> --> q1_0_0_c0 <RawData Data>

q0_0_0_c0 <Complete> --> q1_0_0_c0 <RawData Complete>

q0_0_0_c0 <Ack> --> q1_0_0_c0 <RawData Ack>

q0_0_0_c0 <z> --> q1_0_0_c0 <RawData z>

q0_0_0_c0 <RawData> --> q0_1_0_c0 <>

q0_0_0_c0 <Start> --> q0_0_1_c0 <>

.....

q1_1_3_c0 <RawData> --> q1_1_3_c0 <push_RawData RawData>

q1_1_3_c0 <EndOfData> --> q1_1_3_c0 <push_RawData EndOfData>

q1_1_3_c0 <Start> --> q1_1_3_c0 <push_RawData Start>

q1_1_3_c0 <Data> --> q1_1_3_c0 <push_RawData Data>

q1_1_3_c0 <Complete> --> q1_1_3_c0 <push_RawData Complete>

q1_1_3_c0 <Ack> --> q1_1_3_c0 <push_RawData Ack>

q1_1_3_c0 <z> --> q1_1_3_c0 <push_RawData z>

q1_1_3_c0 <push_RawData> --> q1_1_3_c0 <RawData>

q1_1_3_c0 <RawData> --> q2_1_3_c0 <EndOfData RawData>

q1_1_3_c0 <EndOfData> --> q2_1_3_c0 <EndOfData EndOfData>

q1_1_3_c0 <Start> --> q2_1_3_c0 <EndOfData Start>

q1_1_3_c0 <Data> --> q2_1_3_c0 <EndOfData Data>

q1_1_3_c0 <Complete> --> q2_1_3_c0 <EndOfData Complete>

q1_1_3_c0 <Ack> --> q2_1_3_c0 <EndOfData Ack>

q1_1_3_c0 <z> --> q2_1_3_c0 <EndOfData z>

q1_1_3_c0 <RawData> --> q1_2_3_c0 <Data RawData>

q1_1_3_c0 <EndOfData> --> q1_2_3_c0 <Data EndOfData>

.....

q4_5_3_c0 <RawData> --> q4_5_4_c0 <Ack RawData>

q4_5_3_c0 <EndOfData> --> q4_5_4_c0 <Ack EndOfData>

q4_5_3_c0 <Start> --> q4_5_4_c0 <Ack Start>

q4_5_3_c0 <Data> --> q4_5_4_c0 <Ack Data>

q4_5_3_c0 <Complete> --> q4_5_4_c0 <Ack Complete>

q4_5_3_c0 <Ack> --> q4_5_4_c0 <Ack Ack>

q4_5_3_c0 <z> --> q4_5_4_c0 <Ack z>

#self-transition from final state(s)

q4_5_4_c0 <z> --> q4_5_4_c0 <z>

Figure 7.2: FMUS service: part of pushdown system model for MOPED
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( <> ( q4_5_4_c0 && z ) ) && ( <> push_RawData ) &&

( <> pop_RawData ) && ( <> push_Data ) && ( <> pop_Data )

Figure 7.3: FMUS service: LTL formula for pushdown model checking

--- START ---

q0_0_0_c0 <z>

q1_0_0_c0 <RawData z>

q1_1_0_c0 <z>

q1_2_0_c0 <Data z>

q1_2_0_c0 <push_RawData Data z>

q1_2_0_c0 <RawData Data z>

q1_3_0_c0 <pop_RawData Data z>

q1_3_0_c0 <Data z>

q1_2_0_c0 <push_Data Data z>

q1_2_0_c0 <Data Data z>

q1_2_0_c0 <push_RawData Data Data z>

q1_2_0_c0 <RawData Data Data z>

q1_3_0_c0 <pop_RawData Data Data z>

q1_3_0_c0 <Data Data z>

q2_3_0_c0 <EndOfData Data Data z>

q3_3_0_c0 <Start EndOfData Data Data z>

q3_3_1_c0 <EndOfData Data Data z>

q3_2_1_c0 <push_Data EndOfData Data Data z>

q3_2_1_c0 <Data EndOfData Data Data z>

q3_2_2_c0 <EndOfData Data Data z>

q3_4_2_c0 <Data Data z>

q3_4_2_c0 <pop_Data Data z>

q3_4_2_c0 <Data z>

q3_4_2_c0 <pop_Data z>

q3_4_2_c0 <z>

q3_5_2_c0 <Complete z>

q3_5_3_c0 <z>

q3_5_4_c0 <Ack z>

q4_5_4_c0 <z>

q4_5_4_c0 <z>

--- LOOP ---

q4_5_4_c0 <z>

Figure 7.4: FMUS service: counterexample
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---adaptor

------num_state : 15

------num_T_i : 9

------num_T_o : 8

------num_T_h : 0

---------T_i[0] : ( 0 < 0 > --> 1 < 1, 0 > )

---------T_i[1] : ( 2 < 0 > --> 3 < 2, 0 > )

---------T_i[2] : ( 3 < 2 > --> 3 < 1, 2 > )

---------T_i[3] : ( 4 < 2 > --> 3 < 2, 2 > )

---------T_i[4] : ( 4 < 2 > --> 5 < 3, 2 > )

---------T_i[5] : ( 5 < 3 > --> 6 < 4, 3 > )

---------T_i[6] : ( 7 < 3 > --> 8 < 2, 3 > )

---------T_i[7] : ( 10 < 0 > --> 11 < 5, 0 > )

---------T_i[8] : ( 12 < 0 > --> 13 < 6, 0 > )

---------T_o[0] : ( 1 < 1 > --> 2 < -1, -1 > )

---------T_o[1] : ( 3 < 1 > --> 4 < -1, -1 > )

---------T_o[2] : ( 6 < 4 > --> 7 < -1, -1 > )

---------T_o[3] : ( 8 < 2 > --> 9 < -1, -1 > )

---------T_o[4] : ( 9 < 3 > --> 10 < -1, -1 > )

---------T_o[5] : ( 10 < 2 > --> 10 < -1, -1 > )

---------T_o[6] : ( 11 < 5 > --> 12 < -1, -1 > )

---------T_o[7] : ( 13 < 6 > --> 14 < -1, -1 > )

Figure 7.5: FMUS service: adaptor (tool output)
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D = (QD, q
0
D,Γ, z, TD, FD)

where

• QD = { q0D, q1D, q2D, q3D, q4D, q5D, q6D, q7D, q8D, q9D,
q10D, q11D, q12D, q13D, q14D }.

• q0D = q0D.

• Γ = { z, RawData, Data, EndOfData, Start, Complete, Ack }.
• z ∈ Γ is initial symbol of stack.

• TD = { (q0D, z) ↪→ (q1D, < RawData z >),
(q2D, z) ↪→ (q3D, < Data z >),
(q3D, Data) ↪→ (q3D, < RawData Data >),
(q4D, Data) ↪→ (q3D, < Data Data >),
(q4D, Data) ↪→ (q5D, < EndOfData Data >),
(q5D, EndOfData) ↪→ (q6D, < Start EndOfData >),
(q7D, EndOfData) ↪→ (q8D, < Data EndOfata >),
(q10D, z) ↪→ (q11D, < Complete z >),
(q12D, z) ↪→ (q13D, < Ack z >),
(q1D, RawData) ↪→ (q2D, ϵ),
(q3D, RawData) ↪→ (q4D, ϵ),
(q6D, Start) ↪→ (q7D, ϵ),
(q8D, Data) ↪→ (q9D, ϵ),
(q9D, EndOfData) ↪→ (q10D, ϵ),
(q10D, Data) ↪→ (q10D, ϵ),
(q11D, Complete) ↪→ (q12D, ϵ),
(q13D, Ack) ↪→ (q14D, ϵ) }

• FD = QD.

Figure 7.6: FMUS service: adaptor as an IPS
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!RawData

!EndOfData

!Start
?Ack <z>

!RawData

?RawData <z>

!Complete

!Data

?EndOfData <Data>
?Start <EndOfData>

?Complete <z>

?Data <z>

!Ack

!Data

?RawData <Data>

?Data <Data>

?Data <EndOfData>

!RawData

!EndOfData

!Start
?Ack <z>

!RawData

?RawData <z>

!Complete

!Data

?EndOfData <Data>
?Start <EndOfData>

?Complete <z>

?Data <z>

!Ack

!Data

?RawData <Data>

?Data <Data>

?Data <EndOfData>

Figure 7.7: FMUS service: adaptor

confirm if the modeling of adaptors is applicable on implementing real application. In
this section, the generated adaptor of the FMUS service is used in implementation and
we choose BPEL as the development platform of the adaptor of the FMUS service. The
reasons of choosing BPEL are as follows:

• Technologies of web services are more popular, i.e., state of the art. than traditional
software components. Furthermore, web services are considered next generation of
software components.

• Definition languages of protocol of web services are open standards. Generally, there
is no problem in representing protocols of web services by IA4ADs introduced in
the approach. Therefore, if the implementation of adaptors modeled by pushdown
systems in the approach is confirmed feasible on developing platforms of web ser-
vices, everyone can perform adaptor generation for web services by following the
approach.

The idea of implementing an adaptor in BPEL platform is quite simple. Since an
adaptor is represented by an IPS which is generally a pushdown system, we may treat a
pushdown system an finite state machine with a stack interacting with it. Therefore, it
should work by implementing two processes: one for the finite state machine part of the
pushdown system, and one for the stack part of the pushdown system. For the FMUS
service, the structure of the adapted system is then as shown in Fig. 7.8.

Since the approach only provides adaptor generation for given behavior interfaces of
components and the behavior interfaces are quite abstracted to meet level of details of
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Online Stock Broker Research DepartmentInvestor

BPEL-adaptor

BPEL-stack

Adaptor

Online Stock Broker Research DepartmentInvestor

BPEL-adaptor

BPEL-stack

Adaptor
BPEL-adaptor

BPEL-stack

Adaptor

Figure 7.8: FMUS service: BPEL adaptor

implementation of BPEL process. We only provide directions of how to implement gen-
erated adaptors as BPEL services. The very details such type of messages or variables in
messages should depend on problems of real applications that take the approach of adap-
tor generation. Now we give directions of implementing BPEL processes for generated
adaptors. Basically, an adaptor is implemented as two BPEL process adaptor and built
two BPEL processes: BPEL-adaptor represents the finite state machine part of the adap-
tor and BPEL-stack represents the stack part of the adaptor. Directions of implementing
the two BPEL processes are as follows:

• Building BPEL-adaptor

This BPEL process captures the finite state machine part of adaptor. Note that
BPEL is a description language for workflow so that all states are implemented as
activities while transitions are implemented as service actions (invoke/receive). The
activity after a receive action should push the received message into the stack by
call the push action of the BPEL-stack process. The activity before an invoke action
should prepare the message to be sent by calling the pop action of the BPEL-stack
process. When building a BPEL process, all messages require corresponding port
types for sending and receiving defined in WSDL [18]. Messages can be implemented
as data types such as integer, string, or composite data type depending on signatures
of given services.

• Building BPEL-stack

This BPEL process performs functionalities of a standard stack. The stack content
can be defined as an array of user-defined message type and its property MaxOccurs
has to be set to unbounded. Thus, the push action receives a message and add it
into the array with increasing the length of array by one in the next activity. The
implementation of pop transition is similar but length of array is decreased by one.

By following the above directions, we implemented the generated adaptor shown in
Fig. 7.7 as two BPEL processes. The finite state machine part is partly shown in Fig. 7.9
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Figure 7.9: FMUS service: BPEL-adaptor process

and the stack part is partly shown in Fig. 7.10. The implementation is down using Net-
beans IDE [19] which provides graphical editing and testing environment for developing
BPEL process. For testing the adapted system of the FMUS service, we also implemented
the three services Online Stock Broker, Research Department, and Investor as BPEL pro-
cesses and assembled a composite application shown in Fig. 7.11. Some test cases are
specified and the tests were successful. Therefore, we may conclude that the approach
is applicable on web services in BPEL platform. For given components whose protocols
are specified as BPEL processes, the approach can support the adaptor generation for
these components if needed. The generated adaptor can be then implemented as BPEL
processes and composed with the components to build an adapted system.

7.3 General Cases of Adaptation

The FMUS service is a basic ordering behavioral mismatching problem with unbounded
messages. Note that the FMUS service is also the motivational example of this work.
It is obvious that the approach can solve this problem and we gave some evidences to
proof this in the experiment with the FMUS service in section 7.1. However, since we are
dealing with adaptation of software component/web services, general cases of adaptation
problems should also be examined and see if the approach is useful or not in these cases.
By the survey of adaptation problems, we conclude that two general cases of adaptation
problems should be considered:

• There are signature mismatches in behavior interfaces of components.

• There are branchings in behavior interfaces of components.
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Figure 7.10: FMUS service: BPEL-stack process

Figure 7.11: FMUS service: assemble and test
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It is obvious that the above two cases can show separately or together. In the following
sections, the two general cases will be discussed with an example given for demonstration
of applying the approach of adaptation on the two general cases.

7.3.1 Signature Mismatches

In the approach, we assume that there is no signature mismatch in given components
for adaptor generation or signature mismatches are solved somehow before applying the
approach. However, one should admit that signature mismatches are very common in
adaptation problems. In conventional approach of adaptation, developers can specify
different mappings of labels in different adaptation contracts to generate different adaptors
for different cases of the same system.

Though the approach is not designed to deal with generating mapping of labels for
signature mismatches, it is necessary for the approach to give strategies about how to
apply the approach on components with signature mismatches. Basically, when given a
group of components with signature mismatches, names of some messages are not match
so that the components can not pass the compatibility check and therefore the approach
is not applicable. Therefore, what we need to do is to make the group of components
pass the compatibility check. The idea of doing this is introducing special components
that represent specified mappings of labels. Note that the mapping of labels are specified
by developers so that correctness of the mappings is out of the scope of the approach. If
the mapping of labels are correctly specified, the given components along with the special
components representing these mappings should pass the compatibility check. Then we
can apply the approach and proceed to adaptor generation.

We may call the components representing specified mapping of labels Mapping Com-
ponents. Since mappings of labels can vary depending on problems, we only provide
general cases of mappings and the corresponding mapping components. Here three cases
of mappings are considered and the demonstrations of building corresponding mapping
components are shown in Fig. 7.12. In each case, the left part shows behavior segments
of two components while the right part shows a mapping component that provides sig-
nature mapping for the two behavior segments. The first case shown in Fig. 7.12(a) is a
mapping of different message names. In this case, ok sent from one service is expected to
synchronize with ack received by another service. A mapping component is designed to
receive ok and delivers ack so that the synchronization can be done through this mapping
component. The second case shown in Fig. 7.12(b) is a message splitting. Information
of a book in message book is sent by a message while another component receives the
information of the book in two messages title and author. Thus, a mapping compo-
nent representing this message split should receive the message book and separate the
information in book into two messages title and author, then deliver the two messages.
The third case shown in Fig. 7.12(c) is a merging of messages. This case uses the same
message names in second case but opposite direction in communication. In this case, one
component sends information of a book using two messages of title and author while
another component receives the information in one message book. Therefore, a mapping
component should be designed to receive title and author sequentially to merge the two
message and create book for delivery. It should be easy to understand that all these three
cases are not difficult for developers to figure out the mismatches and design correspond-
ing mapping components as long as appropriate specifications of mappings of labels are
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! ok

? ack
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! ack
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(a) message mapping

! book
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? book

! title! author
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? title ? author
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! title! author

? book

! title! author

(b) message splitting

? book

! title ! author

! book

? title ? author

? book

! title ! author

? book

! title ! author

! book

? title ? author

! book

? title ? author

(c) message merging

Figure 7.12: Examples of mapping components

given. Furthermore, the difficulty of designing mapping service does not increase along
with the scale of system of components since we only need to statically check all messages
one by one without worrying how to synchronize them. However, it should be warned
that in this work, there is no standard for the design of mapping services. There may
be other cases of signature mismatches as well mapping components for them though
Fig. 7.12 already demonstrates most frequently appeared cases. Also, it should be noted
that mapping components may effect the result of adaptation generation. This means,
adaptor generation by the approach may be fail because improperly specified mapping
components.

To show the case of components with signature mismatches, Fig 7.13 shows an example
of two components with signature mismatches. This example is a motivational example in
work of J. Mart́ın and E. Pimentel [20] which aims on automatic generation of adaptation
contracts by heuristic searching algorithms. We may call the problem the File Download
service or the FD service in short. The FD service has two components: the Client
component sends information of user name UserName and password Password to login to
the server. the Client then sends request of file downloading Download to the server and
receive the content of file in message Data. On the other hand, the Server component first
takes login from the client in message Login. Then the Service component may receive

97



Client Server

!UserName

!Download

!Password

?Data

!Connected

?GetFile

?Quit

?Login

!Result

!NoSuchFile

ττττ

ττττ

Client Server

!UserName

!Download

!Password

?Data

!UserName

!Download

!Password

?Data

!Connected

?GetFile

?Quit

?Login

!Result

!NoSuchFile

ττττ

ττττ

!Connected

?GetFile

?Quit

?Login

!Result

!NoSuchFile

ττττ

ττττ

Figure 7.13: File download service

aborting message Quit to end at this point or receive GetFile request to start providing
file downloading procedure. Then the Server may return Result which is the content of
the file or an error message NoSuchFile to inform that the download fails.

The two components in the FD service have quite many signature mismatches. In or-
der to make the two components cooperate together seamlessly, we prepare six mappings
of labels. These mappings are represented as six mapping components shown in Fig. 7.14.
Mapping1 is a message merging that merges UserName and Password from the Client into
Login to the Server. Mapping2 is just a absorber of message Connected since client is not
designed to take this message. Mapping3 is a mapping for message Download from the
Client to message GetFile for the Server to match the difference of names of requests.
Mapping4 is a mapping that matches the file content Result from the Service with Data

to the Client. Mapping5 is a mapping that matches the error message NoSuchFile from
the Service with Data for the Client. Mapping6 is a message generator which generates
message Quit since the Client does not designed to send this message. The two compo-
nents and the six mapping components can be encoded as input of the approach shown
in Fig. 7.15.

By introducing the six mapping components, the system of FD service can now pass the
compatibility check of the approach. Note that actually Mapping4 and Mapping5 violate
the compatibility condition because they both has Data in the set of output alphabets.
Also, all mapping components do not follow the constraint of an IA4AD that the initial
and the final states should be different states. However, this is allowed in the approach
since mapping components are special components just introduced for the purpose of
representing mappings of labels. Generally, a mapping might be applied more than one
time or even not applied at all. This is not a problem since we do not care about
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Mapping1

?Download

!GetFile

?Connected

?UserName ?Password

!Login

!Data

?Result

?NoSuchFile

!Data

!Quit

Mapping2

Mapping3 Mapping4

Mapping5 Mapping6

Mapping1

?Download

!GetFile

?Download

!GetFile

?Connected?Connected

?UserName ?Password

!Login

?UserName ?Password

!Login

!Data

?Result

!Data

?Result

?NoSuchFile

!Data

?NoSuchFile

!Data

!Quit!Quit

Mapping2

Mapping3 Mapping4

Mapping5 Mapping6

Figure 7.14: File download service: mapping components

whether a mapping component finish its functionalities as long as given components do
execute and achieve their functionalities. Thus, looped structure that initial and final
state are the same state is necessary for building mapping components. Also, warnings
from compatibility check on mapping components are neglected.

Now we may proceed to the part of detection of behavior mismatches using SPIN.
The tool of the approach reads the input file and generateds a Promela model for SPIN.
In the Promela model, two propositions accept Client and accept Server are defined
and used in the LTL formula representing the property of Behavior Mismatch Free:

( <> accept Client ) && ( <> accept Server )

The result of model checking by SPIN for the property of Behavior Mismatch Free
returns a counterexample which is a trail shown in Fig. 7.16. By examining the trail, one
may understand that though all mapping components seem correctly specified, behavior
mismatches still exist in the case that the Server receives Quit and ends the file download
service while the Client does not receive any data and still waits for file content. Since
Mapping6, message Quit can be sent anytime, it is possible that the Server ends its service
while the Client does not receive anything. Thus, an adaptor that make sure the Client
executes to its final state is needed. At this point, we may conclude that introducing
mapping components do solve signature mismatches so that the approach is applicable in
systems with signature mismatches.

We may now proceed to adaptor generation of the approach using pushdown model
checking by MOPED. Unfortunately, the adaptor generation failed because of another
problem: branchings in the behavior interface of the Server. We will discuss this issue in
Section 7.3.2.
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# File Download Service

service:: Client

init::S0

final::S4

(S0,!UserName,S1) (S1,!Password,S2) (S2,!Download,S3) (S3,?Data,S4)

service:: Server

init::S0

final::S6

(S0,?Login,S1) (S1,!Connected,S2) (S2,?GetFile,S3) (S3,tau,S4)

(S3,tau,S5) (S4,!Result,S2) (S5,!NoSuchFile,S2) (S2,?Quit,S6)

service::Mapping1

init::S0

final::S0

(S0,?UserName,S1) (S1,?Password,S2) (S2,!Login,S0)

service::Mapping2

init::S0

final::S0

(S0,?Connected,S0)

service::Mapping3

init::S0

final::S0

(S0,?Download,S1) (S1,!GetFile,S0)

service::Mapping4

init::S0

final::S0

(S0,?Result,S1) (S1,!Data,S0)

service::Mapping5

init::S0

final::S0

(S0,?NoSuchFile,S1) (S1,!Data,S0)

service::Mapping6

init::S0

final::S0

(S0,!Quit,S0)

Figure 7.15: File download service: input file
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Client:1

1!UserName Mapping1:3

1?UserName51

1!Password61

1?Password62

1!Login72 Server:2

1?Login73

1!Connected83 Mapping2:4

1?Connected84 Mapping6:8

1!Quit94

1?Quit95

1!Download103 Mapping3:5

1?Download104

Figure 7.16: File download service: SPIN output

7.3.2 Branchings

Branchings are different route of execution in the behavior interface of a component.
Basically, a component is designated to execute a sequence of tasks for achieving some
functionalities. However, a component more often is designed to execute only part of its
tasks based on interactions with other components. For example, a component providing
several functionalities may not perform all the functionalities in one execution but instead
perform some of the functionalities based on requests from other components. Therefore,
a component usually does not have only one designed execution trace but multiple and
exclusive branchings of execution traces. In the FD service shown in Fig. 7.13, the behav-
ior interface of the Server component has branchings in two of its states: the state which
has two outgoing input transitions receiving Quit and GetFile separately, and the state
which has two outgoing internal transitions leading to output transitions sending Quit

and GetFile separately. The two states are state S2 and state S3 in the input file shown
in Fig. 7.15.

Unfortunately, since adaptor generation in the approach uses a counterexample re-
turned from pushdown model checking to build the adaptor for given components, branch-
ings in behavior interfaces of components may cause problems. Recall that in Section 3.2,
components are represented by IA4ADs where each IA4AD has only one initial state and
one final state and Coordinator is built as an one state IPS, the adapted synchronous
composition of components with Coordinator is then an IPS having also one initial state
and one final state. We may imagine that the adapted synchronous composition with
Coordinator is as shown in Fig. 7.17. Note that there are only one initial and on final
state in this system behavior. Also, it should be noted that in Fig. 7.17, two branch-
ings started from a state go through two push transitions ?a <c> and ?b <> while other
transitions are abstracted by dash lines. Therefore, one may easily understand that a
counterexample can only go through one branching, that is, either through transition ?a

<c> or through transition ?b <>. However, we usually need an adaptor that can cover
all branchings so that all functionalities can be achieved. For example, in the system
of FD service, we need all branchings executable in the generated adaptor so that the
Server component can perform all designated behavior. If one branching, for example,
the branching goes through output transition sending NoSuchFile is missing in the gener-
ated adaptor, then the adaptor generation is considered failed since this adaptor can not
handle the situation when file download fails in server. Furthermore, in the FD service,
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?a  < c >

?b < c >

?a  < c >

?b < c >

Figure 7.17: Branchings: the problem

messages GetFile, τ , Result, and NoSuchFile are collected as Unbounded Messages and
corresponding Looped Transitions are specified as fairness property. Since transitions re-
lating to exclusive branchings are included in Looped Transitions transitions, we get no
counterexample since no trace can go through both exclusive branchings being specified
as fairness property.

To solve the problem caused by branchings, we need some modification to the adaptor
generation process of the approach. If we want the pushdown model checking searching
through every exclusive branches, the system behavior has to be modified so that searching
algorithms of pushdown model checking can start over from the initial state again when
it searched one branching and reaches the final state. This can be achieved by simply
adding an epsilon transition (qf , z) ↪→ (q0, z) to establish a connection from the final state
to the initial state, which is demonstrated in Fig. 7.18. Note that this epsilon transition
is executable only when the final state is reached with the condition of empty stack. This
guarantees that the property of Behavior Mismatch Free is always satisfied each time the
system behavior is searched by the pushdown model checking algorithms for a branching.
With this modification of adding a epsilon transition, we may add fairness properties for
corresponding transitions of all branchings to the property ϕ necessary for adaptors. Thus,
the pushdown model checking algorithms can search the system behavior with exclusive
branchings and generate a counterexample which travels through multiple executions of
the system behavior to guarantee all exclusive branchings are visited. Then we can build
an adaptor which supports exclusive branchings form this counterexample. Transitions
corresponding to branchings are called Branching Transitions. Branching Transitions
are easy to be collected. We only need to look for states with two or more outgoing
transitions and these outgoing transitions are then Branching Transitions. Fairness of
Branching Transitions can be specified using the same technique of specifying fairness
property of Looped Transitions for Unbounded Messages.

By the modification of adding an epsilon transition, we can now deal with branchings
in the FD service. The epsilon transition added in the system behavior as last transition
rule is shown below:

#epsilon-transition from final state(s) to initial state

q4_6_0_0_0_0_0_0_c0 <z> --> q0_0_0_0_0_0_0_0_c0 <z>

Thus, the pushdown system model representing the system behavior is now modified
to let the pushdown model checking algorithm search through all exclusive branchings.
The LTL formula representing the property ϕ, which consists of the property of Behavior
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?a  < c >

?b < c >

ττττ< z >

?a  < c >

?b < c >

ττττ< z >

Figure 7.18: Branchings: the idea

Mismatch Free, the property of Unbounded Messages, i.e., Looped Transitions, and the
property of Branching Transitions is listed below:

( <> ( q4_6_0_0_0_0_0_0_c0 && z ) ) &&

( <> pop_GetFile ) && ( <> pop_Quit ) &&

( <> push_Result ) && ( <> push_NoSuchFile ) &&

( <> tau_1_0 ) && ( <> tau_1_1 )

One may recognize that in this formula, the first line shows the property of Behavior
Mismatch Free where q4 6 0 0 0 0 0 0 c0 is the final state. The rest are fairness property
of Looped and Branching Transitions. Note that the last two fairness property for tau 1 0

and tau 1 1 are the internal transitions in the Server component and are distinguished
by adding different indexes since these two transitions are not the same transition while
sharing the same label. Then MOPED is applied for pushdown model checking the
modified system behavior for the above property and a counterexample is returned as
follows:

--- START ---

q0_0_0_0_0_0_0_0_c0 <z>

q1_0_0_0_0_0_0_0_c0 <UserName z>

q1_0_1_0_0_0_0_0_c0 <z>

q2_0_1_0_0_0_0_0_c0 <Password z>

q2_0_2_0_0_0_0_0_c0 <z>

q3_0_2_0_0_0_0_0_c0 <Download z>

q3_0_2_0_1_0_0_0_c0 <z>

q3_0_0_0_1_0_0_0_c0 <Login z>

q3_1_0_0_1_0_0_0_c0 <z>

q3_2_0_0_1_0_0_0_c0 <Connected z>

q3_2_0_0_0_0_0_0_c0 <GetFile Connected z>

q3_3_0_0_0_0_0_0_c0 <pop_GetFile Connected z>

q3_3_0_0_0_0_0_0_c0 <Connected z>

q3_4_0_0_0_0_0_0_c0 <tau_1_0 Connected z>

q3_4_0_0_0_0_0_0_c0 <Connected z>

q3_2_0_0_0_0_0_0_c0 <push_Result Connected z>

q3_2_0_0_0_0_0_0_c0 <Result Connected z>
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q3_2_0_0_0_1_0_0_c0 <Connected z>

q3_2_0_0_0_0_0_0_c0 <Data Connected z>

q4_2_0_0_0_0_0_0_c0 <Connected z>

q4_2_0_0_0_0_0_0_c0 <z>

q4_2_0_0_0_0_0_0_c0 <Quit z>

q4_6_0_0_0_0_0_0_c0 <pop_Quit z>

q4_6_0_0_0_0_0_0_c0 <z>

q0_0_0_0_0_0_0_0_c0 <z>

q1_0_0_0_0_0_0_0_c0 <UserName z>

q1_0_1_0_0_0_0_0_c0 <z>

q2_0_1_0_0_0_0_0_c0 <Password z>

q2_0_2_0_0_0_0_0_c0 <z>

q3_0_2_0_0_0_0_0_c0 <Download z>

q3_0_2_0_1_0_0_0_c0 <z>

q3_0_0_0_1_0_0_0_c0 <Login z>

q3_1_0_0_1_0_0_0_c0 <z>

q3_2_0_0_1_0_0_0_c0 <Connected z>

q3_2_0_0_0_0_0_0_c0 <GetFile Connected z>

q3_3_0_0_0_0_0_0_c0 <pop_GetFile Connected z>

q3_3_0_0_0_0_0_0_c0 <Connected z>

q3_5_0_0_0_0_0_0_c0 <tau_1_1 Connected z>

q3_5_0_0_0_0_0_0_c0 <Connected z>

q3_2_0_0_0_0_0_0_c0 <push_NoSuchFile Connected z>

q3_2_0_0_0_0_0_0_c0 <NoSuchFile Connected z>

q3_2_0_0_0_0_1_0_c0 <Connected z>

q3_2_0_0_0_0_0_0_c0 <Data Connected z>

q4_2_0_0_0_0_0_0_c0 <Connected z>

q4_2_0_0_0_0_0_0_c0 <z>

q4_2_0_0_0_0_0_0_c0 <Quit z>

q4_6_0_0_0_0_0_0_c0 <pop_Quit z>

q4_6_0_0_0_0_0_0_c0 <z>

q0_0_0_0_0_0_0_0_c0 <z>

--- LOOP ---

q1_0_0_0_0_0_0_0_c0 <UserName z>

q1_0_1_0_0_0_0_0_c0 <z>

q2_0_1_0_0_0_0_0_c0 <Password z>

q2_0_2_0_0_0_0_0_c0 <z>

q2_0_0_0_0_0_0_0_c0 <Login z>

q2_1_0_0_0_0_0_0_c0 <z>

q2_2_0_0_0_0_0_0_c0 <Connected z>

q3_2_0_0_0_0_0_0_c0 <Download Connected z>

q3_2_0_0_1_0_0_0_c0 <Connected z>

q3_2_0_0_0_0_0_0_c0 <GetFile Connected z>

q3_3_0_0_0_0_0_0_c0 <pop_GetFile Connected z>

q3_3_0_0_0_0_0_0_c0 <Connected z>

q3_5_0_0_0_0_0_0_c0 <tau_1_1 Connected z>
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q3_5_0_0_0_0_0_0_c0 <Connected z>

q3_2_0_0_0_0_0_0_c0 <push_NoSuchFile Connected z>

q3_2_0_0_0_0_0_0_c0 <NoSuchFile Connected z>

q3_2_0_0_0_0_1_0_c0 <Connected z>

q3_2_0_0_0_0_1_0_c0 <z>

q3_2_0_0_0_0_0_0_c0 <Data z>

q3_2_0_0_0_0_0_0_c0 <Quit Data z>

q3_6_0_0_0_0_0_0_c0 <pop_Quit Data z>

q3_6_0_0_0_0_0_0_c0 <Data z>

q4_6_0_0_0_0_0_0_c0 <z>

q0_0_0_0_0_0_0_0_c0 <z>

It is easy to understand that after the modification for support branchings, the re-
turned counterexample is a long trace since now this trace is obtained from searching on
multiple executions of the system behavior. One may notice that in the counterexample,
segment of two configurations can be found as follows:

q4 6 0 0 0 0 0 0 c0 <z>

q0 0 0 0 0 0 0 0 c0 <z>

The two configuration shows that the trace does travel from the final state to the
initial state through the epsilon transition added for supporting branchings. Finally, we
may build an adaptor from the counterexample and draw in graph using Graphviz as
shown in Fig. 7.19. With careful examination of the behavior of the adaptor, it should
be confirmed that the behavior of the adaptor satisfies the property ϕ of the FD service.
Therefore, we may conclude that the approach can still support adaptor generation for
components with signature mismatches and branchings in their behavior interfaces.
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q0_0_0_0_0_0_0_0

q1_0_0_0_0_0_0_0

?UserName<z>

q1_0_1_0_0_0_0_0

!UserName

q2_0_1_0_0_0_0_0

?Password<z>

q2_0_2_0_0_0_0_0

!Password

q3_0_2_0_0_0_0_0

?Download<z>

q2_0_0_0_0_0_0_0

?Login<z>

q3_0_2_0_1_0_0_0

!Download

q3_0_0_0_1_0_0_0

?Login<z>

q3_1_0_0_1_0_0_0

!Login

q3_2_0_0_1_0_0_0

?Connected<z>

q3_2_0_0_0_0_0_0

?GetFile<Connected>!Download

?Quit<Data>

q3_2_0_0_0_1_0_0

!Result

q4_2_0_0_0_0_0_0

!Data

q3_2_0_0_0_0_1_0

!NoSuchFile

q3_3_0_0_0_0_0_0

!GetFile

q3_6_0_0_0_0_0_0

!Quit

q3_4_0_0_0_0_0_0

?Result<Connected>

tau<Connected>

?Data<Connected>

?Quit<z>!Connected

q4_6_0_0_0_0_0_0

!Quit

q3_5_0_0_0_0_0_0

?NoSuchFile<Connected>

tau<Connected>

?Data<Connected> ?Data<z>

!Connected

q2_1_0_0_0_0_0_0

!Login

q2_2_0_0_0_0_0_0

?Connected<z>

?Download<Connected>

tau<Connected> tau<Connected>!Data

Figure 7.19: FD service: adaptor drawn by Graphviz
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Chapter 8

Evaluation

For summarizing/concluding the experiments in Chapter 7 and evaluating the approach,
we would like to demonstrate one more adaptation problem which has all issues discussed
in Section 7.3: behavior mismatches with non-regular interactions, signature mismatches,
and branchings in behavior interfaces of components. We may call an adaptation problem
consists of all the three issues a fully mismatching problem and try applying the approach
to solve it. However, since adaptation problems which require non-regular adaptors are
first considered in this work while not being considered in conventional approach of adap-
tation, fully mismatching adaptation problems are rare. It is difficult to discover from
papers of related work an adaptation problem which is fully mismatching. Thus, we de-
cided to make one by ourselves and extend the FMUS service problem by adding signature
mismatches as well as branchings in the behavior interfaces of the three services. Then
we can apply the approach to solve this fully mismatching adaptation problem to see if
the approach can solve all the issues together.

The extended FMUS service is shown in Fig. 8.1. This adaptation problem now has
exclusive branchings as well as signature mismatches and needs a non-regular adaptor.
In this system, Investor may send two exclusive requests, i.e., exclusive branchings, of
either asking Online Stock Broker to send a list of RawData to Research Department for
analysis, which is same as the FMUS service, or asking Online Stock Broker to proceed
transactions. In the branching of requesting transactions, Investor send the target to
be proceeded in message Trade following with the desired price in message Quote while
Online Stock Boker receives only one message Transac. This is a signature mismatch we
need to take care. Another signature mismatch is when Online Stock Broker sending the
result of transaction in message Record to Investor while messages Log is expected by
Investor. Note that Research Department only do the task of analyzing RawData so there
is nothing for Research Department to do when transaction is requested by Investor. But
Research Department still needs to move to its final state through receiving the message
NoRawData.

Before applying the approach for adaptor generation, first the two signature mis-
matches have to be taken care by specifying mappings of labels for building mapping
components. Fig. 8.2 shows two mapping components we specified for the two signature
mismatches. The mapping component in the left merges information of transaction target
Trade and preferred price Quote from Investor into Transac to send to Online Stock Bro-
ker. The mapping component in the right takes transaction result Record from Online
Stock Broker and sends Log to Investor. It also tells Research Department there is nothing
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Research Department

?RawData

?RawData

!Complete

!Data

?EndOfData

?Start

?Data

?Complete

?Data

!Ack

Investor

!Data

!Trade

!ReqData

!Quote

?Log

?NoRawData

!RawData

!EndOfData

!Start

?Ack

!RawData

Online Stock Broker

?Transac

!Record

?ReqData

Research Department

?RawData

?RawData

!Complete

!Data

?EndOfData

?Start

?Data

?Complete

?Data

!Ack

Investor

!Data

!Trade

!ReqData

!Quote

?Log

?NoRawData

!RawData

!EndOfData

!Start

?Ack

!RawData

Online Stock Broker

?Transac

!Record

?ReqData

Figure 8.1: Extended FMUS service

Mapping1

?Trade ?Quote

!Transac

Mapping2

?Record !Log

!NoRawData

Mapping1

?Trade ?Quote

!Transac

Mapping2

?Record !Log

!NoRawData

Figure 8.2: Mapping services for message mapping

to analysis by sending NoRawData to Research Department.

Now we have five components including two mapping components and are ready to
apply the approach for adaptor generation. The behavior interfaces of the five components
are encoded in an input file shown in Fig. 8.3 for the tool to read and perform compu-
tations. First compatibility checks are preformed and the components passed the check.
Note that mapping components are not constrained by neither condition of compatibility
or condition of IA4ADs. Thus, we may proceed to adaptor generation for solving behavior
mismatches.

According behavior interfaces of the five components, the tool generates Coordinator
for the system and computes the adapted synchronous composition to build an IPS and
output as a pushdown system model for MOPED. Note that here the pushdown system is
modified to support branchings as described in Section 7.3.2. Along with the output of the
pushdown system model for moped, a LTL formula consists of the property of Behavior
Mismatch Free and the property of Looped Transitions and Branching Transitions is also
output by the tool. MOPED then checks the system for the property then returns a
counterexample. The counterexample is then read by the tool for generating an adaptor.
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service:: OnlineStockBroker

init::S0

final::S6

(S0,?ReqData,S1) (S1,!RawData,S2) (S2,!RawData,S2)

(S2,!EndOfData,S3) (S3,!Start,S4) (S4,?Ack,S6)

(S0,?Transac,S5) (S5,!Record,S6)

service:: ResearchDepartment

init::S0

final::S5

(S0,?RawData,S1) (S1,!Data,S2) (S2,?RawData,S3)

(S3,!Data,S2) (S2,?EndOfData,S4) (S4,!Complete,S5)

(S0,?NoRawData,S5)

service:: Investor

init::S0

final::S7

(S0,!ReqData,S1) (S1,?Start,S2) (S2,?Data,S3)

(S3,?Data,S3) (S3,?Complete,S4) (S4,!Ack,S7)

(S0,!Trade,S5) (S5,!Quote,S6) (S6,?Log,S7)

service:: Mapping1

init::S0

final::S0

(S0,?Trade,S1) (S1,?Quote,S2) (S2,!Transac,S0)

service:: Mapping2

init::S0

final::S0

(S0,?Record,S1) (S1,!Log,S2) (S2,!NoRawData,S0)

Figure 8.3: FMUSv2: the input file

109



Here we save the space for details of the process of adaptor generation and directly show
the final result in Fig. 8.4. We may confirm that the two branches in the extended FMUS
service are correctly showed in the behavior of the adaptor. We may also confirm that the
non-regular behavior is correctly generated in one branchings. Thus, we may conclude
that the approach is able to generate adaptors for fully mismatching adaptation problems.

!RawData

!EndOfData

!Start

?Ack <z>

!RawData

?RawData <z>

!Complete

!Data

?EndOfData <Data>

?Start <EndOfData>

?Complete <z>

?Data <z> !Ack

!Data

?RawData <Data>

?Data <Data>

?Data <EndOfData>

?EndOfData <z>

?Start <EndOfData>
!Start

?Data <EndOfData>

?ReqData <z>

!ReqData

?Trade <z> !Trade

?Quote <z>

!Quote

?Transac <z>

!Transac

?Record <z>

!Record

!NoRawData

!Log

?Log <z> ?NoRawData <Log>

!RawData

!EndOfData

!Start

?Ack <z>

!RawData

?RawData <z>

!Complete

!Data

?EndOfData <Data>

?Start <EndOfData>

?Complete <z>

?Data <z> !Ack

!Data

?RawData <Data>

?Data <Data>

?Data <EndOfData>

?EndOfData <z>

?Start <EndOfData>
!Start

?Data <EndOfData>

?ReqData <z>

!ReqData

?Trade <z> !Trade

?Quote <z>

!Quote

?Transac <z>

!Transac

?Record <z>

!Record

!NoRawData

!Log

?Log <z> ?NoRawData <Log>

Figure 8.4: Example: generated adaptor

It should be noticed that in solving the extended FMUS service problem, we encoun-
tered a in executing MOPED.When performing pushdown model checking using MOPED,
it takes much time, that is, an hour or more, in execution and finally MOPED crashed
and dumped some error information. Considering the pushdown system model generated
by the tool has about 128 thousands lines, we may take that the size of the model is too
large for MOPED to model check on a Pentium-4 1.8G machine with 2G ram. Thus, in
order to reduce the load of searching in pushdown model checking, we use a simplified
LTL formula which uses only part of the Looped Transitions and Branching Transitions
we found. For more details, the original LTL formula is as follows:

( <> ( q5_5_5_0_0_c0 && z ) ) &&

( <> pop_ReqData ) && ( <> pop_Transac ) && ( <> push_RawData ) &&
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( <> push_EndOfData ) && ( <> pop_RawData ) && ( <> pop_NoRawData ) &&

( <> pop_EndOfData ) && ( <> push_Data ) && ( <> pop_Data ) &&

( <> pop_Complete ) && ( <> push_ReqData ) && ( <> push_Trade )

To simplify the above formula with still keeping essential information for generating
an adaptor, we made the following LTL formula:

( <> ( q5_5_5_0_0_c0 && z ) ) &&

( <> push_RawData ) && ( <> push_Data ) &&

( <> push_ReqData ) && ( <> push_Trade )

Comparing to above two formulas, one may recognize that we keep the property of
Behavior Mismatch Free while only keeping special symbols of pushing RawData, Data,
ReqData, and Trade. The first two messages are the most important Unbounded Messages
and the last two messages are the key messages of the two branchings in the extended
FMUS service. Note that we only keep the push part of these messages in simplified
LTL formula since once pushing and popping a message is coupled so if we guarantee the
pushing then popping is also guaranteed. Through this simplification of LTL formula, we
also learned that not all Looped Transitions and Branching Transitions are necessary for
generating an adaptor. It is possible building a more compact LTL formula as well as the
pushdown system model for pushdown model checking by MOPED.

Finally, we would like to summarize the evaluation of the approach based on above
adaptation problem, the extended FMUS service, as well as experiments in Chapter 7.
The evaluation is described with the following aspects:

• Expressiveness of models

The approach proposed pushdown system model, i.e., IPS in this work, for represent-
ing adaptors with non-regular behavior. IPS is especially proposed for representing
non-regular behavior from interactions of components. Interactions of components
through an adaptor are basically interleaved message passings. If we monitor mes-
sage passings in an adapted system, then for every message passing we should detect
the message twice: once when the message is sent by a component to the adaptor,
once again when the message is sent by the adaptor to a component. Usually
adaptor can be expressed by finite state machines like in the conventional approach
of adaptation. However, using pushdown systems model give us better ability to
capture interactions of components. The push and pop operation of a stack can
be directly used to simulate interactions between adaptors and components. This
is especially useful when dealing with problems like the FMUS service requiring
non-regular behavioral adaptors.

On the other hand, the model representing behavior interfaces of components,
IA4AD, also plays a important role in adaptor generation of the approach. Since
we skip the step of designing adaptation contracts and adaptation contracts actual
have information useful for adaptor generation, we need to implant the necessary
information in behavior interfaces of component. The necessary information, by
our observation, is the functionalities each component designated to achieve. This
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is basically observed by developers and is used to design adaptation contracts. In
the approach, the proposed model of components makes the information of func-
tionalities of a component to be explicitly expressed by distinct and distinguishable
initial and final states. Therefore, the approach can retrieve and use the information
in adaptor generation. This also saves cost for developers by not designing a over
all behavior to achieve functionalities of components but instead clearly specifying
in each component. states

• Applicability of the approach

In Chapter 7, demonstrations of solving adaptation problems are introduced. The
first adaptation problem introduced in experiments is the FMUS service which is
the motivational example of this work. The FMUS service is considered a typical
adaptation problem requiring adaptors with non-regular behavior and the approach
is basically designated for solving it. Then we considered general cases of adaptation
problems which include signature mismatches and branchings. For signature mis-
matches, though the approach is not capable of dealing with signature mismatches
directly, we may provide mapping components to represent mappings of labels spec-
ified by developers. Since mappings of labels are specified based on knowledge of
developers, correctness of mappings are responsibilities of developers and can not
be guaranteed in the approach . We only promise that given mappings of labels
specified, we can introduce mapping components for representing these mappings
and make the system satisfy the compatibility condition in order to perform adaptor
generation by the approach. The effectiveness of introducing mapping components
is confirmed using the FD service problem shown in Fig. 7.13. For branchings which
is a serious problem since we use pushdown model checking to generate a counterex-
ample, we introduce a modification of adding a epsilon transition connecting the final
and initial state of the pushdown system to be checked by MOPED. Thus, exclusive
branchings can be searches by pushdown model checking algorithms and the re-
turned counterexample can reflect branchings in components. The modification for
supporting branchings is also confirmed effective through the FD service problem.
For further confirmation of the applicability of the approach, an extended FMUS
services shown in Fig 8.1 having all issues of adaptation above is introduced for
testing the applicability of the approach. The result of solving the extended FMUS
service is successful and we would like to conclude that the approach proposed in
this work has good applicability for adaptation problems.

• Feasibility of the approach

For the experiment on FMUS service problem, we also implemented the generated
adaptor as BPEL processes in Section 7.2. An adaptor is implemented as two
BPEL processes for representing finite state machine part and stack part of the
pushdown system model. Directions of implementing BPEL adaptor are also given
in Section 7.2 as a general guidance. Thus, we proved that adaptors representing
by pushdown system model in the approach is really implementable as applications.
The directions for implementing BPEL adaptor also showed that the implementation
is easy and does not cost much in development. Therefore, we may conclude that the
approach has feasibility on real applications. Since the approach only deals with
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behavior interfaces which are more abstracted than protocols in implementation
such as BPEL, there are rooms for improvement of the approach to directly support
adaptor generation for real applications.

Another issue about feasibility is about the execution time. It should be noted
that the pushdown system model to be model checked by MOPED grows when
mapping components are introduced. By examining pushdown system models for
the SR service shown in Fig. 5.1, the FMUS service shown in Fig. 3.5, the lines of
pushdown system model are 43 and 1923 respectively. Since the size of states in the
two problems are 4 and 150, the ratio of pushdown system models is close to the size
of states. Thus, in the problem of FD service shown in Fig. 7.13 with supporting
mapping components shown in Fig. 7.14, lines of pushdown system model grows to
42,248. Finally, the extended FMUS service has a pushdown system model with
128,920 lines. Thus, we may conclude that scalability problem in the approach is
serious if we have to introduce many mapping components.

• Tool Support and Others

In this thesis, the tool implemented is only responsible for reading input and output
pushdown system model for MOPED After a counterexample is returned, the tool
take the responsibility to generate an adaptor from the counterexample. We may
say that the tool does simple tasks in the approach. The most important part rely
on tools the part of pushdown model checking by MOPED. The version of MOPED
is actually an old version but is the only version supporting LTL pushdown model
checking. New version of MOPED only checks reachability and is specialized for
analyzing programs such as C or Java. Thus, to the subject of pushdown model
checking, this old version of MOPED might need improvement on efficiency or other
aspects. Therefore, some other pushdown model checkers are welcome and it would
be perfect to support models like Promela in SPIN.

Though not directly related to adaptation problems, issues about ordering of same
messages in the approach should be mentioned. Since this approach uses pushdown
system model, the use of stack makes the ordering of messages in the style of last-in-
first-out(LIFO). Thus, messages sent multiple times such as Unbounded Messages
have reversed ordering when being received. This might be unrealistic since ser-
vices usually communicate in the style of first-in-first-out(FIFO), such as video on
demand services providing streaming data. However, here we would like to point
out that the ordering of unbounded messages in our approach can be maintained in
implementation. For example, we can implement an adaptor with extra operations
that adjust the ordering of Unbounded Messages in the stack to original ordering.
We may also use another way of implementation such as building queues so that
each queue corresponds to a specific messages and only store this message. As long
as the implemented adaptor follows the behavior of the adaptor generated by our
approach, it is irrelevant reverse or not the ordering of messages multiply sent in
the implementation. Thus, we say that our approach can support both LIFO and
FIFO communications practically.
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Chapter 9

Related Work

The early stage of software adaptation was introduced by D.M. Yellin and R.E. Strom [21].
Their work proposed an approach of adaptation between two components which are rep-
resented by a simple description language of finite state machines. Later, Becker, et al.
proposed an approach based on patterns of software adaptation [1]. As a hot topic in
component-based software engineering (CBSE), many approaches are proposed for soft-
ware adaptation. Most approaches, including ours, focused on solutions for behavior
mismatches between abstract behavior interfaces [22, 2, 9, 10]. Brogi et al. [22] proposed
an approach which uses a subset of the π-calculus for representing the behavior of compo-
nents. They also used composition specifications with name correspondences for adaptor
generation. This research was later improved to a more complete approach known as the
model-based approach [2] which uses Labeled Transition Systems (LTSs) for modeling and
calculation of software adaptation. According to our survey, this approach has defined
a conventional framework for software adaptation using two basic elements: behavior in-
terfaces and adaptation contracts which are both modeled by LTS. Some work, though
using different approaches on computation, is based on this framework. Tivil et al. [9] pro-
posed a computation technique which directly constructs partial behavior of adaptor from
corresponding software components, and gives more computational efficiency to adaptor
generation but incapable of solving reordering mismatches. This technique can also inte-
grate LTL model checking by directly composition with Büchi automata transformed from
specified LTL properties. Mateescu et al. [10] used process algebra for modeling behav-
ior, LOTOS for specification of protocols, and CADP toolbox for automated on-the-fly
adaptor generation.

Recently, approaches for adaptation on services became popular and techniques of
software adaptation mentioned above were extended or modified for service composition.
Cubo et al. applied the approach of [2] to WF/.NET framework and added verifications
in their approach [3]. Mateescu et al. also extended their work in [10] to service adap-
tation using the model of Symbolic Transition Systems (STSs) [23]. Some other work
used their own definitions for adaptation. Nezhad et al. [24] defined their own interfaces
including sets of XML data and introduced an algorithm for solving interface mismatches.
Mitra et al. [25] used I/O automata with history to support the multiple uses of same
messages in service composition. Compare to above work, our approach attempts to
capture non-regular behavior in service composition and uses pushdown automata model
for representing adaptors. The use of model checking technique integrates adaptation
and verification so that generated adaptor is guaranteed to satisfy both behavior mis-

114



match free and safety/liveness properties if specified. Our previous work [26] proposed
the first version of our approach that uses Büchi automata model for behavior interfaces
of services. The work proposed a property called behavior mismatch free defined from
acceptance condition of Büchi automata. To our best knowledge, this work was the first
time generation of non-regular behavioral adaptor is tackled.

Another topic in software adaptation is automated generation of adaptation contracts.
For web services, it becomes a problem that adaptation contracts have to be manually
specified in the conventional framework proposed in [2] while there are mobile services
that demand being selected and composed dynamically. Some research about adaptation
also tackles this topic in various ways. J. A. Mart́ın and E. Pimental [20] proposed an
expert system based approach which combines exploring rules and A∗ graph search algo-
rithm. Their approach automatically generates adaptation contracts (mainly mappings
of labels) having the best score. Other work provides semi-automated way to guide de-
sign of adaptation contracts. Nezhad et al. [24] introduced an interactive way for users
to specify adaptation contracts related to behavior mismatches on reordering. Cámara
et al. developed an integrated tool ITACA [4] to support composition of BPEL services
which provides interactive graphical user interface to guide the design of adaptor con-
tracts. Compare to above work, our approach does not generate adaptation contracts
but directly generates an adaptor rely on only information from behavior interfaces of
services. Assuming signature mismatches are solved and mappings of labels are specified,
our approach provides fully automated adaptor generation. This is proposed in our recent
work [27]. Furthermore, we especially address property for Unbounded Messages which
characterize non-regular behavior of adaptors. Though the use of model checking tech-
nique is similar to exploring graph structures of behavior interfaces, we argue that the use
of model checking brings more advantages since model checking techniques are improved
rapidly as well as the feature of performing both service adaptation and verifications at
the same time.
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Chapter 10

Conclusion and Future Work

10.1 Summary

This thesis describes the work of automated adaptor generation for behavioral mismatch-
ing components based on pushdown model checking. We focus on two major problems of
conventional approach of adaptation: non-regular adaptation which needs adaptors with
non-regular behavior, and skip the step of designing adaptation contracts. To solve the
two problems, we introduced a motivational example, the FMUS service, to demonstrate
adaptors with non-regular behavior. By following the considerations on solutions to the
FMUS service, models of adaptors and components are proposed. We use pushdown
system model for representing adaptors and Interface Automata model for representing
components. The two models, i.e., Interface Automata for Adaptation and Interface
Pushdown System, are modified with extensions as well as constraints for the purpose of
adaptor generation in the approach.

Once the models in the approach are cleared, first the detection of behavior mismatches
using model checking is introduced. The idea is to model checking for a property called
the property of Behavior Mismatch Free which represents deadlock free for the system
behavior computed by synchronously composition. Thus, we can efficiently detect behav-
ior mismatches thanks for the state of the art model checking techniques. Furthermore,
by building Promela model with parallel processes with synchronous communications,
the synchronous composition can be computed by SPIN during model checking. By us-
ing model checking, the approach have another advantage that verification tasks can be
integrated at the same time if safety or liveness properties are provided.

In the adaptor generation of the approach, pushdown model checking is used. First a
special adaptor called Coordinator is introduced. Coordinator is designed over-behavioral
so that all interleaving message exchanges through an adaptor is possible by adapted syn-
chronous composition with Coordinator. Then pushdown model checking using MOPED
is used to pick up a counterexample which is a trace for building an adaptor. This trace
should have desired behavior of adaptors. Therefore, in this step pushdown model check-
ing should check for the negation of desired property to return a counterexample suitable
for generating an adaptor. The approach here do not rely on adaptation contracts but
introduces a property ϕ necessary for adaptors. ϕ consists of two properties: the property
of Behavior Mismatch Free and the fairness property for Looped Transitions. The latter
is for capturing Unbounded Messages appearing in non-regular behavior of interactions of
components. We proposed algorithms of locating Looped Transitions as well as building
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an from counterexample returned by MOPED.
We have done some experiments for testing the approach. First, the FMUS service

is demonstrated and showed that the approach do generate adaptors with non-regular
behavior. Then BPEL implementation for the generated adaptor of the FMUS service
is demonstrated to show the feasibility in software development. Directions of building
BPEL adaptors are also given for references. Furthermore, two general cases of adaptation
problems, i.e., signature mismatches and branchings are discusses. In order to demon-
strate the two general case, another adaptation problem, the FD service is introduced.
Though the approach can not solve the two general cases of adaptation directly, we have
managed to solve the FD service by two modifications in adaptor generation in the ap-
proach. For signature mismatchings, we introduce mapping components for representing
mappings of labels. Thus, we can still perform adaptor generation for given components
with the help of mapping components. It should be noted that mapping of labels should
be specified by developers and are not guaranteed by the approach. For branchings, the
pushdown system model for MOPED is modified with a epsilon transition for the searching
algorithms of pushdown model checking can check the behavior through multiple sessions
of executions. Therefore, all exclusive branchings can be searched guaranteed to show in
the returned counterexample as well as the generated adaptor. Finally, the FMUS service
is extended with the two general cases and introduced as a fully mismatching adaptation
problem, the extended FMUS service, to give a final test to the approach. Though the
approach managed to generate an adaptor for the extended FMUS service, we encoun-
tered an scale issue and had to simplify the LTL formula manually to reduce the scale of
pushdown model checking.

10.2 Contributions

This work proposed an approach that performs automated adaptor generation with only
given behavior interfaces of components. The behavioral mismatching components to be
composed should satisfy a few constraints such as form a closed system that all messages
are mapped properly. Without design adaptation contracts in advance, this approach
provides more flexibility and mobility in service composition. Also, in this approach,
adaptor generation is performed by model checking so that no additional verification cost
is needed. The major feature of this approach is the use of pushdown systems model.
Pushdown systems are used to represent behavior interfaces of adaptors and successfully
capture the nature of non-regular behavior in interactions of components. As our best
knowledge, this is the first work that tackled non-regular behavior in adaptation. Fur-
thermore, Unbounded Messages that can be sent/received arbitrary multiple times, which
is the most important characteristic in non-regular behavior of service interactions, are
successfully located and reflected in generated adaptors in the approach. Thanks the
simplicity of the structure of pushdown systems, the approach also provides directions
to implement adaptors as BPEL processes therefore feasibility for real world applications
are possible. Furthermore, issues of signature mismatchings and branchings in behavior
interfaces of components are discussed and modifications are proposed for solving adapta-
tion problem having the two features. Therefore, we may conclude that the approach can
generate adaptors automatically with correcting reflects both non-regular characteristics
and generality in adaptation problems.

117



10.3 Future Work

As future directions of the approach, first we should consider improvements of issues
found in the approach. As discussed in Chapter 7, general cases of adaptation, signature
mismatches and branchings, need modification on the approach for solving theses cases.
An improved approach of adaptor generating considering the two general cases at the
start of adaptor generation is required. The input of the improved approach should
consider behavior interfaces of components and mapping components when mapping of
labels are specified. When branching in behavior interfaces of components are detected,
the tool can automatically modify the pushdown system model as well as LTL formula
for pushdown model checking. Furthermore, since there is no rule of building mapping
components from specified mapping of labels, we may also need directions of building
mapping components from mappings of labels. The ultimate objective is to build mapping
components automatically. We may also use the help from related work on generating
mappings of labels, for example, the work by J. Mart́ın and E. Pimentel [20], to improve
the ability of dealing with signature mismatches in the approach.

Another direction is in implementing applications. The approach proposed in this
thesis only deal with abstracted interfaces of components. This means when we apply the
approach on real applications, we need to do abstraction first. The generated adaptor is
also an abstracted protocol so the adaptor generated is only an direction of implementation
for real applications. Therefore, we may select a development platform, for example BPEL
processes, to extend the approach on automatic adaptor generation for BPEL services.
This should widen the applicability of the approach.

On the other hand, the problem of scalability we encountered in the extended FMUS
service introduced in Chapter 8 where the pushdown system model to be model is too
large and there are too many transitions added as fairness in the LTL formula is also
vital to the approach. Though we have managed to simplify the LTL formula by elim-
inating some fairness properties pf transitions in LTL formula, a systemic way of doing
such kind of reduction is required. We should develop a process of reducing the scale of
pushdown system model though eliminating unimportant transitions in Looped Transi-
tions and Branching Transitions. Therefore, we can build more compact pushdown system
model since special stack symbols are reduced as well as corresponding transition rules.
Furthermore, we may try another way of dealing with the size of pushdown system model
by changing the input model to the Remopla, the new input model of MOPED. Thus,
optimizations in implementing MOPED may also help us reducing the size of pushdown
system model.
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[20] José Antonio Mart́ın and Ernesto Pimentel. Automatic generation of adaptation
contracts. Electron. Notes Theor. Comput. Sci., 229(2):115–131, 2009.

[21] Daniel M. Yellin and Robert E. Strom. Protocol specifications and component adap-
tors. ACM Trans. Program. Lang. Syst., 19(2):292–333, 1997.

[22] Andrea Bracciali, Antonio Brogi, and Carlos Canal. A formal approach to component
adaptation. J. Syst. Softw., 74(1):45–54, 2005.

[23] Radu Mateescu, Pascal Poizat, and Gwen Salaün. Adaptation of service protocols
using process algebra and on-the-fly reduction techniques. In ICSOC ’08: Proceedings
of the 6th International Conference on Service-Oriented Computing, pages 84–99,
Berlin, Heidelberg, 2008. Springer-Verlag.

[24] Hamid Reza Motahari Nezhad, Boualem Benatallah, Axel Martens, Francisco
Curbera, and Fabio Casati. Semi-automated adaptation of service interactions. In
WWW ’07: Proceedings of the 16th international conference on World Wide Web,
pages 993–1002, New York, NY, USA, 2007. ACM.

[25] Saayan Mitra, Ratnesh Kumar, and Samik Basu. Automated choreographer synthe-
sis for web services composition using i/o automata. In 2007 IEEE International
Conference on Web Services (ICWS 2007), pages 364–371, 2007.

[26] Hsin-Hung Lin, Toshiaki Aoki, and Takuya Katayama. Non-regular adaptation of ser-
vices using model checking. In ISORC ’10: Proceedings of the 2010 13th IEEE Inter-
national Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing, pages 170–174, Washington, DC, USA, 2010. IEEE Computer Society.

120



[27] Hsin-Hung Lin, Toshiaki Aoki, and Takuya Katayama. Automated adaptor gener-
ation for services based on pushdown model checking. In Engineering of Computer
Based Systems (ECBS), 2011 18th IEEE International Conference and Workshops
on, pages 130 –139, april 2011.

121



Publications

[1] Hsin-Hung Lin, Toshiaki Aoki, and Takuya Katayama. Automated adaptor gener-
ation for services based on pushdown model checking. In ECBS2011: 18th IEEE
International Conference and Workshops on Engineering of Computer Based Sys-
tems, pages 130 –139, april 2011.

[2] Hsin-Hung Lin, Toshiaki Aoki, and Takuya Katayama. Non-regular adaptation of
services using model checking. In ISORC ’10: Proceedings of the 2010 13th IEEE
International Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing, pages 170–174, Washington, DC, USA, 2010. IEEE Computer
Society.

[3] Hsin-Hung Lin and Takuya Katayama, “Towards Integrating Adaptation and Model
Checking for Software Components,” IPSJ SIG Tech. Rep., Vol. 2009-SE-165, 2009.

[4] Hsin-Hung Lin and Takuya Katayama, “Coordination and Verfication of Software
Components Orchestrated by Coordinator,“ 14th JSSST Workshop on Foundation
of Software Engineering (JSSST FOSE2007), pp.173-178, 2007.

[5] Hsin-Hung Lin and Takuya Katayama, “Communication Model Among Statecharts:
an Approach Using Characteristic Event Sequences,” IEICE Tech. Rep., vol. 105,
no. 332, SS2005-53, pp. 31-36, Oct. 2005.

122


