JAIST Repository

https://dspace.jaist.ac.jp/

Title	Improvement of surface passivation layers for crystalline silicon solar cells				
Author(s)	Trinh, Cham Thi				
Citation					
Issue Date	2011-09				
Туре	Thesis or Dissertation				
Text version	none				
URL	http://hdl.handle.net/10119/9912				
Rights					
Description	Supervisor:Prof. Hideki Matsumura, マテリアルサイ エンス研究科, 修士				

Japan Advanced Institute of Science and Technology

Improvement of surface passivation layers for crystalline silicon solar cells

Trinh Cham Thi, Matsumura Lab.

1. Introduction

Enhancement in the efficiency of crystalline-silicon (c-Si) solar cells is one of great importance in c-Si photovoltaic research. High efficiency solar cells can be obtained only when both loss of photo-generated carriers and loss of sun-light in solar cells are reduced. To reduce the electrical loss due to the surface recombination of photo-generated carriers and the optical loss due to the reflection at air/c-Si interface, the formation of a surface passivation layer with the anti-reflection ability is indispensable.

Recently, silicon-nitride $(SiN_x)/amorphous-silicon (a-Si)$ stacked layers both prepared by catalytic chemical vapor deposition (Cat-CVD), also referred to as hotwire CVD, are found to have excellent performance as the surface passivation of c-Si. However, since a-Si layer absorbs sun-light, the use of more transparent material is required. Si-rich SiN_x films have higher silicon contents than SiN_x films, and have higher transparency than a-Si films. Thus, in my study, Si-rich SiN_x films were used as an alternative film to a-Si in the stacked structure. The major purpose of my research is to obtain good-transparency films without decrease of passivation quality in c-Si. The use of SiN_x/Si-rich SiN_x stacked layers as passivation films on c-Si wafers results in surface recombination velocity (SRV) of as low as 4.4 cm/s and 30 % improvement of transparency at the wavelength of 400 nm compared with that of SiN_x/a-Si stacked layers. Moreover, after annealing process, the passivation property of the stacked layers was significantly improved to SRV obtained of as low as 3 cm/s.

2. Experimental process

All the SiN_x and Si-rich SiN_x films were prepared by Cat-CVD. The effect of the ratio of silane (SiH₄)-to-ammonia (NH₃) gas flow rates ($R = [SiH_4]/[NH_3]$) and substrate temperature T_s during deposition of Si-rich SiN_x films on properties of the

films was firstly investigated. Then SiN_x/Si-rich SiN_x stacked layers were deposited on both sides of *n*-type c-Si wafers, whose schematic view is shown in Figure 1. Deposition condition of Si-rich SiN_x films and SiN_x films was listed in Table 1. The passivation quality of SiN_x/Si-rich SiN_x stacked layers were evaluated through effective minority carrier lifetime (τ_{eff}) measured by microwave photoconductance decay $(\mu$ -PCD) method.

Table 1. Deposition condition of Si-rich SiN_x and SiN_x films.

Film	SiH ₄	NH ₃	Gas	T_s	T _{cat}
	(sccm)	(sccm)	pressure(Pa)	(°C)	(°C)
Si-rich	10-20	250	10	90-300	1800
SiN _x					
SiN _x	6.9	200	10	250	1800
		SiN _x			
		Si-rich SiN _x			
		c	:-Si		
		Si-rio	ch SiN _x		
		S	SiN _x		

Figure 1. Schematic of cross-sectional view of a c-Si wafer passivated by SiN_x/Si -rich SiN_x stacked layers

3. Results and discussion

3.1. The effect of R and T_s on the properties of Si-rich SiN_x films

Figure 3. Atomic composition [Si]/[N] and n of 10-nm-thick Si-rich SiN_x films as a function of *R* at T_s of 250 °C

Figure 2 shows refractive index (*n*) at 630 nm of Si-rich SiN_x films at *R* of 0.08 as a function of T_s . *n* becomes higher with increase in T_s . This variation of *n* may be due to the change of atomic ratio of silicon/nitrogen (Si/N) shown in Figure 3. Figure 3 shows the atomic composition and *n* at 630 nm of 10-nm-thick Si-rich SiN_x films deposited at various *R*. Si content in the films increases as *R* increases. The excess Si content in the films induces the increase in mass density of the films, which may contribute to increase of *n*.

Figure 4. τ_{eff} of c-Si wafers passivated by SiN_x/Si-rich SiN_x stacked layers as a function of T_s

Figure 5. τ_{eff} of c-Si wafers passivated by SiN_x/Si-rich SiN_x stacked layers as a function of *R*

3.2. Passivation quality of SiN_x/Si -rich SiN_x stacked layers on c-Si wafers

Figure 4 shows τ_{eff} of c-Si wafers passivated by SiN_x/Si-rich SiN_x stacked layers as function of T_s . τ_{eff} improves with increase in T_s , and increases up to more than 2000 µs, particularly at T_s of 250 °C or more. The reason is not clear at the moment. It may be due to more effective termination of unbonded Si atoms at the Sirich SiN_x/c-Si interface and Si-rich SiN_x films at higher T_s . Figure 5 shows τ_{eff} of c-Si wafers passivated by SiN_x/Si-rich SiN_x stacked layers as function of R. τ_{eff} also increases with increase of R. One possible explanation for this tendency is that the increase of SiH₄ gas flow rate can provide more hydrogen atoms passivating Si wafers during Si-rich SiN_x films deposition process. Figure 6 shows τ_{eff} of c-Si wafers passivated by SiN_x/Si-rich SiN_x stacked layers as a function of Si-rich SiN_x film thickness. Without Si-rich SiN_x insertion, τ_{eff} is quite low. The obtained τ_{eff} of c-Si wafers passivated by 100 nm SiN_x films is 500 µs, corresponding to SRV of 29 cm/s. When Si-rich SiN_x films are inserted, τ_{eff} is significantly improved, and reaches maximum value of 3300 µs, corresponding to SRV of 4.4 cm/s when 8-nm-thick Si-rich SiN_x films are inserted. Figure 7 shows the dependence of τ_{eff} on annealing

Figure 6. τ_{eff} of c-Si wafers passivated by SiN_x/Si-rich SiN_x stacked layers as a function of thickness of Si-rich SiN_x films.

temperature (T_a). τ_{eff} increases when T_a increases and reaches highest value at T_a of 350 °C, and it drops drastically at T_a of 500 °C. Figure 8 shows transmission spectra of Si-rich SiN_x films at various *R* before and after annealing. The spectrum of a 10-nm-thick a-Si film is also shown for comparison. Transmission of Si-rich SiN_x films decreases with increase of *R*. However, at higher *R* which shows good passivation effect, transmission

Figure 7. τ_{eff} of c-Si wafers passivated by SiN_x/Si-rich SiN_x stacked layer as a function of T_a .

Figure 8. Transmission spectra of Si-rich SiN_x films at various *R* before and after annealing (The spectrum of a 10-nm-thick a-Si film is also shown for comparison).

of the films is higher than that of an a-Si film. Transmission of Si-rich SiN_x films does not change after annealing process. Figure 9 shows at wavelength (λ) of 400 nm of Si-

rich SiN_x films deposited at various R and τ_{eff} before and after annealing. Transmission at a wavelength of 400 nm of Si-rich SiN_x films was used for evaluation. Transmission tends to decrease when R increases, while τ_{eff} tends to increase with R. At the highest τ_{eff} of 4.8 ms after annealing at 350 °C, transmission of Si-rich SiN_x film is 60 %. Compared to an a-Si film, the transmission of the films is improved by 30 %. SRV of 3 cm/s for SiN_x/Si-rich SiN_x stacked films is a little bit worse than that of 1.5 cm/s for a SiN_x/a-Si structure.

Figure 9. Transmission at wavelength (λ) of 400 nm of Si-rich SiN_x films deposited at various R and τ_{eff} before and after annealing at T_a of 350 °C.

However, this difference of SRV will decrease the open-circuit voltage of solar cells only by 0.015 V. On the contrary, the improvement in transparency in short wavelength region from 300 nm to 1200 nm may improve short-circuit currents by about 10 %.

4. Conclusion

SiN_x/Si-rich SiN_x stacked layers formed by Cat-CVD system show good passivation on *n*-type c-Si wafers with resistivity of 2.5 Ω cm, which are available for solar cell fabrication. Passivation quality of this structure increases with increase in T_s and *R* during the deposition of Si-rich SiN_x films. The best τ_{eff} obtained before annealing is 3.3 ms, corresponding to SRV of 4.4 cm/s and SRV reduces from 4.4 cm/s to 3 cm/s. After annealing process, τ_{eff} is enhanced greatly from 3.3 ms to 4.8 ms, at which transparency is improved by 30 % in comparison with a-Si films. The results indicate that the use of Cat-CVD SiN_x/Si-rich SiN_x stacked layers can enhance c-Si solar cell efficiency due to high transparency and good passivation quality of Si-rich SiN_x films.