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Abstract

In home entertainment, reducing energy is highly desirable. Our motivations stem
from the important factors like the running cost, noise, heat, and energy consumption
from the storage as the main component of it. Home theater PC is a good choice of home
entertainment since it can provide high quality video output and be affordable in term
of cost. We investigate the total energy consumption in systems built around a Home
theater PC. There are several architecture choices that could potentially play a significant
role on total energy consumption. In particular, we identify three choices:

• HDD vs. SSD: HDD can provide bigger capacity with affordable price. Even
though, SSD is much more expensive, it is better in speed performance with less
energy consumption compared to HDD. In term of energy consumption, is it true
in all cases?

• Local Storage vs. Network-Attached Storage (NAS): Local storage might
be better in media playback performance and energy efficiency compared to NAS.
However, NAS can provide benefits like centralized data storage and no extra space
wasted for duplicate files.

• Prefetching: Typical Home theater PC might have big size of system memory
installed for the cheap price of RAM memory. It is an opportunity for energy
savings by applying aggressive prefetching to extend the disk idle time for saving
energy.

We evaluated experimentally three different storage architectures by measuring impor-
tant aspects, namely, energy consumption, hardware cost, playback performance, and
maintenance effort. To do so, we have built and instrumented a benchmark environment,
as well as a microcontroller-based device to monitor and record energy consumption di-
rectly from power cables.

We considered important key factors like the characteristics of storage medium, system
memory size, prefetching size as well as the workload parameters like the size of multimedia
data, duration of playback and also application parameters of the system application to
explore the possibility of better energy efficiency and performance.

Interestingly, we have found that by applying aggressive prefetching, the energy con-
sumption of HDD can be reduced to the same levels as SSD for video playback. This
means that, with appropriate system support in the media player, SSD is not yet ready
to replace HDD, even on the ground of energy-efficiency. For NAS, we found another
interesting result that using HDD as local storage will consume less energy compared to
using SSD. Based on the analysis of the experimental results, we identified the energy
and cost efficient storage architectures in home media players.

Keywords: Storage, energy efficiency, prefetching, embedded system, home
media players

1



Acknowledgements

Being able to come to Japan and study at JAIST is very valuable life experience for
me. I have been lucky and honorable to be a member of Dependable Distributed System
Group (DDSG) lab in School of Information Science at JAIST. I really appreciated my
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Chapter 1

Introduction

Nowadays, people spend more time on consuming media like television, movies, music,
games and browsing the Internet than the past. Because of the high availability and faster
access to media, we can enjoy entertainment more.

Starting from the earliest media player like traditional televisions, radios, tape players,
nowadays we can have one media player with many functionality like playing music, movie,
radio, taking picture, etc. Also, compared to the past times, the price of media players
have become cheaper mainly for the decreased price of the hardware. The media players
can be the portable ones like portable audio or video players as well as non-portable ones
like the entertainment units we have in our homes. Currently, media player has even
become like one part of our daily needs, which means that almost everyone has their own
media player.

Figure 1.1: Home theater
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1.1 Home media players

In home, people also need entertainment, which can be realized by having home media
players. For home media players, many young and old people have embraced the use of
home theatre pc for several reasons.

It is basically an old computer, which is used to provide entertainment functionality
like watching movies and playing music. When connected to other devices like display
and speakers, it can provide high quality of movie playback with nice sounds.

Another reason is that it is easier to upgrade to match any development that occurs.
It is different with other dedicated service gadgets, which are more difficult to upgrade.
In most cases, we need to replace the old ones with the new ones. Beside that, we can
customized it to provide more functionality according to our needs like internet connection,
radio or games since it is basically a PC machine.

1.2 Storage architectures

For home media players, the most important asset is the media data, which is stored
inside it. Thus, storage plays the important role in home media player like home theatre
PC. Before people decided to buy or build a home media player, there are several factors
they would consider such as the cost, data storing capacity and maintenance complexity.
Storage, as the main component of it, would directly relate to the consideration points
mentioned.

For storage, we may have different options like local and network storage. For the local
storage, the common options are HDD (Hard Disk Drive) and SSD (Solid State Drive).
However, each of them offers different pros and cons. And for the network storage, people
use NAS (Network-Attached Storage) as the architecture option. In fact, there are still
more storage architecture options like CD/DVD and flash memory.

1.3 Energy consumption

Reducing energy consumption has always been an important issue. The rising cost of
energy and increased public awareness surrounding the environment and sustainability
has prompted even more attention to reducing the power consumption of household.

Concerning the important role of entertainment takes in our daily lives nowadays; we
also need to consider the energy efficiency of entertainment media equipment, which we
use in home. For home entertainment, home media players would be the main equipment,
which consumes much energy compared to the others. Therefore, getting to know how
much energy is being consumed and trying to reduce the energy consumption is essential
especially to reduce part of house energy consumption cost.

9



1.4 Objectives

Our main (principle) motivation is to consider the energy consumption of storage archi-
tectures in home media players. In particular, home media player is commonly used for
watching high quality movies, which will take bigger capacity size.

Our work considers mainly the energy consumption during video playback of home
media players. In the experiment, we analyze the energy consumption by using different
storage architectures commonly used. We also consider the overall energy consumption
for the NAS (Network-Attached Storage) architecture in home media player.

Our research goal is to provide comparative analysis of total energy consumption of
storage architectures in home media players. As an important factor in reducing en-
ergy consumption, we also include prefetching as one of the architecture choices in the
experiment.

1.5 Contributions

The contribution in this dissertation is the investigation of energy consumption of storage
architectures in home media players with the comparative analysis. We showed that HDD
is not less energy-efficient than SSD for media application.

1.6 Organization

The rest of the dissertation is structured as follows:

• Chapter 2 discusses the background of home media players, storage architectures
and also the operating system used in home media players.

• Chapter 3 states the problem that needs to be addressed in home media players.

• Chapter 4 discusses prefetching and its effect in term of storage energy efficiency.

• Chapter 5 states the approach of comparative analysis methodology used through-
out this dissertation.

• Chapter 6 presents the results of the experiments with the analysis.

• Chapter 7 summarizes the major results of this work and outline future work
directions.

10



Chapter 2

Home Media Players and Storage
Architectures

With the growing entertainment consumption nowadays, the usage of home media players
has also increased. Home entertainment has become a part of daily needs. Even in home,
people would also like to have entertainment like movies, music, games, etc. Home media
players could offer the entertainment as wanted. However, there are various kinds of home
media players and architecture options to consider. Each one of them might offer different
cost/capacity tradeoffs.

2.1 Home media players

Commonly known home entertainment is home cinema. The purpose of home cinema is
to provide home theatre, which are home entertainment set-ups that seek to reproduce
movie theater video and audio feeling in a private home. For the set-ups, it certainly
must include home media players to provide the service needed. Currently, there are
many options in building home cinema like buying expensive high quality equipment.
Among all these options, there is actually a great home entertainment options, which is
by using our old PC as home theatre.

2.1.1 HTPC

A Home Theatre PC (HTPC) is a convergence device that combines some or all the
capabilities of a personal computer with a software application that supports video, photo,
and music playback, and sometimes, digital video recorder and time shifting functionality.
It integrates many or all components of a home theater into a single unit co-located with a
home entertainment system. Since it is designed for a home entertainment, it typically has
a remote control and bigger user interface design so that it can be viewed from certain
distance from the display. An HTPC can either be purchased pre-configured with the
required hardware and software needed, or can be combined together from components
essential to build a HTPC.
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Stored media is kept either on a local hard drive or on a network attached storage.
Some software is capable of doing other tasks, such as finding news or checking weather
forecast from the Internet.

2.2 Storage architectures

Deciding the storage architectures in home media players is essential since it directly
relates to the cost, capacity and maintenance complexity. Of course, the ideal architecture
is that we can bigger capacity with inexpensive cost and simple maintenance effort. But in
reality, different storage architectures offer different tradeoffs. In this research, we consider
local storage as well as network-attached storage and analyze the energy consumption as
the main metric.

2.2.1 Local Storage

With local storage, we can simply manage all the media files (such as video files) directly
into the local storage. It does not need complex management. Obviously, for media
players, bigger storage capacity is preferred. Currently, we have two options for local
storage such as HDD (Hard Disk Drive) and SSD (Solid State Drive). With HDD, we can
get bigger capacity with cheaper price if we compared it with SSD. But in term of energy
efficiency, SSD performs better than HDD. In this experiment, we analyze the energy
consumption of HDD and SSD during video playback in home media players.

2.2.2 Network-Attached Storage

With Network-Attached Storage, we can get another advantages like centralized data
management, which might offer efficiency in term of space usage. In home media players,
when there are several users, there is a possibility that they might have the same media
files. By putting all the media files into the same storage in NAS, it will eliminate the
situation when there is the same file, which is copied in different storage such as in local
storage. However, with Network-Attached Storage, the maintenance is becoming more
complicated since we also need to consider the networking part like switch and NAS
maintenance. For the storage option, it is much reasonable to use HDD since it provides
bigger capacity with cheaper cost.

2.3 Operating System and Applications

Inside home media players like HTPC, we need software to run it. HTPC options exist
for each of the major operating systems: Microsoft Windows, Mac OS X and Linux. The
software is sometimes called“Media Center Software”. Beside that, there also exist
some media center oriented embedded systems.

12



2.3.1 Standard OS for media center

For GNU/Linux, we can directly use the existing Linux OS like Ubuntu, Fedora, Red-
Hat, Knoppix, etc. And there are also few options of customized linux-based OS like
MythUbuntu, KnoppMyth, SageTV and Boxee.

For MAC OS X, some HTPC functionality is built into the operating system itself.
Specifically, the programs Front Row and Cover Flow, utilized in conjunction with the
Apple Remote, let users easily browse through and enjoy any multimedia content stored
in their Macs.

For Microsoft Windows, a common approach is to install a version that contains the
Windows Media Center (Home Premium, Professional or Ultimate for Windows 7, Home
Premium or Ultimate for Windows Vista, or the older Windows XP Media Center Edi-
tion). Windows Media Center includes additional software that covers the PVR functions
of the proposed HTPC, including the free program guide information and automatic
program recording. Windows 7, Windows Vista Home Premium and Windows Vista Ul-
timate already include an MPEG2 decoder. Only Windows XP MCE does not provide
an MPEG2 codec, that can be purchased from Intel, or is alternatively included in Inter-
video’s WinDVD shareware, or with DVD Decoder packages such as Nvidia’s PureVideo
and Sonic’s CinePlayer.

2.3.2 Embedded OS for media center

Instead of using standard OS like Windows, MAC OS X or Linux, there are available
options like media center oriented embedded systems. It will provide smaller size of
operating system, which means that we can have empty space for storing data. There
are some available free media center embedded operating systems such as GeeXboX [3],
OpenELEC and Element OS. They are all Linux based distributions.

In this research, we are interested in using Linux based embedded OS in the experiment
because of two main reasons. The first one is that it is open source so that we can analyze
the code and script inside for further optimization. The second reason is that the size of
the operating system is much smaller, so that users can put more media files inside the
storage as compared if they use the standard OS.

13



Chapter 3

Problem Statement: Energy
Consumption and Capacity

In home media players, people prefer big storage capacity with inexpensive price. Having
high definition movies inside the home media players are preferred. Nevertheless, it also
means that we need for bigger space for store the movies. As an example, the size of one
complete high definition movie needs more than 4GB while the size of lower definition
movie might need only about 1.5 GB. Even for higher quality lossless (BluRay) movie, it
might need about 13GB to 40GB for only one file. This tells us the importance of bigger
capacity of storage in home media players.

Also, the energy efficiency of the appliances is preferred. Since storage is the main
component of home media players, we would like to analyze the energy consumption of it.
As we know that SSD offer better energy efficiency than HDD, at first it seems attractive
to just choose SSD as the storage architecture options. But in fact, current price of SSD
is still way too high if we compared it to the price of HDD.

Therefore, it seems that we might not be able to have all the ideal conditions since
different storage architectures would offer different tradeoffs. In this research, we would
like to analyze the energy consumption of storage architectures and explore the way to
optimize the energy efficiency in home media players.

3.1 HDD

A hard disk drive (HDD) is a non-volatile, random access digital data storage device. It
features rotating rigid platters on a motor-driven spindle within a protective enclosure.
Data is magnetically read from and written to the platter by read/write heads that float
on a film of air above the platters.

Many of the hard drive companies are now producing Green Drives that require much
less power and cooling. Many of these Green Drives spin slower (less than 5,400 rpm
compared to 7,200, 10,000 or 15,000 rpm), thereby generating less heat. Parking the
drive heads when the disk is not in use by reducing friction, adjusting spin speeds, and
disabling internal components when not in use can also reduce power consumption. Most

14



hard disk drives today support some form of power management, which uses a number
of specific power modes that save energy by reducing performance. When implemented
an HDD will change between a full power mode to one or more power saving modes as
a function of drive usage. Recovery from the deepest mode, typically called Sleep, may
take as long as several seconds.

Several works have been published for low power HDD. In [11], it is reported that the
mechanical parts incur large overheads of power consumption, especially when the HDD
starts to run the spindle and head. Also, the spin-up energy can vary between HDDs by
an order of magnitude.

Several methods for HDD power management have been presented. In [14], the au-
thors present the quantitative comparison of existing dynamic power management policies
(DPM) used for shutting down hard drive into low power states when there is no I/O ac-
cess. The inter-session delay is predicted and exploited to make HDD enter into low power
states. In [9], a time-out based DPM policy is presented. In this work, if there is no new
access during the time-out, a low power state is entered. The time-out is determined adap-
tively based on the accuracy of previous time-out predictions. In [8], the authors present a
machine learning-based method to determine the best policy among a set of DPM policies
by adapting changes in the system workloads. In [7], the DPM scheme based on idle pe-
riod clustering and adaptive learning trees are presented. The other method presented for
the Dynamic Power Management is the Program Counter-Based Prediction Techniques
in [10] which dynamically learns the access patterns of applications and predicts when an
I/O device can be shut down to save energy.

There are several studies to HDD idle time proactively in order to save energy. In [15],
prefetching is applied to prolong the idle time of HDDs, enabling them to stay in low
power states for longer periods. The other method to make the HDD idle time longer is
by providing power-aware cache management as presented in [4, 6, 13, 19].

There is also another disk power consumption reduction technique which was done by
having the disk drives to enter acoustic modes which reduces the instantaneous power
consumption presented in [5].

3.2 SSD

A solid-state drive (SSD) is a data storage device that uses solid-state memory to store
persistent data with the intention of providing access in the same manner of a tradi-
tional block I/O hard disk drive. SSDs are distinguished from traditional hard disk
drives (HDDs), which are electromechanical devices containing spinning disks and mov-
able read/write heads. SSDs, in contrast, use microchips, which retain data in non-volatile
memory chips and contain no moving parts. Compared to electromechanical HDDs, SSDs
are typically less susceptible to physical shock, are silent, and have lower access time and
latency, but are more expensive per gigabyte (GB) and typically support a limited number
of writes over the life of the device. SSDs use the same interface as hard disk drives, thus
easily replacing them in most applications.

Flash memory has the advantages of high performance, low power consumption, and
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high reliability compared with a conventional hard disk drive (HDD). High performance is
the main reason that flash memory is adopted, especially for faster booting and application
loading. The advantages come from the fact that flash memory is based on electronic
functions, e.g., program, read and erase, whereas an HDD is based on mechanical ones,
e.g., servo and spindle motors and arms. Driving those mechanical parts entails significant
latency (on the order of milliseconds) and power consumption, especially when the HDD
enters the active mode from a low power mode.

Among flash-based storage, SSD is becoming a major storage device, replacing the HDD
in smart phones (e.g. iPhone 3GS with 32 GB flash memory) and net books as well as
notebook PCs and servers.

One of the main reasons that SSD is favored over HDD is performance. The SSD offers
higher performance than the HDD via parallel accesses; it utilizes relatively low speed
flash devices in parallel. For instance, in order to achieve a throughput higher than 240
MB/s, we can utilize 8 flash devices with 33 MBps each in parallel. Recently, in order
to obtain further performance improvement, high speed flash interface specifications have
been presented, e.g. ONFI and toggle NAND. By adopting flash memories with high I/O
bandwidth, the SSD performance can be improved significantly.

However, the price of SSD is still very expensive comparing to the price of HDD. Con-
cerning to this, people still prefer HDD to have big capacity of storage like the multimedia
storage.

3.3 Network-Attached Storage

A NAS unit is a computer connected to a network that only provides file-based data
storage services to other devices on the network. NAS uses file-based protocols such as
NFS (popular on UNIX systems), SMB/CIFS (Server Message Block/Common Internet
File System) (used with MS Windows systems), or AFP (used with Apple Macintosh
computers). NAS units rarely limit clients to a single protocol. Some advantages of NAS
are:

• Users running different types of machines (PC, Apple iMac, etc.) and running
different types of operating systems (Windows, Unix, Mac OS, etc.) can share files.

• NAS appliances are“ plug-and-play” meaning that very little installation and
configuration is required beyond connecting them to the LAN.

• Less administration overhead than that required for a Unix or NT file server.

• Centralized storage, which makes the data easier to manage and share. Incidentally,
centralized storage is more expensive than local disks on byte cost basis, but users
have to do tasks such as backups and restores on their own.

However, NAS might require much more power consumption since it needs to work on
LANs. Also, for home users, it might require more maintenance effort for the NAS and
the networking parts. For the energy consumption side, it means additional consumption
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at the NAS server itself and also the networking switch/hub in the case of home media
players.
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Chapter 4

Prefetching

In prefetching, the operating system tries to predict the pages a process will need and
to preload them when memory space is available. If the system is able to make correct
decisions about future page use, the process’s total runtime can be reduced.

4.1 Prefetching in Linux

Many disk accesses are sequential. Regular files are stored in disk in large groups of
adjacent sectors, so that they can be retrieved quickly with few moves of the disk heads.
When a program reads or copies a file, it often accesses it sequentially, from the first byte
to the last one. Therefore, many adjacent sectors on disk are likely to be fetched when
handling a series of a process’s read requests on the same file.

Prefetching in Linux (or commonly called Read-ahead) consists of reading several adja-
cent pages of data of a regular file or block device file before they are actually requested.
In most cases, read-ahead significantly enhances disk performance, because it lets the disk
controller handle fewer commands, each of which refers to a larger chunk of adjacent sec-
tors. Moreover, it improves system responsiveness. A process that is sequentially reading
a file does not usually have to wait for the requested data because it is already available
in RAM.

However, read-ahead is of no use when an application performs random accesses to
files; in this case, it is actually detrimental because it tends to waste space in the page
cache with useless information. Therefore, the kernel reduces or stops read-ahead when
it determines that the most recently issued I/O access is not sequential to the previous
one.

The readahead inside Linux 2.6 adopts dual windows to achieve readahead pipelin-
ing: while the application is walking in the current_window, I/O is underway in the
ahead_window. For the purpose of pipelining, the I/O is issued for the next readahead be-
fore the not-yet-consumed readahead pages fall under a threshold, lookahead size. A value
of lookahead_size = 0 disables pipelining, whereas lookahead_size = readahead_size

opens full pipelining.
We put the source code of on-demand readahead algorithm[17, 18] in Linux 2.6 inside
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Appendix A. It is composed of a list of condition-action blocks. Each condition tests for
a specific case (Table 4.1), and most actions merely fill the readahead state with proper
values.

case description condition
initial read on start of file !offset

oversize random oversize read !page && !sequential && size > max

random random read !page && !sequential

lookahead lookahead hit offset == ra->lookahead_index

readahead readahead hit offset == ra->readahead_index

miss sequential cache miss !page

interleaved lookahead hit with no context page

Table 4.1: Cases for detecting access patterns

The cases considered in the algorithm:

• Random: A small, stand-alone read. Take it as a random read, and read as is.

• Lookahead: It is readahead time indicated by the readahead state, so ramp up the
size quickly and do the next readahead.

• Readahead: It is readahead time indicated by the readahead state. We can reach
here if the lookahead mark was somehow ignored (queue congestion) or skipped
(sparse read). Do the same readahead as in lookahead time.

• Initial: First read on start of file. It may be accessing the whole file, so start
readahead.

• Oversize: An oversize read. It can not be submitted in one huge I/O, so do it
progressively as a readahead sequence.

• Miss: A sequential cache miss. Start readahead.

• Interleaved: A lookahead hit without a supporting readahead state. It can be
some interleaved sequential streams that keep invalidating each other’s read-ahead
state. The lookahead page indicates that the new readahead will be at least the
second one in the readahead sequence. So get the initial readahead size and ramp
it up once.

4.2 Energy-efficient Prefetching

Prefetching and caching are standard practice in modern file systems. They serve to
improve performance that is to increase throughput and decrease latency by eliminating
as many I/O requests as possible, and by spreading the requests that remain as smoothly
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as possible over time. This strategy results in relatively short intervals of inactivity. It
ignores the goal of energy efficiency so important to mobile systems, and in fact can
frustrate that goal. Magnetic disks, network interfaces, and similar devices provide low-
power states that save energy only when idle intervals are relatively long. A smooth access
pattern can eliminate opportunities to save energy even during such light workloads as
MPEG and MP3 playback.

The aim of energy efficient prefetching [15] is to create bursty access patterns for devices
with non-operational low-power states, increasing the average length of idle intervals and
maximizing utilization when the device is active, without compromising performance.

Typical hard disks support at least four power states: Active, Idle, Standby, and Sleep.
The disk only works in the Active state. In the Idle state the disk is still spinning, but
the electronics may be partially unpowered, and the heads may be parked or unloaded.
In the Standby state, the disk is spun down. The Sleep state powers off all remaining
electronics; a hard resets is required to return to higher states. Individual devices may
support additional states. The IBM TravelStar, for example, has three different idle
sub-states.

One to three seconds are typically required to transition from Standby to Active state.
During that spin-up time, the disk consume 1.5-2X as much power as it does when Active.
The typical laptop disk must therefore remain in Standby state for a significant amount
of time on the order of 5-16 seconds for current laptop disks to justify the energy cost
of the subsequent spin-up. The energy savings in idle state approaches that of Standby
state, particularly in very small form factor devices, and the time and energy to move
from Idle to Active state are minimal. Hence, even modest increases of the disk’s idle
interval can lead to significant energy savings.

In order to understand how prefetching can help reduce the energy consumption of hard
drive, we show the concept of power management first in Figure 4.1.

Figure 4.1: Power management from the workload, device, and power state points of view
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A workload consists of many requests. The requests are read and write commands.
When there are requests, the device is busy. Otherwise, it is idle. When hard drive is
busy serving for requests, its power state is active. If there is no request and the device
is idle, then it will enter idle mode. After certain period of time (T1 to T2), the disk will
enter Standby mode. To enter standby mode, disk needs to spin down and it needs Tsd

time. When there is new request again, disk will spin up and for this, it need Tsu time.
As mentioned above that lower power state consumes less power, the longer the disk stays
in standby mode, the less power being consumed.

However, the standby period (T2 to T4) needs to be long enough to compensate for
the overhead of power state changes (spin up and spin down). The minimum length of
the period to save power is called the break-even time (Tbe). It depends on individual
devices and is independent of requests. Suppose its power in the active and standby
states is Pa and Ps. On the left of Figure 4.2, the device is kept in the working state;
on the right, the device is shut down. The break-even time has to be larger than the
transition delay. Namely, Pa × Tbe = (Esd + Esu) + Pa × (Tbe - (Tsd + Tsu)). Therefore,
Tbe = max[(Esd + Esu) − Ps × (Tsd + Tsu)/(Pa - Ps), Tsd + Tsu].

Figure 4.2: Breakeven time

In order to reduce energy consumption, the standby period needs to be longer than
the breakeven time. Energy-efficient prefetching does this by making the workload access
during the busy time of the device to be bursty so that all the needed request data
available in the page cache and the device can be put into standby mode for longer time.
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4.3 More Energy-savings with Aggressive Prefetch-

ing

Traditional OS-level prefetching strategies have tended to be conservative, fetching only
those data that are likely to be needed according to some simple heuristic, and only just
in time for them to arrive before the first access. More aggressive policies which might
speculate more about which data to fetch, or fetch them earlier in time have typically
not been considered a prudent use of computational, memory, or bandwidth resources.
However, the technological trends and emerging system design goals have dramatically
reduced the potential costs and dramatically increased the potential benefits of highly
aggressive prefetching policies.

Published studies have shown that aggressive prefetching [16] has the potential to im-
prove I/O performance for a variety of workloads and computing environments, either by
eliminating demand misses on pages that a conservative system would not prefetch, or by
avoiding long delays when device response times are irregular. Most modern operating
systems, however, still rely on variants on the standard, conservative sequential read-
ahead policy. Linux, for example, despite its reputation for quick adoption of promising
research ideas, prefetches only when sequential access is detected, and by default to a
maximum of only 128KB.

Technology and market forces have led to dramatic improvements in processing power,
storage capacity, and to a lesser extent I/O bandwidth. One of the obvious improvements
is the cheaper price for large size memory. As memory sizes and disk bandwidths con-
tinue to increase, and as multimedia applications continue to proliferate, the performance
benefit of aggressive prefetching will surpass that of caching policies.
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Chapter 5

Comparative analysis methodology

After all the required background and previous works was presented in previous chapters,
this chapter explains the methodology used for the comparative analysis. The storage
architecture options of home media player that we consider in this experiment are:

• HDD versus SSD

• Local storage versus Network-Attached Storage (NAS)

• Prefetching

We applied the systemic approach[12] for the comparative analysis by firstly defining
the project plan before starting the study. The methodology steps are defined in detail
in the sections following.

5.1 Systemic Approach to Evaluation

The study is based on the following plan:

1. System definition: The goal of the study is to compare the overall energy con-
sumption of home media players using different storage architectures. The key
component under the study is storage architectures. The storage architectures are
HDD, SSD or NAS. However, comparing directly the energy consumption of local
storage and NAS is not fair, thus we measure the overall energy consumption of
NAS and make the comments of the comparison between local storage and NAS
later. The system consists of home media player with storage medium. All the
media like movies and music are stored in the storage medium. Only the subsets
of the media player system that offer media playback services is considered to be
part of the system. The study will be conducted so that the effect of components
outside the system is minimized.

2. Services: The services offered by the system are to provide video playback with
different storage architectures. The resources used by home media player system
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depend upon the storage medium and system parameters being used. In this case
study, media playback is chosen as the application and the media will be classified
by the size (small, large) and quality (low, medium, high) depending upon the type
of data being played by the system. In other words, the system offers services: small
sized video (with low, medium, high quality) playback and large sized video (with
low, medium, high quality) playback.

3. Metrics: The study will be limited to correct operation only. For each service,
we observed the mainly the energy consumption of the system. The resources are
the media player system and the storage medium. This leads to the following
performance metrics:

• Energy consumption of the storage medium per video playback.

4. Parameters: The system parameters that affect the performance and energy con-
sumption of the given application and data size are the following:

• Type of storage architecture

• Speed of CPU

• Size of memory

• Speed of storage data transfer

• Speed of network (for NAS architecture)

• Size of prefetching

• Correctness of predicted future data of prefetching

• Operating system overhead for interfacing with the application

• Operating system overhead for interfacing with the networks

• Reliability of the network

The workload parameters that affect the main metric, energy consumption, are the
following:

• Number and sizes of movie file

• Playback duration of the movie

• Type of media player system

• Parameters setting of the playback application

5. Factors: The key factors chosen for this study are the following:

• Type of storage architectures. For local storage, two types, HDD, SSD are
compared. For NAS, two types, HDD as local storage with NAS and SSD as
local storage are compared.

• Number and sizes of the data. One big high definition movie file will be used.
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• Size of prefetching. Different values of system maximum prefetching size will
be used. Two values – default (128KB) and large (512MB).

• Size of memory. System memory size: 884 MB.

6. Evaluation technique: Since the media player, system and workload are ready to
be used, measurements will be used for the evaluation. Analytical modeling will be
used to justify the consistency of measured values for different parameters.

7. Workload: The workload will consist of media player application playing video
from different storage architectures. The disk power measurement device will mon-
itor the power measured and record the measured results.

8. Experimental design: We used full factorial experimental design was used for
the initial study and then apply this experimental design after repeated number
of experiments after considering the impact and time needed for completing each
experiment as shown in Table 5.1 and 5.2

Factor Levels
Storage HDD, SSD

Data size Big file size (4.7 GB)
Prefetching Default size (128KB), Big size (512MB)

Memory System memory size (884MB)

Table 5.1: Experimental design for local storage

Factor Levels
Storage HDD as local with NAS, SSD as local with NAS

Data size Big file size (4.7 GB)
Prefetching Default size (128KB)

Memory System memory size (884MB)

Table 5.2: Experimental design for NAS

9. Data analysis: Analysis of variance will be used to quantify the effects of the
factors.

10. Data presentation: The final results will be plotted as a function of power con-
sumption in Watts.

5.2 Monitors

In this experiment, the main metric is the energy consumption. The monitor used in the
experiment should not interfere with the system to make sure that the correctness of the
result obtained.
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For measuring the power consumption, we measure directly from the power supply lines
of the disk drives. In order to achieve it, we have built the measurement device to measure
directly from the power cables and record all the collected data into a memory card.

5.2.1 Disk Power Measurement Device

We have developed a custom measurement device that provides direct, online measure-
ments of disk drive power consumption. We configured our device to capture two inputs;
the 5-Volt and 12-Volt supply lines of a connected drive at 12.5 Hz. The measurement
device was built by using a microcontroller, Arduino [2] (board model: UNO) and two
current sensors (ACS712). Each current sensor will capture the current value from the
supply lines and input them into the microcontroller. The microcontroller will process
the data and record them into a MicroSD card as shown in Figure 5.2.

The frequency of sample collection is about 12.5 Hz. Inside the current sensor, 1.2 mΩ
internal conductor resistance is used to intercept with the supply lines, leading to a small,
but detectable, drop in potential across these resistors. Our measurement instrumentation
is powered separately and has a negligible effect on the actual power consumption of the
drive under test. Pictures of the measurement setup and also the electronic diagram are
provided in the Figure 5.1 and Figure 5.3, respectively.

Figure 5.1: Measurement setup
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Figure 5.2: Logical diagram of the disk power measurement device

Figure 5.3: Electrical diagram of the disk power measurement device
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5.2.2 Analysis and Interpretation of Log Data

The data collected by the measurement device is the current value taken from the power
supply lines. The amount of data being taken depends on the duration of the experi-
ments. As mentioned above that the sampling frequency of the device is about 12.5 Hz,
we calculated the average power consumption at that frequency. From the obtained aver-
age power consumption, we calculated the energy consumption of the disk based on the
duration of playback.

5.3 Benchmarking Environment

The test is comprised of a media player with HDD or SSD and also one unit of NAS
server. For each experiment, the test setup is set based on the setup requirement. The
experimental setup is shown in Figure 5.4

Figure 5.4: Experimental Setup of Storage Architectures

Machine setup:

• Media player:

– CPU: 2.66 GHz Intel Core 2

– Memory: 884 MB

– OS: GeeXboX

– Local storage:

∗ HDD:

· Model: Seagate SATA 2.5 inch ST9250315AS

· Capacity: 250 GB
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∗ SSD:

· Model: Intel X25-M SATA 2.5 inch

· Capacity: 120 GB

• Network-attached storage (NAS):

– Machine: QNAP TS210 TurboNAS

– Storage:

∗ HDD:

· Model: Western Digital WD3200AAKS

· Capacity: 320 GB

Workload setup:

• Application:

– MPlayer

• Data:

– Movie file:

– Size: 4.7 GB

– Quality: High definition (.MKV file)

– Duration: 1 hour 45 minutes

5.4 Discussion

As mentioned above, we applied the systemic approach for the comparative analysis. One
of important thing in the experiment is to make sure the correctness of the result obtained.
In the experiment, we started by simple experiments first instead of running the whole
experiments at a time. Then, by the results obtained, we analyzed the correctness of it
and improved the methodology being used.

The measurement device is one of the core components in this experiment. The device
was improved by modifying the configuration to provide more accurate results. As the
initial step, we tried to calibrate the device to make sure the results measured are correct
enough by comparing the results with the values from the data sheets of the hardware.
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Chapter 6

Result and analysis

In this section, we present the results and analysis of testing the storage architectures
in home media player. Before starting the comparison, it is also important to view and
understand the power consumption based on the disk drive characteristics used in the
experiment. After that, we present the results and the comparative analysis of energy
consumption of local storage, HDD and SSD in media player. Then, the results and
analysis between local storage and network storage is presented.

Since the energy consumption of electrical devices in home depends on the users’ usage
behavior, we consider several user scenarios and present the analysis of overall energy
consumption of the home media player.

6.1 Basic power consumption analysis of storage in

the experiment

For HDD, we observed and analyzed the power consumption of the drive’s operating
modes: sleep, standby, idle and active. Meanwhile, since the SSD drive we use in the
experiment is NAND-based flash memory and will consume approximately the same power
consumption after it is powered on, we observed and analyzed its power consumption
after media player is turned on. In the data sheet specification of the SSD we used in
the experiment, it mentions that the SSD also has idle mode by DIPM (Device Initiated
Power Management). However, it must be supported by specific chipsets (usually in
laptop). Since the media player system we used in the experiment does not support it,
we do not include it in this experiment. All the results measured in the same system of
the home media player (GeeXboX).

In the measurement analysis, we did repeated experiment of each case to include the
variances of data and summarize the data obtained by a certain amount of confidence
interval.
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6.1.1 Basic power consumption analysis of HDD

HDD has different power consumption for different modes, which consist of standby, idle
and active. In the experiment, we did the real measurement and also include the power
consumption of the same modes provided by the vendor for reference. In the experiment,
we take samples from the repeated experiments and make the analysis. The hard drive
we use in the experiment is Seagate SATA HDD 2.5 inch ST9250315AS. It only consumes
the power from the 5V power supply cable.

Standby Mode

The standby mode measurements were conducted by issuing the ACPI standby command
and recording the power consumption. Multiple samples were collected to expose any
variation the measurements. Disk is put into standby mode after the disk was in idle
mode for a certain period of time.

Figure 6.1: HDD Standby Power Consumption

Figure 6.1 shows a sample of power consumption during idle state. We took 100 samples
of the power consumption of the idle state and calculated the mean value is 0.1615 Watts
with standard deviation value 0.1677. From the results obtained, we can say that at 99%
confidence interval for the mean is (0.118,0.205). From the vendor’s data sheet, the power
consumption of standby mode of the same HDD is about 0.20 watts. It is almost near to
the value provided by the vendor.
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Idle Mode

The idle mode measurements were conducted by letting disk idle without any workload.
Multiple runs were collected to expose any variation the measurements. The Figure 6.2
below shows the power consumption during idle mode of the disk. In idle mode, the drive
is not servicing any requests, but the platters are spinning.

Figure 6.2: HDD Idle Power Consumption

We took 100 samples of power consumption during disk idle mode and measured that
the mean value during idle mode is about 0.641Watts with standard deviation value 0.219.
From the results obtained, we can say that at 99% confidence interval for the mean is
(0.585, 0.697). The measured value for the idle mode is nearly the same as the reference
value provided by the vendor, 0.67 watts.

Active Mode

Active mode power consumption is measured by capturing data when the disk is servicing
I/O request (data seek/read) during the movie playback. This is the mode, which consume
the highest power compared to the other modes. The Figure 6.3 below shows the power
consumption of many seek operations.

We took 100 samples of power consumption of seek operations and calculated the mean
value of it is about 1.747 Watts with standard deviation 0.389. From the results obtained,
we can say that at 99% confidence interval for the mean is (1.647, 1.847). The measured
active mode power consumption is a little bit higher than the value provided by vendor,
which is 1.54 Watts.
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Figure 6.3: HDD Active (seek) power consumption

Sleep Mode

Sleep mode is the mode when the machine is powered-off so there is no power consumption
at that time.

Spin-up Transition

When the disk is in standby mode and need to be accessed when the system needs disk
I/O, the disk needs to be spin-upped in order to be active for the operation. This spin-up
transition takes high power consumption and a certain period of time. We measured the
power and time needed for the spin-up transition by capturing the data when the disk
is triggered after entering standby mode for a period of time. The Figure 6.4 shows the
graph of power consumption characteristic of HDD during spin-up transition.

For the spin-up transition, the duration needed for the transition is essential so we
measured and analyzed it by taking 35 samples. The spin-up duration measured is shown
in the Figure 6.5.

The mean value of the measured spin-up duration is 1.34 seconds with variance value
of 0.0086. From the obtained data, we can say that at 99% confidence interval for the
mean is between 1.212 and 1.468.

To analyze the energy consumption needed for the disk spin-up transition, we measured
by taking 35 samples. The measured energy consumption of HDD spin-up transition from
repeated experiments is shown in the Figure 6.6.

The mean value of the spin-up energy consumption is 3.87 Joules. From the obtained
data, we can say that at 99% confidence interval for the mean is between 3.498 and 4.240.
In the data sheet, the vendor only provide the maximum current needed during the spin-
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Figure 6.4: HDD Standby-to-Active Transition

Figure 6.5: HDD Spin-up Duration from 35 samples
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Figure 6.6: HDD Spin-up Energy Consumption from 35 samples

up transition that is 1 Ampere. We measured the average current is about 0.6 ampere,
which is still reasonable if we take the value from the data sheet as reference.

6.1.2 Basic power consumption analysis of SSD

Since the SSD used in the experiment only support one mode, active so we measured and
did the analysis based on the data. The SSD we use in the experiment is Intel X25 SATA
SSD 2.5 inch 120 GB. It only consumes the power from the 5V power supply cable.

In the experiment, we found no big differences of power consumption of SSD whether
it is servicing I/O operation or not. The power consumption was measured by taking
multiple samples to analyze the variance. The Figure 6.7 below shows the power con-
sumption of SSD. From the data we obtained, we observed small variances in the power
consumption but with the same average value. It is different with HDD because SSD is
NAND-based flash storage and the power consumption depends on the chips operating
inside. When there is operation, there will be chips operating in parallel.

We took 100 samples and calculated its mean value of power consumption to be about
0.54 Watts with standard deviation value 0.199. From the results obtained, we can say
that at 99% confidence interval for the mean is (0.487, 0.589). The measured power
consumption of SSD is higher than the value provided by the vendor. The possible reason
is that the vendor uses different operating system with specific benchmarking software.
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Figure 6.7: SSD Active Power Consumption

6.1.3 Basic power consumption of HDD inside NAS

Since NAS has its own system and there might be a lot factors affecting, we measured the
basic power consumption of the HDD inside NAS with different operating system, Linux
Fedora 13. The hard drive we use inside NAS is Western Digital WD3200AAKS 3.5 inch
with 320GB capacity. The reason is because HDD offers bigger capacity with cheaper
price, so it is more reasonable to use it as storage inside NAS.

Mode Measured power (watts) Data sheet based power (watts)
Standby 1.25 1

Idle 5.02 7.5
Active 7.7 7.75
Sleep 0 0

Table 6.1: Measured power consumption of HDD in NAS

The power consumption of the HDD is higher because it uses both of the power supply
5V and 12V. It is different if we compared it with the 2.5 inch HDD as we presented
before since 2.5 inch HDD or SSD consume only from the power supply 5V.

6.2 Comparison between local storage (HDD and SSD)

In the section, we present the results and analysis for the local storage architecture inside
home media player. For comparison, we only change the storage used inside the media
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player with the same system, workload and settings. We measured the energy consump-
tion of local storage with the default setting as the baseline and then add prefetching to
see the affect on the energy consumption between these two different storage. We have
several different testing setup for comparison:

1. HDD with default prefetching

2. SSD with default prefetching

3. HDD with aggressive prefetching

4. SSD with aggressive prefetching

6.2.1 Experiment 1 (HDD with default prefetching)

As mentioned before that Linux has already implemented the prefetching mechanism
inside but with default maximum prefetching size of 128KB. We measured this experiment
by running workload (movie playback with 105 minutes duration) with system default
setting. To be able to observe the variance, we run and get the results for several repeated
experiments. The Figure 6.8 below shows the power consumption characteristic graph for
the whole movie playback.

Figure 6.8: HDD Power Consumption during the whole movie playback

From the playback starting time, we observed that the disk is in active mode most of
the time. During the movie playback, the disk needs to service with the data almost all
the time with small idle interval. The disk seek/read operation dominates. The reason
behind this is because the small prefetching size of the system which needs frequent disk
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access. The Figure 6.9 below shows a small part of the power consumption during the
playback. Since the prefetching size is 128KB and the movie needs to be loaded in time
during the playback, the system needs to make disk access many times while the system
page cache is never full. The size of page cache in the system is the same as the total
memory size available for the system, which is 884MB.

Figure 6.9: HDD Power Consumption from small part of the playback

From this experiment, we identify that the power consumption is mostly consumed by
the disk doing seek and read operations, which is actually higher compared to other power
modes.

We measured the energy consumption of it by repeated experiments to observe the
variance as shown in Figure 6.10

From the obtained data, the mean value of the energy consumption of the experiments
is about 6211.37 Joules with standard deviation value of 559.11. We can say that at 99%
confidence interval for the mean is (5060.18, 7362.56).

6.2.2 Experiment 2 (SSD with default prefetching)

For comparison, this experiment uses the same setting and workload as experiment 1 but
using SSD as the storage inside the tested home media player. To be able to observe the
variance, we run and get the results for several repeated experiments. The Figure 6.11
below shows the power consumption characteristic graph for the whole movie playback.

From the Figure 6.11, we see that the power consumption of SSD during the whole
playback has nearly the same average power consumption with little variance compared
to HDD in experiment 1.
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Figure 6.10: HDD Movie Playback Energy Consumption of repeated experiments

Figure 6.11: SSD Power Consumption during the whole movie playback
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We present the power consumption of small part of the playback to observe the charac-
teristics shown in Figure 6.12. The SSD always stay active all the time and the variance
happens depends on the operation and number of chips being powered-on inside SSD.
The system page cache situation is the same as experiment 1 which never get fully filled
because of the small prefetching size.

Figure 6.12: SSD Power Consumption from small part of the playback

We measured the energy consumption of it by repeated experiments to observe the
variance as shown in Figure 6.13

From the obtained data, the mean value of the energy consumption of the experiments
is about 3180.49 Joules with standard deviation value of 431.05. We can say that at 99%
confidence interval for the mean is (2292.97, 4068.01).
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Figure 6.13: SSD Movie Playback Energy Consumption of repeated experiments

6.2.3 Experiment 3 (HDD with aggressive prefetching)

In this experiment, we present the energy consumption of the same movie playback with
aggressive prefetching. Since Linux already has the prefetching mechanism, we set the
prefetching size to be 512MB, which is large enough compared to the default prefetching
size, 128KB. To achieve this, we set the system parameter through ACPI interface[1]
(hdparm -a1048576 deviceid) before running the workload.

The Figure 6.14 below shows the power consumption graph during the whole playback.
From the graph, we can see the disk seek/read I/Os have been reduced compared with

experiment 1 and also the disk entered standby mode many times. For better view, we
show small part of the graph to see the difference as Figure 6.15.

We can see that there are only several disk seek/read operations with longer idle in-
tervals and eventually entering standby mode. After the disk enters standby mode and
the system needs to access data from the disk, the disk will enter spin-up transition. The
reason is because we allow the system to preload large data from the disk into the page
cache so that the disk can be put into rest and enter idle/standby mode. Since the system
is a home media player, it only run the data of the workload that is the movie file., thus
we can make sure that the disk I/O will be less since all the needed chunks of data had
already been loaded into the memory.

We measured the energy consumption of it by repeated experiments to observe the
variance as shown in Figure 6.16

The mean value of the energy consumption from the repeated experiments is 3757.62
with standard deviation 807.609. From the data obtained, we can say that at 99% confi-
dence interval for the mean is (2094.78, 5420.46).
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Figure 6.14: HDD Power Consumption with aggressive prefetching during the whole movie
playback

Figure 6.15: HDD Power Consumption with aggressive prefetching from small part of the
playback
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Figure 6.16: HDD Movie Playback Energy Consumption with aggressive prefetching of
repeated experiments

6.2.4 Experiment 4 (SSD with aggressive prefetching)

This experiment uses the same setting as experiment 3 but with SSD as the storage
inside the media player. Here, we would like to analyze the impact of applying aggressive
prefetching to SSD. The system prefetching size is set to be 512MB.

The figure below shows the power consumption graph during the whole movie playback.
The power consumption graph shows not much difference if we compare it with SSD

with default prefetching size.
To analyze the variance of the energy consumption, we collected the data from repeated

experiments as shown in Figure 6.18
The mean value of the energy consumption is about 3448.19 Joules with standard

deviation value of 617.58. We can say that at 99% confidence interval for the mean is
(2176.61, 4719.77).

6.2.5 Comparison analysis

In this section, we present the comparison analysis with all the data by using t-test method
to compare between two different systems. T-test is a method of unpaired observations
of two systems.
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Figure 6.17: SSD Power Consumption with aggressive prefetching during the whole movie
playback

Figure 6.18: SSD Movie Playback Energy Consumption with aggressive prefetching of
repeated experiments
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Comparison between HDD with default prefetching (experiment 1) and HDD
with aggressive prefetching (experiment 3)

We present the statistical analysis to show the difference of energy consumption between
HDD with default prefetching and HDD with aggressive prefetching. We called the system
with HDD with default prefetching and the system with HDD with aggressive prefetching
as system 1 and system 2, respectively.

For system 1:

• Mean: 6211.37

• Variance: 312606.64

• Total sample: 5

For system 2:

• Mean: 3757.62

• Variance: 652232.94

• Total sample: 5

By t-test method, we calculated that 99% confidence for difference between these two
systems is between 1431.99 and 3475.51. The confidence interval shows that system 1
indeed consumes much more power than system 2. It means that the impact of aggressive
prefetching on energy consumption is big enough in HDD with 99% confidence interval
that the difference of energy consumption is between 1431.99 and 3475.51.

Comparison between SSD with default prefetching (experiment 2) and SSD
with aggressive prefetching (experiment 4)

Here, we provide the analysis to show the impact of aggressive prefetching on energy con-
sumption of SSD. For simplicity, we called the system with SSD with default prefetching
and the system with SSD with aggressive prefetching as system 1 and system 2, respec-
tively.

For system 1:

• Mean: 3180.49

• Variance: 185802.84

• Total samples: 5

For system 2:

• Mean: 3448.19

• Variance: 381404.87
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• Total samples: 5

By t-test method, we calculated that 99% confidence for difference between these two
systems is between -1362.33 and 826.93.

The confidence interval includes zero. Therefore, at this confidence level the two systems
are not different. It means that we can say that with 99% confidence interval, there is
no different on the energy consumption of SSD with default prefetching and aggressive
prefetching.

Comparison between HDD with aggressive prefetching (experiment 3) and
SSD with aggressive prefetching (experiment 4)

From the comparison result before, we notice that there is no difference of energy con-
sumption between SSD with default and aggressive prefetching. Here, we want to know
the difference of energy consumption between HDD with aggressive prefetching and SSD
with aggressive prefetching. For simplicity, we called the system with HDD with aggressive
prefetching and SSD with aggressive prefetching as system 1 and system 2, respectively.

For system 1:

• Mean: 3448.19

• Variance: 381404.87

• Total samples: 5

For system 2:

• Mean: 3757.62

• Variance: 652232.94

• Total samples: 5

By t-test method, we calculated that 99% confidence for difference between these two
systems is between -1787.29 and 1168.06.

The confidence interval includes zero. Therefore, at this confidence level the two systems
are not different. It means that we can say that at 99% confidence interval, there is no
different in term of energy consumption between HDD with aggressive prefetching and
SSD with aggressive prefetching. This tells us that by applying aggressive prefetching,
the energy consumption can be further reduced to be the same level as SSD.

6.2.6 Summary of energy consumption of local storage

From the comparative analysis above, we observed that by default, the energy consump-
tion of HDD is indeed bigger than SSD. Before we did the experiment, we knew this
intuitively. Then, after applying aggressive prefetching, we notice the interesting result
that the energy consumption of HDD can be reduced to the same level as SSD. On the
other side, we also noticed that there is no impact of aggressive prefetching in term of
energy consumption is SSD as listed in Table 6.2.
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Architecture options Mean energy consumption (Joules)
HDD with default prefetching 6211.37
SSD with default prefetching 3180.49

HDD with aggressive prefetching 3448.19
SSD with aggressive prefetching 3757.62

Table 6.2: Measured energy consumption of local storage in home media player

6.3 Energy consumption analysis of network-attached

storage (NAS)

In this section, we present the results and analysis of energy consumption for the home
media player architecture with NAS. Prefetching is also added in the experiment to see its
impact in the energy consumption. We measured the overall energy consumption of local
storage inside media player with energy consumption of HDD inside NAS. For prefetching,
we set the read size of the network prefetching for the NFS sharing at client side. We
have several different testing setup for comparison:

• HDD as local storage and NAS

• SSD as local storage and NAS

6.3.1 Experiment 5 (HDD as local storage and NAS)

In this experiment, we use HDD as the local storage in home media player and doing
playback for the movie located inside a NAS server. Here, we measured the energy
consumption of local storage (HDD, in this case) and the HDD inside NAS. We use NFS
connection as the file sharing protocol inside the home media player system to connect to
the NAS server. All the settings used are default ones.

The Figure 6.19 below shows the power consumption graph of the HDD as local storage
of the home media player.

We can see from the power consumption graph that the disk always stayed in standby
mode during the movie playback. It is because the movie being played was accessed from
NAS so the hard drive as the local storage could be put into rest (standby mode) which
resulted in much less energy consumption.

To be able to observe the variances happened during the measurements, we measured
the energy consumption of HDD (local storage) during the whole playback for repeated
number of experiments as shown as Figure 6.20 below.

From the data we obtained, the mean energy consumption value is about 1525.95 Joules
with standard deviation value of 329.09. Beside that, we can also say that at 99% confi-
dence interval, the mean value is between 848.37 and 2203.52.

Beside the energy consumed at the local storage of home media player, we also measured
the energy consumption of HDD inside the NAS server. The Figure 6.21 below shows the
power consumption of HDD inside NAS server during the whole movie playback.
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Figure 6.19: HDD (Local Storage) Power Consumption during the whole movie playback
with NAS

Figure 6.20: HDD (Local Storage) Energy Consumption with NAS of repeated experi-
ments
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Figure 6.21: HDD (inside NAS) Power Consumption during the whole movie playback
with NAS

From the graph, we see that the hard drive is in active mode all the time during the
movie playback. This behavior is normal because a NAS server is supposed to serve many
requests from clients in the LAN. To observe the variances in the energy consumption,
we did repeated number of experiments and plotted it in the Figure 6.22.

From the data we obtained, the mean value of energy consumption of the hard drive
inside NAS server is about 32312.6 Joules with standard deviation value 1809.642. At
99% confidence interval, we can say that the mean is between 28586.6 and 36038.6.

6.3.2 Experiment 6 (SSD as local storage and NAS)

In this experiment, we use SSD as the local storage for the home media player with NAS
server as the storage for the movie files. Here, we measured the energy consumption of
local storage (SSD, in this case) and the SSD inside NAS. We use NFS connection as the
file sharing protocol inside the home media player system to connect to the NAS server.
All the settings used are default ones.

The Figure 6.23 below shows the power consumption graph of the SSD as local storage
of the home media player.

The power consumption shows no much difference with the case of the movie file being
played directly from the SSD (in experiment 2 and 4).

We repeated the experiments several times to observe the variances happened. The
graph 6.24 below shows the energy consumption of SSD as the local storage during the
whole movie playback for repeated number of experiments.

The mean value of the energy consumption is about 3192.2 Joules with standard devi-
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Figure 6.22: HDD (inside NAS) Energy Consumption with NAS of repeated experiments

Figure 6.23: SSD (Local Storage) Power Consumption during the whole movie playback
with NAS
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Figure 6.24: SSD (Local Storage) Energy Consumption with NAS of repeated experiments

ation value 491.12. At 99% confidence interval, the mean is between 2181 and 4203.4.
For the power consumption of the hard drive inside NAS, we show it in the Figure 6.25.
To observe the energy consumption of the hard drive inside NAS, we repeated several

times and plot the data as shown in Figure 6.26.
The mean value of the energy consumption of the hard drive inside NAS during the

whole movie playback is about 32004.8 Joules with standard deviation value 4015.72. At
99% confidence interval, the mean of the energy consumption is between 23736.55 and
40273.05.

6.3.3 Summary of energy consumption of network-attached stor-
age architecture

From the experiments results and by doing t-test, we see that using as the local storage
inside the home media player, HDD would consume less energy compared to using SSD
because the hard drive would be put in standby mode all the time since there is no need
for disk access during the movie playback. Since SSD runs only in active mode, it will
consume the same amount of energy in any case as listed in Table 6.3

Architecture options Local disk energy (Joules) HDD energy of NAS (Joules)
HDD as local storage with NAS 1525.95 32312.6
SSD as local storage with NAS 3192.2 32004.8

Table 6.3: Measured energy consumption of local storage in home media player with NAS
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Figure 6.25: HDD (inside NAS) Power Consumption during the whole movie playback
with NAS

Figure 6.26: HDD (inside NAS) Energy Consumption with NAS of repeated experiments
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Beside that, we noticed that the energy consumption of HDD inside NAS is nearly the
same for experiment 5 and 6. In addition, we also measured the power consumption of
the hard drive of the NAS and found that the hard drive is never put into standby mode
(by the company setting). Thus, we can say that the energy consumption by the scenario
of experiment 5 and 6 is already the optimized one in term of energy efficiency for the
same energy consumption of NAS even during idle time.

6.4 More experiments for energy comparison between

SSD and HDD with aggressive prefetching

From the experiment, we analyzed that the energy consumption of HDD with aggressive
prefetching is close enough to the energy consumption of SSD. However, we noticed that
the confidence interval is too large especially for HDD with aggressive prefetching con-
cerning the variances of energy consumption between the same repeated experiments. So,
it is necessary to do more experiments and collect more samples to support our state-
ment that HDD is not less energy efficient than SSD for media playback. In the previous
experiments, we did five repeated experiments for each case. Furthermore, we added the
experiments to be 15 repeated experiments for the case of SSD and HDD with aggressive
prefetching.

For HDD with aggressive prefetching, the energy consumptions for 15 repeated experi-
ments is shown in Figure 6.27. The mean value of energy consumption is about 2649.18
Joules with 99% confidence that the mean value is between 1915.56 and 3427.79. The
range of the mean value becomes smaller compared to the previous sample sets.

For SSD, the energy consumptions for 15 repeated experiments is shown in Figure 6.28.
The mean value of energy consumption is about 3298.87 Joules with 99% confidence that
the mean value is between 2812.88 and 3784.86.

After doing more experiments and analyzing the results, we can be more confident to
say that HDD is not less energy-efficient than SSD for media playback with the system
support of aggressive prefetching.

6.5 Discussion

In this chapter, we have presented the experiment results with the analysis of the energy
consumption of storage architectures in home media player. The main metric we analyzed
in the experiment is the energy consumption in the context of home media player. We
did the experiment by firstly investigating the energy consumption on default system
setting and then explored prefetching as the method for optimizing energy efficiency in
HDD. From the results, we obtained some interesting findings such as the big impact of
aggressive prefetching to reduce energy consumption of HDD to reach the same level as
SSD. By this, we can say that in home media player, SSD is not a better choice to replace
HDD even in the context of energy efficiency.
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Figure 6.27: Energy consumptions of HDD with aggressive prefetching with 15 repeated
experiments

Figure 6.28: Energy consumptions of SSD with 15 repeated experiments
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Chapter 7

Energy consumption of storage
architectures in home media players

In the previous chapter, we presented the experimental results with all the analysis. From
the data analyzed, we had some findings. However, they are only data, so we present our
insights based on the findings in this chapter.

We measured and analyzed the energy consumption of storage architectures such as
HDD, SSD as well as NAS in a home media player with video playback as the workload.
As we know that reducing energy in home entertainment system is highly desirable, we
consider the energy consumption of the storage architectures as the main metric. Beside
that, the other important aspects are hardware cost, storage capacity, playback perfor-
mance, and maintenance effort. The data analyzed before is valuable because it gives us
insights to identify more energy and cost efficient home entertainment systems.

7.1 Energy and cost efficient home media players with

HDD as the storage

One of the interesting finding we have found is that by applying aggressive prefetching,
the energy consumption of HDD can be reduced to the same levels as SSD for video
playback. In the analysis, we compared the energy consumption between HDD with
aggressive prefetching and SSD during the video playback and found this result. This fact
tells us that for home media players, using HDD as the storage is still a good choice even in
term of energy efficiency as compared to SSD. It means we can have home entertainment
system with bigger capacity of storage, cheaper price and less energy consumption. All
of these will affect directly on the overall annual running cost of home media players.

To clearly present the impact of the finding on home media players, we use a real use
case scenario as shown in Figure 7.1 to describe the overall picture. The use case scenario
of home media players in a house is considered as below:

• Total users: 3 people

• The frequency of watching movies for each user is three times a week
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• Each user store 1 new file per week

• They like to watch only high-definition (HD) movies which file size is about 4.7 GB
and the average playback duration is 105 minutes

• They prefer to store every movie files into their home media player so that they can
watch again anytime in the future

• Supposed that the average cost of electricity per Kwh is 0.12 USD

Figure 7.1: Use case scenario diagram for home media players using local storage

For the purpose of this scenario, we measured the overall power consumption of a mini
pc, ZOTAC ZBOX, which is targeted as a home media player.

Power consumption of the mini pc during the playback measured with SSD as the local
storage is about 19.38 Watts. Assuming that the power consumed by SSD is the same as
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in the system we used in our experiment, we can get the power consumption of the mini
pc without storage to be about 18.87 Watts.

For showing the impact clearly, we consider two different cases. The first one is the
case where all users use HDD as their local storage and the second case is to use SSD as
the local storage.

From the experiment, we knew that HDD with aggressive prefetching consumes nearly
the same energy level as SSD, so we assume that the use has its system optimized with
aggressive prefetching. The average power consumption by the mini pc (ZOTAC ZBOX)
during the playback with HDD as local storage and aggressive prefetching applied is about
19.47 Watts. Based on the given scenario, the annual electricity cost for the home media
players in the house is about 1.91 USD. We calculated the amount of movies being stored
in a year, as the capacity needed for the home media players to be about 244.44 GB.
For the total cost, we consider storage cost and electricity cost. For the storage cost, we
calculated it as the price needed to have the required capacity in a year. It costs 244.44
GB x 0.11 USD (HDD cost as of 3/17/2011) = 26.88 USD. Since there are 3 users, then
the total storage cost is estimated about 80.65 USD. In total, they need to spend about
82.57 USD per year for the running cost.

In the second case, we consider that all users use SSD for their local storage. The
average power consumption by the mini PC (ZOTAC ZBOX) during the playback with
SSD as the local storage is calculated to be about 19.37 Watts. Based on the given
scenario, the annual electricity cost for the home media player is about 1.9 USD. The
capacity needed for storing movie files in a year is 260 GB. We consider the total of
storage cost and electricity cost as the total running cost. For the storage cost, it costs
244.44 GB x 1.80 USD (SSD cost as of 3/7/2011) = 439.99 USD. Since there are 3 users
in total, the total storage cost is estimated to be about 1,319.98 USD. In total, they need
to spend about 1,321.88 USD per year.

We put these numbers on the Table 7.1 with the other important aspects to consider in
choosing storage type like noise, heat, playback performance and maintenance complexity.
Noise and heat of each storage type are commonly known. The criterion for playback
performance is given based on the user experience during the experiments.

Local Storage Electricity
cost (USD)

Hardware
cost (USD)

Noise Heat Playback
Performance

Maintenance
complexity

HDD with aggressive
prefetching

1.91 80.65 Small Very little Acceptable Easy

SSD 1.9 1319.98 None Extremely little Good Easy

Table 7.1: Cost and other aspects consideration of HDD and SSD as local storage

The annual running costs of using HDD and SSD as the local storage of home media
player are 82.56 USD/year and 1321.88 USD/year. With our finding that shows by using
HDD is not less energy-efficient than SSD in home media player and furthermore by the
scenario above, we can save about 1239.31 USD/year for the running cost by using HDD
as the local storage option.

57



7.2 Energy and cost efficient home media players with

NAS as the storage

With NAS as the storage architecture option, the advantages that can be obtained are the
centralized data management and saved space for duplicate files. From the experiment,
we got to know that overall energy consumption of home media player with NAS is quite
big. However, if there are many duplicate files stored by each user, then it is more cost
efficient to use NAS.

To give clearer picture on the energy and cost efficient impact of using NAS in home
media players, we use the same use case scenario as before. Here, we add another assump-
tion that each user has exactly the same movie files being stored every week. Instead of
accessing the movie directly from the local storage, all users store and access movie files
from a NAS server as shown in Figure 7.2.

Figure 7.2: Use case scenario diagram for home media players using NAS server

The average power consumption by the mini pc (ZOTAC ZBOX) during the playback
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with HDD as local storage with NAS is about 19.11 Watts. In this architecture, we
need to consider additional power consumption of NAS server and the network switch,
which are 14 Watts and 3.4 Watts, respectively as referred from the vendors’ data sheet.
Supposed that the NAS server and the hard drive inside is never turned off, then the
annual electricity cost of NAS and the network switch itself is about 18.39 USD. The
electricity cost of the home media players is estimated to be about 1.88 USD per year.
Thus, the total electricity cost by this architecture is about 20.27 USD per year. The
capacity needed to store the movie files for one year is 244.44 GB. Since HDD is used
as the storage inside the NAS server, then the cost needed for the storage is about 26.89
USD per year. Therefore, they spend about 47.16 USD per year for the total running
cost.

Storage option Electricity
cost (USD)

Hardware
cost (USD)

Noise Heat Playback
Performance

Maintenance
complexity

HDD with aggressive
prefetching

1.91 80.65 Small Very little Acceptable Easy

NAS 20.27 26.89 Small Very little Acceptable Difficult

Table 7.2: Cost and other aspects consideration of HDD as local storage and NAS as
another storage option

The annual costs of running HDD and NAS as the storage option of home media player
are 82.57 USD/year and 47.16 USD/year, respectively. So we can save about 35.41 USD if
we use NAS server in this scenario. In the case that there are many duplicate files stored
by each user, the architecture option to use NAS as the storage is more cost-efficient but
it is more difficult to manage since it deals with management of NAS and LAN access.

7.3 Discussion

In this chapter, we presented our insights to summarize/identify our findings from all the
experiments and results we analyzed before. Since reducing energy is important in home
entertainment, we found that we can also have energy and cost efficient home media
players with HDD as the storage by applying aggressive prefetching into the system.
This is different from our initial intuitive, which assumed that HDD always consumes
more energy compared to SSD in any case. Meanwhile, if users in the home have many
duplicate files, then using NAS server as the storage could be better option in term of
overall running cost.
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Chapter 8

Conclusion

8.1 Research Assessment

In this research, we have investigated the energy consumption of storage architectures in
home media player since storage is the main component and important asset of it. For
each of the storage architecture, we have measured and analyzed the energy consumption
by the system default setting for the same movie playback workload. By investigating the
energy consumption of storage during the playback had led us to understand the power
consumption characteristics of different storage and to explore the possibility to reduce
energy consumption of HDD by applying aggressive prefetching.

From the analysis, we found that by default, the energy consumption of using HDD as
the local storage in home media player is much bigger than SSD. However, by applying
aggressive prefetching, the energy consumption of HDD can be reduced to be about the
same level of SSD. For the architecture of home media player with network-attached
storage (NAS), we thought that it could not be compared directly in term of the energy
consumption since it would be unfair. From the data analyzed, we presented our insights
to identify cost and energy efficient of storage architectures in home media players. Since
each storage architecture offer different pros and cons, it depends on users to decide which
architectures to apply by considering the tradeoffs.

In all, this research project has led to one contribution. Our contribution is the inves-
tigation of energy consumption of storage architectures in home media player with the
comparative analysis and we showed that HDD is not less energy-efficient than SSD for
media application.

8.2 Future Research Directions

In our experiment, we noticed that the power consumption of SSD in any case is about
the same average value with small variance since it is always operating in active mode.
However, some SSD vendors provide other mode like idle mode, which is stated to consume
less power. To enable this mode, the machine must have the supporting chipsets. This
idle mode is called DIPM (Device Initiated Power Management). The interesting question
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is that how big the impact of this DIPM on the overall energy consumption of SSD.
Study more about the effective power-aware prefetching method for video playback in

HDD.
Explore more for various use cases of home media player to see if further energy efficiency

use case model exists for example in the case of using NAS as the multimedia storage.
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Appendix A

Readahead (Prefetching) Source
Code in Linux (2.6.38.3)

/*

* mm/readahead.c - address_space-level file readahead.

*

* Copyright (C) 2002, Linus Torvalds

*

* 09Apr2002 Andrew Morton

* Initial version.

*/

#include <linux/kernel.h>

#include <linux/fs.h>

#include <linux/gfp.h>

#include <linux/mm.h>

#include <linux/module.h>

#include <linux/blkdev.h>

#include <linux/backing-dev.h>

#include <linux/task_io_accounting_ops.h>

#include <linux/pagevec.h>

#include <linux/pagemap.h>

/*

* Initialise a struct file’s readahead state. Assumes that the caller has

* memset *ra to zero.

*/

void

file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)

{

ra->ra_pages = mapping->backing_dev_info->ra_pages;

ra->prev_pos = -1;
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}

EXPORT_SYMBOL_GPL(file_ra_state_init);

#define list_to_page(head) (list_entry((head)->prev, struct page, lru))

/*

* see if a page needs releasing upon read_cache_pages() failure

* - the caller of read_cache_pages() may have set PG_private or PG_fscache

* before calling, such as the NFS fs marking pages that are cached locally

* on disk, thus we need to give the fs a chance to clean up in the event of

* an error

*/

static void read_cache_pages_invalidate_page(struct address_space *mapping,

struct page *page)

{

if (page_has_private(page)) {

if (!trylock_page(page))

BUG();

page->mapping = mapping;

do_invalidatepage(page, 0);

page->mapping = NULL;

unlock_page(page);

}

page_cache_release(page);

}

/*

* release a list of pages, invalidating them first if need be

*/

static void read_cache_pages_invalidate_pages(struct address_space *mapping,

struct list_head *pages)

{

struct page *victim;

while (!list_empty(pages)) {

victim = list_to_page(pages);

list_del(&victim->lru);

read_cache_pages_invalidate_page(mapping, victim);

}

}

/**

* read_cache_pages - populate an address space with some pages & start reads against them
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* @mapping: the address_space

* @pages: The address of a list_head which contains the target pages. These

* pages have their ->index populated and are otherwise uninitialised.

* @filler: callback routine for filling a single page.

* @data: private data for the callback routine.

*

* Hides the details of the LRU cache etc from the filesystems.

*/

int read_cache_pages(struct address_space *mapping, struct list_head *pages,

int (*filler)(void *, struct page *), void *data)

{

struct page *page;

int ret = 0;

while (!list_empty(pages)) {

page = list_to_page(pages);

list_del(&page->lru);

if (add_to_page_cache_lru(page, mapping,

page->index, GFP_KERNEL)) {

read_cache_pages_invalidate_page(mapping, page);

continue;

}

page_cache_release(page);

ret = filler(data, page);

if (unlikely(ret)) {

read_cache_pages_invalidate_pages(mapping, pages);

break;

}

task_io_account_read(PAGE_CACHE_SIZE);

}

return ret;

}

EXPORT_SYMBOL(read_cache_pages);

static int read_pages(struct address_space *mapping, struct file *filp,

struct list_head *pages, unsigned nr_pages)

{

unsigned page_idx;

int ret;

if (mapping->a_ops->readpages) {
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ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);

/* Clean up the remaining pages */

put_pages_list(pages);

goto out;

}

for (page_idx = 0; page_idx < nr_pages; page_idx++) {

struct page *page = list_to_page(pages);

list_del(&page->lru);

if (!add_to_page_cache_lru(page, mapping,

page->index, GFP_KERNEL)) {

mapping->a_ops->readpage(filp, page);

}

page_cache_release(page);

}

ret = 0;

out:

return ret;

}

/*

* __do_page_cache_readahead() actually reads a chunk of disk. It allocates all

* the pages first, then submits them all for I/O. This avoids the very bad

* behaviour which would occur if page allocations are causing VM writeback.

* We really don’t want to intermingle reads and writes like that.

*

* Returns the number of pages requested, or the maximum amount of I/O allowed.

*/

static int

__do_page_cache_readahead(struct address_space *mapping, struct file *filp,

pgoff_t offset, unsigned long nr_to_read,

unsigned long lookahead_size)

{

struct inode *inode = mapping->host;

struct page *page;

unsigned long end_index; /* The last page we want to read */

LIST_HEAD(page_pool);

int page_idx;

int ret = 0;

loff_t isize = i_size_read(inode);

if (isize == 0)

goto out;

67



end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);

/*

* Preallocate as many pages as we will need.

*/

for (page_idx = 0; page_idx < nr_to_read; page_idx++) {

pgoff_t page_offset = offset + page_idx;

if (page_offset > end_index)

break;

rcu_read_lock();

page = radix_tree_lookup(&mapping->page_tree, page_offset);

rcu_read_unlock();

if (page)

continue;

page = page_cache_alloc_cold(mapping);

if (!page)

break;

page->index = page_offset;

list_add(&page->lru, &page_pool);

if (page_idx == nr_to_read - lookahead_size)

SetPageReadahead(page);

ret++;

}

/*

* Now start the IO. We ignore I/O errors - if the page is not

* uptodate then the caller will launch readpage again, and

* will then handle the error.

*/

if (ret)

read_pages(mapping, filp, &page_pool, ret);

BUG_ON(!list_empty(&page_pool));

out:

return ret;

}

/*

* Chunk the readahead into 2 megabyte units, so that we don’t pin too much

* memory at once.

68



*/

int force_page_cache_readahead(struct address_space *mapping, struct file *filp,

pgoff_t offset, unsigned long nr_to_read)

{

int ret = 0;

if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))

return -EINVAL;

nr_to_read = max_sane_readahead(nr_to_read);

while (nr_to_read) {

int err;

unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;

if (this_chunk > nr_to_read)

this_chunk = nr_to_read;

err = __do_page_cache_readahead(mapping, filp,

offset, this_chunk, 0);

if (err < 0) {

ret = err;

break;

}

ret += err;

offset += this_chunk;

nr_to_read -= this_chunk;

}

return ret;

}

/*

* Given a desired number of PAGE_CACHE_SIZE readahead pages, return a

* sensible upper limit.

*/

unsigned long max_sane_readahead(unsigned long nr)

{

return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)

+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);

}

/*

* Submit IO for the read-ahead request in file_ra_state.

*/
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unsigned long ra_submit(struct file_ra_state *ra,

struct address_space *mapping, struct file *filp)

{

int actual;

actual = __do_page_cache_readahead(mapping, filp,

ra->start, ra->size, ra->async_size);

return actual;

}

/*

* Set the initial window size, round to next power of 2 and square

* for small size, x 4 for medium, and x 2 for large

* for 128k (32 page) max ra

* 1-8 page = 32k initial, > 8 page = 128k initial

*/

static unsigned long get_init_ra_size(unsigned long size, unsigned long max)

{

unsigned long newsize = roundup_pow_of_two(size);

if (newsize <= max / 32)

newsize = newsize * 4;

else if (newsize <= max / 4)

newsize = newsize * 2;

else

newsize = max;

return newsize;

}

/*

* Get the previous window size, ramp it up, and

* return it as the new window size.

*/

static unsigned long get_next_ra_size(struct file_ra_state *ra,

unsigned long max)

{

unsigned long cur = ra->size;

unsigned long newsize;

if (cur < max / 16)

newsize = 4 * cur;
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else

newsize = 2 * cur;

return min(newsize, max);

}

/*

* On-demand readahead design.

*

* The fields in struct file_ra_state represent the most-recently-executed

* readahead attempt:

*

* |<----- async_size ---------|

* |------------------- size -------------------->|

* |==================#===========================|

* ^start ^page marked with PG_readahead

*

* To overlap application thinking time and disk I/O time, we do

* ‘readahead pipelining’: Do not wait until the application consumed all

* readahead pages and stalled on the missing page at readahead_index;

* Instead, submit an asynchronous readahead I/O as soon as there are

* only async_size pages left in the readahead window. Normally async_size

* will be equal to size, for maximum pipelining.

*

* In interleaved sequential reads, concurrent streams on the same fd can

* be invalidating each other’s readahead state. So we flag the new readahead

* page at (start+size-async_size) with PG_readahead, and use it as readahead

* indicator. The flag won’t be set on already cached pages, to avoid the

* readahead-for-nothing fuss, saving pointless page cache lookups.

*

* prev_pos tracks the last visited byte in the _previous_ read request.

* It should be maintained by the caller, and will be used for detecting

* small random reads. Note that the readahead algorithm checks loosely

* for sequential patterns. Hence interleaved reads might be served as

* sequential ones.

*

* There is a special-case: if the first page which the application tries to

* read happens to be the first page of the file, it is assumed that a linear

* read is about to happen and the window is immediately set to the initial size

* based on I/O request size and the max_readahead.

*

* The code ramps up the readahead size aggressively at first, but slow down as

* it approaches max_readhead.
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*/

/*

* Count contiguously cached pages from @offset-1 to @offset-@max,

* this count is a conservative estimation of

* - length of the sequential read sequence, or

* - thrashing threshold in memory tight systems

*/

static pgoff_t count_history_pages(struct address_space *mapping,

struct file_ra_state *ra,

pgoff_t offset, unsigned long max)

{

pgoff_t head;

rcu_read_lock();

head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);

rcu_read_unlock();

return offset - 1 - head;

}

/*

* page cache context based read-ahead

*/

static int try_context_readahead(struct address_space *mapping,

struct file_ra_state *ra,

pgoff_t offset,

unsigned long req_size,

unsigned long max)

{

pgoff_t size;

size = count_history_pages(mapping, ra, offset, max);

/*

* no history pages:

* it could be a random read

*/

if (!size)

return 0;

/*

* starts from beginning of file:
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* it is a strong indication of long-run stream (or whole-file-read)

*/

if (size >= offset)

size *= 2;

ra->start = offset;

ra->size = get_init_ra_size(size + req_size, max);

ra->async_size = ra->size;

return 1;

}

/*

* A minimal readahead algorithm for trivial sequential/random reads.

*/

static unsigned long

ondemand_readahead(struct address_space *mapping,

struct file_ra_state *ra, struct file *filp,

bool hit_readahead_marker, pgoff_t offset,

unsigned long req_size)

{

unsigned long max = max_sane_readahead(ra->ra_pages);

/*

* start of file

*/

if (!offset)

goto initial_readahead;

/*

* It’s the expected callback offset, assume sequential access.

* Ramp up sizes, and push forward the readahead window.

*/

if ((offset == (ra->start + ra->size - ra->async_size) ||

offset == (ra->start + ra->size))) {

ra->start += ra->size;

ra->size = get_next_ra_size(ra, max);

ra->async_size = ra->size;

goto readit;

}

/*

* Hit a marked page without valid readahead state.
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* E.g. interleaved reads.

* Query the pagecache for async_size, which normally equals to

* readahead size. Ramp it up and use it as the new readahead size.

*/

if (hit_readahead_marker) {

pgoff_t start;

rcu_read_lock();

start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);

rcu_read_unlock();

if (!start || start - offset > max)

return 0;

ra->start = start;

ra->size = start - offset; /* old async_size */

ra->size += req_size;

ra->size = get_next_ra_size(ra, max);

ra->async_size = ra->size;

goto readit;

}

/*

* oversize read

*/

if (req_size > max)

goto initial_readahead;

/*

* sequential cache miss

*/

if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)

goto initial_readahead;

/*

* Query the page cache and look for the traces(cached history pages)

* that a sequential stream would leave behind.

*/

if (try_context_readahead(mapping, ra, offset, req_size, max))

goto readit;

/*

* standalone, small random read
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* Read as is, and do not pollute the readahead state.

*/

return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);

initial_readahead:

ra->start = offset;

ra->size = get_init_ra_size(req_size, max);

ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;

readit:

/*

* Will this read hit the readahead marker made by itself?

* If so, trigger the readahead marker hit now, and merge

* the resulted next readahead window into the current one.

*/

if (offset == ra->start && ra->size == ra->async_size) {

ra->async_size = get_next_ra_size(ra, max);

ra->size += ra->async_size;

}

return ra_submit(ra, mapping, filp);

}

/**

* page_cache_sync_readahead - generic file readahead

* @mapping: address_space which holds the pagecache and I/O vectors

* @ra: file_ra_state which holds the readahead state

* @filp: passed on to ->readpage() and ->readpages()

* @offset: start offset into @mapping, in pagecache page-sized units

* @req_size: hint: total size of the read which the caller is performing in

* pagecache pages

*

* page_cache_sync_readahead() should be called when a cache miss happened:

* it will submit the read. The readahead logic may decide to piggyback more

* pages onto the read request if access patterns suggest it will improve

* performance.

*/

void page_cache_sync_readahead(struct address_space *mapping,

struct file_ra_state *ra, struct file *filp,

pgoff_t offset, unsigned long req_size)

{

/* no read-ahead */

if (!ra->ra_pages)
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return;

/* be dumb */

if (filp && (filp->f_mode & FMODE_RANDOM)) {

force_page_cache_readahead(mapping, filp, offset, req_size);

return;

}

/* do read-ahead */

ondemand_readahead(mapping, ra, filp, false, offset, req_size);

}

EXPORT_SYMBOL_GPL(page_cache_sync_readahead);

/**

* page_cache_async_readahead - file readahead for marked pages

* @mapping: address_space which holds the pagecache and I/O vectors

* @ra: file_ra_state which holds the readahead state

* @filp: passed on to ->readpage() and ->readpages()

* @page: the page at @offset which has the PG_readahead flag set

* @offset: start offset into @mapping, in pagecache page-sized units

* @req_size: hint: total size of the read which the caller is performing in

* pagecache pages

*

* page_cache_async_readahead() should be called when a page is used which

* has the PG_readahead flag; this is a marker to suggest that the application

* has used up enough of the readahead window that we should start pulling in

* more pages.

*/

void

page_cache_async_readahead(struct address_space *mapping,

struct file_ra_state *ra, struct file *filp,

struct page *page, pgoff_t offset,

unsigned long req_size)

{

/* no read-ahead */

if (!ra->ra_pages)

return;

/*

* Same bit is used for PG_readahead and PG_reclaim.

*/

if (PageWriteback(page))

return;
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ClearPageReadahead(page);

/*

* Defer asynchronous read-ahead on IO congestion.

*/

if (bdi_read_congested(mapping->backing_dev_info))

return;

/* do read-ahead */

ondemand_readahead(mapping, ra, filp, true, offset, req_size);

#ifdef CONFIG_BLOCK

/*

* Normally the current page is !uptodate and lock_page() will be

* immediately called to implicitly unplug the device. However this

* is not always true for RAID conifgurations, where data arrives

* not strictly in their submission order. In this case we need to

* explicitly kick off the IO.

*/

if (PageUptodate(page))

blk_run_backing_dev(mapping->backing_dev_info, NULL);

#endif

}

EXPORT_SYMBOL_GPL(page_cache_async_readahead);
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