
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Evaluating Complexity of Aspect-Oriented Software

Development Comparing to Use Case Driven Software

Development

Author(s) Kiatsoongsong, Weerayut

Citation

Issue Date 2011-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/9933

Rights

Description
Supervisor:Koichiro Ochimizu, Information

Science, Master Degree



Evaluating Complexity of Aspect-Oriented Software
Development Comparing to Use Case Driven Software

Development

KIATSOONGSONG Weerayut (0910204)

School of Information Science,
Japan Advanced Institute of Science and Technology

August 10, 2011

Keywords: Aspect-Oriented Software Development, Use Case Driven
Software Development, Metric, Crosscutting Concerns.

1 Backgroud and Research Purpose

Use Case Driven Software Development (UDSD) is an approach to
develop software system by using use cases to capture functional require-
ments and drive the whole development process. However, there are two
problems occur after realizing all the use cases that make components of a
use case cannot be kept separate from components of other use cases. First,
scattering is a situation which codes that realize a particular use case are
spread across multiple components. Second, tangling is a situation which
some components contain the implementation to satisfy different use cases.

A concern is some part of the problem that we want to treat as a single
conceptual unit. Sometimes, a concern affects more than one component
and a component contains parts of multiple concerns. These situations
are called scattering and tangling respectively. These kind of concerns are
called crosscutting concern. As a result, it reduces comprehensibility, ease
of evolution and reusability of software artifacts. Therefore, these concerns
should be separated. In UDSD, use case is a kind of functional concern
and some use cases are crosscutting concerns.

Copyright c© 2011 by KIATSOONGSONG Weerayut

1



Aspect-oriented programming (AOP) was proposed to solve crosscut-
ting concerns problem at code level by providing the means to separate
code that implements crosscutting concerns and modularize it into aspects.
With this concept, Aspect-oriented software development (AOSD) with use
cases was proposed by Ivar Jacobson as a holistic approach to develop soft-
ware systems with aspects for the whole development process. In addition
to the use of aspects in AOP, use-case slice is used to encapsulate the
classes and parts of classes that are specific to a specified use case.

Our research proposed the way to evaluate how much AOSD helps in-
crease the maintainability and how much AOSD helps reduce the effect of
crosscutting of the UDSD system. In order to evaluate UDSD and AOSD,
software metrics are important materials to extract the characteristics of
a software system. Our metrics are product metrics because we measured
from artifacts of the system.

2 Research Approach

First, in order to compare UDSD system and AOSD system, we need
mechanisms or rules to normalize them into the same level of abstraction.
Figueiredo, E. et al. proposed a generic concern-oriented meta-model of
the structural abstractions defined for aspect-oriented system [1]. They
defined abstract structure of system in terms of system elements and how
they relate to concern. This meta-model structure is abstract enough to be
instantiated for different modeling and programming languages, so in our
research, we instantiated this meta-model structure for UDSD and AOSD
system.

Second, we defined the change impact metrics suite in order to evaluate
how AOSD helps increase the maintainability of the system. Maintain-
ability means the ease with which a software system or component can be
modified, so it directly relates to change. In UDSD and AOSD develop-
ment process, developers create some artifacts based on UML diagrams.
The diagram consists of components and relationships between compo-
nents. When change occurs, the system after change can be divided into
four parts which consist of components and relationships;

• No change part — the part which is not related to the effect of the

2



change

• Added part — the part which is added because of the change

• Modified part — the existing part which has been modified

• Removed part — the part which has been removed

The impact of change is the number of components and relationships in
the last three parts and the entire system is the number of components and
relationships in all parts. The degree of change impact I is the fraction of
change impact divided by the entire system.

Third, we applied the scattering, tangling, and crosscutting metrics suite
proposed by Conejero J. et al. [2] in order to evaluate the effect of cross-
cutting concerns in the system. First, they defined the meta-model of
crosscutting pattern which explain that the system consists of sources and
targets and sources and targets have the traceability relationships between
them. In our research, we instantiated this meta-model by using use cases
as sources and modules (classes and aspects) as targets. According to this
meta-model, they created the dependency matrix which describes traceabil-
ity dependency between use case and module. Then, they defined metrics
to measure scattering, tangling and crosscutting of the system by calculat-
ing from this dependency matrix.

3 Empirical Study and Results

In order to validate our metrics suites, we applied them to ATM sys-
tem which is introduced in [3]. We created two separate ATM systems
implemented by UDSD and AOSD from requirements to design phase.
Moreover, we added change to both systems and refined them according
to the change. Then, we measured each of our metrics from both systems
and statistically analyzed the results.

The results for change impact metrics suite show that there is statistically
significant difference between AOSD system and UDSD system and can
refer that AOSD is more maintainable than UDSD. However, the difference
is quite small.

3



The results for scattering, tangling, and crosscutting metrics suite show
that there is no statistically significant difference between AOSD system
and AOSD system. Therefore, we cannot conclude that AOSD has less
effect of crosscutting concerns than UDSD.

Although AOSD is said to be an approach to help increase maintainabil-
ity and reduce effect of crosscutting concerns in UDSD, our results show
that there is almost no difference between both approaches. This is be-
cause in the real world some classes contain not only the parts (methods
and attributes) that fulfill different use cases and are not related to each
other, but also the parts that are used by many use cases, which we called
common parts. AOSD provides non-use-case-specific slice to contain these
common parts. As a result, use case still has the dependency to the base
class in common parts and some classes still has relationships to the base
classes, so when the change occurs, it can also affect these common parts.
Therefore, the efficiency of AOSD is hindered by the use of non-use-case-
specific slices. However, if we remove the use of non-use-case-specific slices
out of the system, it reduces the reusability of the system and increases
the system size because of the common parts. Consequently, we have to
consider the trade-off between separation of concerns and reusability.

4 Conclusion and Future Works

In this thesis, we proposed the way to evaluate UDSD and AOSD systems
in terms of maintainability and effect of crosscutting concerns. First, we
defined metrics suite called change impact metrics suite to evaluate the
maintainability of the system. Second, we applied scattering, tangling and
crosscutting metrics suite proposed by Conejero J. et al. to evaluate the
effect of crosscutting concerns of the system. Then, we applied our metrics
suites to our case study; ATM system.

The results show that the efficiency of AOSD is hindered by the use of
non-use-case-specific slices to contain parts used in common by many use
cases. If we remove the use of non-use-case-specific slice, we can see great
efficiency of AOSD in increasing maintainability and reducing effect of
crosscutting concerns in UDSD system. However, we have to consider the
trade-off between the reduction of crosscutting concerns and reusability.

4



As future works, we will apply our metrics suites to more systems, es-
pecially the bigger and realistic systems to see more different viewpoints
and validate our metrics suites. Moreover, we will explore more about the
efficiency of AOSD over UDSD in the separation of nonfunctional concerns
from functional concerns and the separation of platform-specific concerns.

5 Reference

1. Figueiredo, E. et al. “On the Maintainability of Aspect-Oriented Soft-
ware: A Concern-Oriented Measurement Framework”. Proc. of Eu-
ropean Conf. on Soft. Maint. and Reeng. (CSMR). Athens, 2008.

2. Conejero, J., Figueiredo, E., Garcia, A., Hernandez, J., Jurado, E.
“Early Crosscutting Metrics as Predictors of Software Instability”.
In 47th International Conference Objects, Models, Components, Pat-
terns (TOOLS), 2009.

3. Hassan Gomaa. “Designing Concurrent, Distributed, and Real-Time
Applications with UML”. Addison-Wesley, Object Technology Series,
2000.

5


