
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Evaluating Complexity of Aspect-Oriented Software

Development Comparing to Use Case Driven Software

Development

Author(s) Kiatsoongsong, Weerayut

Citation

Issue Date 2011-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/9933

Rights

Description
Supervisor:Koichiro Ochimizu, Information

Science, Master Degree

Evaluating Complexity of Aspect-Oriented Software
Development Comparing to Use Case Driven

Software Development

By KIATSOONGSONG Weerayut

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Koichiro Ochimizu

September, 2011

Evaluating Complexity of Aspect-Oriented Software
Development Comparing to Use Case Driven

Software Development

By KIATSOONGSONG Weerayut (0910204)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Koichiro Ochimizu

and approved by
Professor Koichiro Ochimizu

Associate Professor Masato Suzuki
Associate Professor Toshiaki Aoki

August, 2011 (Submitted)

Copyright c© 2011 by KIATSOONGSONG Weerayut

Abstract

Use case driven software development (UDSD) is an approach that is mostly used in the
software engineering industry to develop software system by using use cases. But when
each use case is realized, the components fulfilling a certain use case are spread through
the system and cannot be kept separate from other use cases’ components. This situation
is called crosscutting concerns. As a result, it reduces the maintainability of the system.
Aspect-oriented software development (AOSD) with use cases proposed by Ivar Jacobson
is said to be an approach which helps increase maintainability and reduce the effect of
crosscutting concerns of the system implemented by UDSD by using aspect and use-case
slice to encapsulate the modules and part of modules that are specific to a certain use
case. However, there still has no evidence to prove efficiency of AOSD over UDSD.

Our research proposed the way to evaluate how much AOSD helps increase the main-
tainability and how much AOSD helps reduce the effect of crosscutting of the UDSD
system. First, we instantiated concern-oriented meta-model proposed by Figueiredo, E.
et al. as a base for comparing UDSD and AOSD system. Second, we proposed one metrics
suite called change impact metrics suite to evaluate how the change affects the system
after the change occurs. Since, the maintainability refers directly to the change; this met-
rics suite can refer to the maintainability of the system. This metrics suite was defined
based on the number of components and relationships in each artifact created from re-
quirements phase to design phase. Third, we applied one metrics suite called scattering,
tangling, and crosscutting metrics suite proposed by Conejero J. et al. to evaluate how
much the separation of concerns in the system. Then, we used the ATM system which
is introduced in “Designing Concurrent, Distributed, and Real-Time Applications with
UML” as our case study and implemented ATM system for both UDSD and AOSD ap-
proach from requirements phase to design phase. Finally, we measured our metrics from
both systems.

The results of our empirical study show that the AOSD system is more maintainable
and has less effect of crosscutting concerns than the UDSD system. However, there is only
small difference between measures of all the metrics. This is because in the real world
some classes contain not only the parts (methods and attributes) that fulfill different
use cases and are not related to each other, but also the parts that are used by many
use cases, which we called common parts. AOSD provides non-use-case-specific slice to
contain these common parts. As a result, use case still has the dependency to the base
class in common parts and some classes still has relationships to the base classes, so when
the change occurs, it can also affect these common parts. Therefore, the efficiency of
AOSD is hindered by the use of non-use-case-specific slices. However, if we remove the
use of non-use-case-specific slices out of the system, it reduces the reusability of the system
and increases the system size because of the common parts. Consequently, we have to
consider the trade-off between separation of concerns and reusability.

Acknowledgement

I would like to express my gratitude to those who gave me the opportunity to complete
this dissertation. This dissertation could not have been written without Professor Koichiro
Ochimizu who not only served as my supervisor but also encouraged and challenged
me throughout my academic program, Associate Professor Masato Suzuki and Associate
Professor Toshiaki Aoki who took time from their busy schedules to serve me on my
dissertation committee and gave me a lot of constructive criticisms, and Ms. CAMARGO
CRUZ Ana Erika who gave me a lot of useful guidances and opinions to continue my
research. Moreover, I would like to express my thanks to every member of our lab for the
encouragement and support on my work and learning experience. Last, I would like to
thank JAIST and Japan for giving me such good experiences.

i

Contents

1 Introduction 1

2 Background 4
2.1 Use Case Driven Software Development . 4

2.1.1 Use Case Driven Software Development Process and Artifacts . . . 4
2.1.2 Use Case Driven Software Development Pitfalls 6

2.2 Aspect-Oriented Software Development . 7
2.2.1 Aspect and Use-case slice . 7
2.2.2 Aspect-Oriented Software Development Process and Artifacts . . . 11

2.3 Metrics and Measurement . 12

3 Related Works 15
3.1 Separation of Concerns Metrics . 15

3.1.1 Sant’Anna C.’s Metrics . 15
3.1.2 Conejero J.’s Metrics . 16

4 Our Approach 18
4.1 How to Compare UDSD and AOSD . 18
4.2 Our Metrics Suites for Evaluating UDSD and AOSD 20

4.2.1 Change Impact Metrics Suite . 20
4.2.2 Scattering, Tangling, and Crosscutting Metrics Suite 23

5 Empirical Study and Results 30
5.1 Case Study: ATM System . 30

5.1.1 Problem Description . 30
5.1.2 Use Case Model . 31
5.1.3 Analysis Model and Design Model 32
5.1.4 System after Change . 38

5.2 Results of Measurement . 39
5.2.1 Measures of Change Impact Metrics 39
5.2.2 Measures of Scattering, Tangling and Crosscutting Metrics 40

5.3 Statistical Analysis for Our Results Using T-Test 41
5.3.1 T-Test Definition and Procedure . 42
5.3.2 T-Test Calculation for Our Metrics Results 44

ii

5.4 Discussion . 49
5.4.1 Discussion for Change Impact Metrics 49
5.4.2 Discussion for Scattering, Tangling, and Crosscutting Metrics . . . 50

5.5 Effect of AOSD Characteristic on Our Results 51
5.5.1 The Ideal Case and Practical Case for Crosscutting Concerns 51
5.5.2 The Use of Non-Use-Case-Specific Slice 54
5.5.3 AOSD System without Non-Use-Case-Specific Slice 56

6 Conclusion and Future Works 62

A Use Case Description of the Case Study: ATM Sytem 66

iii

List of Figures

2.1 Tangling and Scattering Example [2] . 7
2.2 Use-case Slice Example [2] . 8
2.3 Use-Case Realization Example: An Interaction Diagram for the Reserve

Room Use-Case Realization [2] . 9
2.4 Use-Case Slice Example: Reserve Room Use-Case Slice [2] 10
2.5 Another Use-Case Realization Example: An Interaction Diagram for the

Check In Customer Use-Case Realization [2] 10
2.6 Non-Use-Case-Specific Slice Example [2] 11

4.1 Abstract Meta-Model of Aspect-Oriented Systems [16] 19
4.2 System after Change . 23
4.3 Abstract Meta-Model of the Crosscutting Pattern [15] 24

5.1 ATM System Use Case Diagram . 32
5.2 Example of UDSD Analysis Model - Class Diagram for Validate PIN Use

Case . 33
5.3 Example of UDSD Analysis Model - Collaboration Diagram for Validate

PIN Use Case Typical Flow . 34
5.4 Example of AOSD Analysis Model - Use-Case Slice for Validate PIN Use

Case . 35
5.5 Example of AOSD Analysis Model - Use-Case Slice with Non-Use-Case-

Specific Slice for Validate PIN Use Case 36
5.6 Example of AOSD Analysis Model - Collaboration Diagram for Validate

PIN Use Case Typical Flow . 37
5.7 ATM System Use Case Diagram after Applying Change 38
5.8 Explanation of Lower Change Impact in AOSD Comparing to UDSD . . . 49
5.9 The Ideal Case for Crosscutting Concerns 52
5.10 Use-Case Slice and Aspect for Ideal Crosscutting Concerns 53
5.11 The Practical Case for Crosscutting Concerns 54
5.12 Validate PIN Use-Case Slice Extending the Four Non-Use-Case-Specific Slices 55

iv

List of Tables

2.1 UDSD process and artifacts . 6
2.2 AOSD process and artifacts . 12

4.1 Meta-Model Instantiation for UDSD and AOSD Systems 20
4.2 Component and Relationship of System’s Diagrams 21
4.3 Crosscutting Meta-Model Instantiation for UDSD and AOSD Systems . . . 25
4.4 Example of Dependency Matrix . 25
4.5 Example of Tangling Matrix . 26
4.6 Example of Crosscutting Product Matrix 26
4.7 Example of Crosscutting Matrix . 27
4.8 Summary of the Scattering, Tangling, and Crosscutting Metrics 29

5.1 Measures of Change Impact Metric . 39
5.2 Measures of Scattering and Crosscutting Metric of UDSD System 40
5.3 Measures of Scattering and Crosscutting Metric of AOSD System 41
5.4 Measures of Tangling Metric . 41
5.5 Difference of Measures between UDSD and AOSD 42
5.6 T-Test Formulas . 43
5.7 T-Test Calculation for Degree of Change Impact I Measures 44
5.8 T-Test Calculation for Scattering Metric Measures at Analysis 45
5.9 T-Test Calculation for Scattering Metric Measures at Analysis 46
5.10 T-Test Calculation for Tangling Metric Measures at Analysis 47
5.11 T-Test Calculation for Tangling Metric Measures at Design 47
5.12 T-Test Calculation for Crosscutting Metric Measures at Analysis 48
5.13 T-Test Calculation for Crosscutting Metric Measures at Design 48
5.14 Results of ATM System Implemented by AOSD without NUCS 56
5.15 T-Test Calculation for Degree of Change Impact I Measures (for UDSD

and AOSD without NUCS) . 57
5.16 T-Test Calculation for Scattering Metric Measures at Analysis (for UDSD

and AOSD without NUCS) . 58
5.17 T-Test Calculation for Scattering Metric Measures at Design (for UDSD

and AOSD without NUCS) . 58
5.18 T-Test Calculation for Tangling Metric Measures at Analysis (for UDSD

and AOSD without NUCS) . 59

v

5.19 T-Test Calculation for Tangling Metric Measures at Design (for UDSD and
AOSD without NUCS) . 59

5.20 T-Test Calculation for Crosscutting Metric Measures at Analysis (for UDSD
and AOSD without NUCS) . 60

5.21 T-Test Calculation for Crosscutting Metric Measures at Design (for UDSD
and AOSD without NUCS) . 61

A.1 Validate PIN Use Case Description . 67
A.2 Withdraw Funds Use Case Description . 68
A.3 Query Account Use Case Description . 69
A.4 Transfer Funds Use Case Description . 70
A.5 Cancel Transaction Use Case Description 71
A.6 Borrow Money Use Case Description (Addition According to the Change) . 72

vi

Chapter 1

Introduction

Nowadays, in the software industry, use case driven software development (UDSD) has
broadly been used in order to increase understandability and reusability of the software
systems. On the basis of Object-Oriented Approach (OOA), use case driven software de-
velopment complements OOA by providing the unified software development process. In
this process, software developers use use-case model to capture the requirements from the
customer’s needs and represent requirements in a suitable way in order to facilitate the
communication amongst software stakeholders (users, customers and developers). More-
over, the use cases drive through the whole development process. In other words, use
cases are used as a base from requirement gathering phase through the whole software
life cycle [1].

However, after capturing use cases from requirements, the use cases cannot literally
be kept separate throughout the whole development process. During the transition from
requirement gathering phase to analysis-design phase, or in use case driven software de-
velopment, from use case specification to use case realization, there occur two problems;
scattering and tangling. Scattering is a situation that the codes that realize a particular
use case are spread across multiple components of the system. And tangling is a situation
that each component in the system contains the implementation to satisfy different use
cases. As a consequence, use cases cut across the system and then use cases are not kept
separate from each other [2].

A concern is some part of the problem that we want to treat as a single conceptual unit
[4]. Sometimes, a concern affects more than one component and a component contains
parts of multiple concerns. These situations are called scattering and tangling respectively.
These kind of concerns are called crosscutting concern. The consequences caused by
these concerns are reduced comprehensibility, ease of evolution and reusability of software
artifacts. Accordingly, these concerns should be separated.

Over the past decades, aspect-oriented programming (AOP) has been used in order
to modularize crosscutting concerns at the implementation phase [3]. But the earlier
crosscutting concerns are modularized, the more stable the software system structure is.
Consequently, Ivar Jacobson proposed aspect-oriented software development (AOSD) with
use cases to complement the concept of aspect-oriented programming. Aspect-oriented
software development is a holistic approach to developing software systems with aspects

1

from requirements, to analysis and design, to implementation and test. Its process was
defined based on the concept of UDSD and is said to be the approach that helps reduce
the effect of scattering and tangling of UDSD. As a result, the software systems built by
AOSD is said to have more maintainability than those built by UDSD.

Although AOSD has a possibility to improve such problems in UDSD, but there are still
no evidence yet. Intuitively, AOSD may be more complex than UDSD by just counting
the number of documents or line of codes (LOC) because AOSD adds more components
to the system. But only physical measurement is not enough to conclude which approach
is a better one. Accordingly, we have to define proper metrics to evaluate complexity of
software systems implemented by both approaches. And then, we can compare those two
systems implemented in different approaches according to the measures of the defined
metrics.

This paper reports the results of our research on the evaluation of AOSD complexity in
the comparison to UDSD complexity to see how much AOSD can help improve maintain-
ability in UDSD, and how much AOSD can help reduce the effect of crosscutting concerns.
In order to evaluate these two approaches, we proposed one metric suite called the change
impact metrics suite and we applied metrics suite proposed by Conejero J. et al. [15] to
our research. This metrics suite consists of scattering, tangling, and crosscutting metrics.

In order to measure the maintainability of the AOSD and UDSD system, the change
impact metrics suite are defined to measure how much the system is affected by the change
when the change requirements is added to the system. Since, maintainability means the
ease with which a software system or component can be modified to correct faults, improve
performance or other attributes, or adapt to a changed environment [17]. Therefore, mea-
suring change impact is directly related to the maintainability of the system. The change
impact metrics suite are calculated based on the number of components and relationships
in the artifacts created at design level of both UDSD and AOSD systems.

In order to measure the effect of crosscutting concerns on the UDSD system and AOSD
system, we applied scattering, tangling, and crosscutting metrics suite proposed by Cone-
jero J. et al. Since, their metrics suite was well-defined and they can straightforwardly
extract the effect of crosscutting concerns of the system. In their research, they used
their metrics suite to measure the crosscutting concerns at requirements phase by using
use case description as materials. However, in our research, we apply this metrics suite
to measure the crosscutting concerns of the system at analysis and design phase by using
class diagrams as materials in UDSD system and use-case slice as materials in AOSD
system.

Metrics that are used in our research are product metrics. Since, the process of UDSD
and the process of AOSD proposed by Ivar Jacobson are similar because AOSD process has
been developed from UDSD process. Consequently, we would rather compare the products
of these two approaches than their processes. Moreover, our metric suites are objective
because our metrics have been defined in mathematical terms, so the observers can apply
these metrics as many times with the same results. Lastly, our metrics are computed
metrics because we computed from number of components and their relationships.

This thesis is divided into the following Chapters: In Chapter 2: Background, we

2

present a brief explanation about background knowledge needed to carry out our research
study. In Chapter 3: Related Works, we present some of the research work has been
done on the metrics that measure crosscutting concerns. In Chapter 4: Our Approach,
we present the approach that we use in our research in order to achieve our objectives.
First, we describe about how to compare these two approaches. Then, we explain about
metrics suites used in our research; change impact metrics suite and crosscutting concerns
metrics suite. In Chapter 5: Empirical Study and Results, we presents the case study
and the results to validate our metrics. In Chapter 6: Conclusion and Future Works, we
draw out our conclusions and describe out plans for future works.

3

Chapter 2

Background

This chapter presents a brief explanation about background knowledge needed to
carry out our research study. First, we introduce the concept of use case driven software
development to understand the process and the artifacts of this approach. Second, we
provide the concept of aspect-oriented software development to understand the difference
between this approach and use case driven software development. Third, we explain about
the basic knowledge of metrics and measurement to apply to the evaluation of these two
approaches’ goodness.

2.1 Use Case Driven Software Development

A software system is brought into existence to serve its users. Therefore, to build a
successful system we must know what its prospective users want and need. The term user
refers not only to human users but to other systems that interact with the system being
developed. An interaction of this sort is a use case. A use case is a piece of functionality
in the system that gives a user a result of value. All use cases together make up the use
case model which describes the complete functionality of the system.

Use Case Driven Software Development (UDSD) is an approach to develop software
system by using use cases. Using use cases has two major merits. First, use cases offer
a systematic and intuitive means of capturing functional requirements and they can be
used as a means to communicate amongst software stakeholders (users, customers, and
developers). Second, they drive the whole development process since most activities such
as analysis, design, and test are performed starting from use cases. This leads to the
increasing of system’s understandability and maintainability because we can easily realize
the system requirements and easily organize them during the development process [1].

2.1.1 Use Case Driven Software Development Process and Ar-
tifacts

In use case driven software development, we can divide the development phases into
five phases and in each phase, there are artifacts created as the intermediary products of

4

the system. With the usage of UML, we can create the artifacts in the systematic way.
The five phases of UDSD process are as follows;

• Requirements

In this phase, developers capture requirements from customer’s needs using use case
model. A use-case model is a model of a system containing actors and use cases
and their relationships. The major artifacts of requirements phase are a use case
diagram and a use case description of each use case.

• Analysis

In analysis, developers analyze the requirements as described in requirements cap-
ture by refining and structuring them. The purpose of doing this is to achieve a
description of the requirements that is easy to maintain and that helps developers
give structure to the whole system. Based on each use case, developers create use
case realization which consists of static and dynamic behavior of the use case. The
major artifacts of this phase are class diagram and collaboration diagram from each
use case.

• Design

In design, developers shape the system and find its form that lives up to all require-
ments including nonfunctional requirements and platform-specific constraints. The
artifacts of this phase are based on analysis’s artifacts. The major artifacts of this
phase are the same as analysis; class diagrams and collaboration diagrams, but add
more implementation viewpoint to the system.

• Implementation

In implementation, developers start with the result from design and implement the
system in terms of components, that is, source code, binaries, and so on. The major
artifacts of this phase are source codes.

• Test

In the test workflow, developers verify the result from implementation. The major
artifacts of this phase are test cases and test results.

All the phases and artifacts of UDSD are shown in Table 2.1. In our research study,
we focus on the phases before implementation, those are, requirements, analysis, and
design phase. Since, before implementation, we design the system that can be seamlessly
transformed to implementation. Consequently, the design artifacts can represent the
architecture baseline of the whole system. Moreover, as one of the factors of decision
making on which approach to be applied between UDSD and aspect-oriented software
development, the earlier phases are better choice than implementation phase.

5

Table 2.1: UDSD process and artifacts
Phase Artifacts

Requirements use case diagram and use case description
Analysis class diagram and collaboration diagram
Design class diagram and collaboration diagram
Implementation source code
Test test case and test results

2.1.2 Use Case Driven Software Development Pitfalls

Although, UDSD is said to be a good approach for software development, there occur
problems. After developers define the use cases in requirements phase, they have to
transform these use cases into the developers’ viewpoint in the analysis and design phase.
They define the components and their relationships according to each use case. This
activity can be called use case realization. In this activity, use cases should have been
separated from each other, but on the other hand, there are two problems occur. These
problems are:

• Tangling

When all use cases are realized, all components and their relationships are defined.
There are some components that, instead of single-mindedly fulfilling a particular
use case, contain the implementation to satisfy different use cases. This situation is
called tangling because parts of use cases tangle together. This hinders understand-
ability and makes the learning curve stepper for developers.

• Scattering

When all use cases are realized, there are codes that realize a particular use case
are spread across multiple components. This situation is called scattering, because
parts of use case are scattered throughout the system. From this situation, if the
requirements about that use case change, or if the design of that use case changes,
developers must update many components.

The example of these two problems is shown in Figure 2.1. In this figure, the hotel
management system is used to describe the tangling and scattering. Hotel management
system has three use cases; reserve room, check in customer, and check out customer.
After use case realization, there are seven components in the system; customer screen,
staff screen, reserve room, check in, check out, reservation, and room. For reserve room
use case, there are four components spread across the system. Consequently, scattering
occurs in this system. Moreover, for room component, there are three parts in order to
fulfill the three use cases. This is called tangling [2].

6

Figure 2.1: Tangling and Scattering Example [2]

2.2 Aspect-Oriented Software Development

A concern is some part of the problem that we want to treat as a single conceptual unit
[4]. Sometimes, a concern affects more than one component and a component contains
parts of multiple concerns. These situations are called scattering and tangling respectively.
These kind of concerns are called crosscutting concern. The consequences caused by
these concerns are reduced comprehensibility, ease of evolution and reusability of software
artifacts. Accordingly, these concerns should be separated.

Aspect-oriented programming (AOP) is a programming paradigm that gives developers
the means to separate code that implements crosscutting concerns and modularize it into
aspects. Aspect-orientation provides the mechanism to compose crosscutting behaviors
into the desired operations and classes during compile time and even during execution [3].

However, in order to progress beyond AOP, we need a holistic approach to develop soft-
ware systems with aspects from requirements, to analysis and design, to implementation
and test. This is aspect-oriented software development (AOSD). Ivar Jacobson and Pan
Wei NG applied use case concept to AOSD. They use the use cases as a representation of
concerns. Moreover, they proposed the concept of use-case slice that is used to separate
the use cases from each other. The detail of use-case slice will be described in Section
2.2.1.

2.2.1 Aspect and Use-case slice

AOP introduced new constructs in order to separate and modularize concerns. These
constructs are:

• Intertype declarations

Intertype declarations allow developers to compose new features (attributes, opera-
tions, and relationships) into existing classes.

7

• Advices

Advices provide the means to extend existing operations at extension points desig-
nated by pointcuts in AOP.

• Aspects

Aspects are a kind of building block used to organize intertype declarations and
advices.

With the concept of aspects, we can separate some features of classes into separate
building blocks and separate extension features from the base features. Similar to this
concept, Ivar Jacobson and Pan Wei NG proposed the concept of use-case slice to preserve
the separation of concerns though the use case realization and implementation. Use-case
slice is a modularity unit that collates the specifics of a use case during use case realization.
Each use-case slice collates parts of classes, operations and so forth, that are specific to
a use case in a model. The task of composing these parts is left to some composition
mechanisms provided by AOP.

The example of use-case slice is shown in Figure 2.2. We use the same example in
section 2.1.2, the hotel management system, to illustrate the difference between UDSD and
AOSD. In this figure 2.2, the horizontal axis shows the element structure that identifies
the classes in the system. The vertical axis shows the use case structure. It identifies
the use cases being realized, each with a different shade. Each horizontal row depicts a
use-case slice containing the extensions of classes needed to realize the use case for that
row. Thus, we have the ReserveRoom use-case slice, the CheckInCustomer use-case slice,
and the CheckOutCustomer use-case slice.

Each use-case slice contains partial class definitions specific to the use case realization.
If we want complete class definitions, all we need to do is merge all the use-case slices.

Figure 2.2: Use-case Slice Example [2]

8

Let us look at the use-case slice in more detail. Use-case slice contains the following:

1. A collaboration that describes the realization of the use case.

2. Classes specific to the use-case realization.

3. Extensions of existing classes specific to the use-case realization.

For example, the Reserve Room use case has simple event flows as shown in Figure 2.3.
In Figure 2.3, the ReserveRoomHandler class plays the role of a controller. It coordinates
other classes in the realization of the Reserve Room use case. In particular, it has a
makeReservation() operation to coordinate the actions to make a reservation. The Room
class plays the role of a resource that can be reserved. It is responsible for retrieving and
updating information about the room’s availability.

Figure 2.3: Use-Case Realization Example: An Interaction Diagram for the Reserve Room
Use-Case Realization [2]

From Reserve Room use-case realization event flows, the ReserveRoomHandler class is
specific to this use case, but the Room class might be used in other use cases. Therefore,
we put the Room class into aspect. Figure 2.4 shows the use-case slice of Reserve Room
use case. This use-case slice contains the following:

1. Collaboration. The collaboration contains a set of diagrams that describe how the
Reserve Room is realized.

2. Specific Classes. The ReserveRoomHandler class is specific to this use-case realiza-
tion.

3. Specific Extensions. The Room class is needed by several use-case realizations.
However, the retrieve() and updateAvailability() are specific to the Reserve Room
use-case realization. This is defined within a class extension in the use-case slice.

9

Figure 2.4: Use-Case Slice Example: Reserve Room Use-Case Slice [2]

However, some classes are part of the problem domain, and they are used in many
use-case realizations. For example, if we realize another use case, Check In Customer use
case. The event flows of this use case are shown in Figure 2.5. In figure 2.5 shows that
there is the retrieve() operation in the Room class, that is the same as in Reserve Room
use-case realization. Therefore, we should put this duplicate part in other containment
in order to reuse this part. This containment is called non-use-case-specific Slice.

Figure 2.5: Another Use-Case Realization Example: An Interaction Diagram for the
Check In Customer Use-Case Realization [2]

A non-use-case-specific slice is different from a use-case slice in that it contains no
aspects. This is because it defines a base and does not need to add to any existing
classes. Non-use-case-specific slice will be extended by other use-case slices. The example
of non-use-case-specific slice is shown in Figure 2.6. In Figure 2.6, Room class’s retrieve()

10

operation is used by Reserve Room use case and Check In Customer use case, so it is
put in Hotel Management non-use-case-specific slice. Then, the two use-case slices extend
Hotel Management slice.

Figure 2.6: Non-Use-Case-Specific Slice Example [2]

2.2.2 Aspect-Oriented Software Development Process and Ar-
tifacts

The application of use case concept to AOSD makes the process of AOSD almost similar
to UDSD but the artifacts are different in some phases. In order to create the artifacts in
systematic way, UML paradigm is applied to AOSD. In AOSD, development process can
be divided into five phases in the same way as UDSD. The five phases of AOSD process
are as follows;

• Requirements

This phase is the same as requirements phase in UDSD. Developers capture re-
quirements from customer ’s needs using use case model. The major artifacts of
requirements phase are use case diagram and use case description. The artifacts are
the same as UDSD.

• Analysis

Based on each use case, developers create use case realization which consists of
static and dynamic behavior of the use case. In AOSD, instead of class diagram,

11

developers use use-case slices to represent static behavior of use case. Consequently,
the major artifacts of this phase are use-case slice and collaboration diagram from
each use case.

• Design

In design, developers shape the system and find its form that lives up to all require-
ments including nonfunctional requirements and platform-specific constraints. The
artifacts of this phase are based on analysis ’artifacts. The major artifacts of this
phase are the same as analysis; use-case slice and collaboration diagrams.

• Implementation

In implementation, developers start with the result from design and implement the
system in terms of components, that is, source code, binaries, and so on. The major
artifacts of this phase are source codes including AOP technique to the code.

• Test

In the test workflow, developers verify the result from implementation. In AOSD,
there is a new technique to separate test elements and elements being tested from
each other. It provides use-case test slice as a tool for test cases design. The major
artifacts of this phase are test cases and test results.

All the phases and artifacts of AOSD are shown in Table 2.2. Again, in our research
study, we focus on the phases before implementation, those are, requirements, analysis,
and design phase. The implementation and test are beyond our scope.

Table 2.2: AOSD process and artifacts
Phase Artifacts

Requirements use case diagram and use case description
Analysis use-case slice and collaboration diagram
Design use-case slice and collaboration diagram
Implementation source code including AOP technique
Test test case and test results

2.3 Metrics and Measurement

Software measurement is a task in software development to define, collect and analyze
data on software products or software process in order to extract quantified attribute of a
characteristic of a software product or the software process. After software measurement,
developers use the measurement results as a motivation to improve software being devel-
oped in its products or its process. Moreover, in the early stage of software development,
the measure from software measurement can be used as a reference in decision making.

12

In software measurement task, we use not only one but several metrics to achieve
measurement goals. Software metric is a function that has input and output. It has
software data as inputs and a single numeric value as output. The output is interpreted
as the degree to which software possesses a given attributes that affects its quality [5].

In order to successfully apply the metrics and measurement to the software system, we
have to choose good metrics. Good metrics should facilitate the development of models
that are capable of predicting process or product parameters, not just describing them.
Thus, ideal metrics should be: [6]

• Simple, precisely definable so that it is clear how the metric can be evaluated.

• Objective, when different people perform the same measurement, all of the values
should be the same.

• Easily obtainable (for example, at reasonable cost)

• Valid, the metric should measure what it is intended to measure.

• Robust, relatively intensive to insignificant changes in the process or product.

In addition, for maximum utility in analytic studies and statistical analyses, metrics
should have data values that belong to appropriate measurement scales.

Software metrics can be classified into various categories, according to [6], are as follows;

• Product metrics and process metrics. Product metrics are measures of the software
product at any stage of its development, from requirements to installed system. Pro-
cess metrics, on the other hand, are measures of the software development process,
such as overall time, type of methodology used, or the average level of experience
of the programming staff.

• Objective metrics and subjective metrics. Objective metrics are measures that al-
ways result in identical values for a given metric, as measured by two or more
qualified observers. Subjective metrics are measures that even qualified observers
may measure different values for a given metric, since their subjective judgment is
involved in arriving at the measured value.

• Primitive metrics and computed metrics. Primitive metrics are those that can be
directly observed, such as the program size (in LOC), number of defects observed
in unit testing, or total development time for the project. Computed metrics are
those that cannot be directly observed but are computed in some manner from other
metrics.

In our research study, the metric suites, that we used to evaluate the system imple-
mented by UDSD and AOSD, are product metrics. Since, the process of UDSD and the
process of AOSD are similar. Their processes both consist of requirements, analysis, de-
sign, implementation, and test because AOSD process has been developed from UDSD

13

process. Consequently, we would rather compare the products of these two approaches
than their processes. Moreover, our metric suites are objective because our metrics have
been defined in mathematical terms, so the observers can apply these metrics as many
times with the same results. Lastly, our metrics are computed metrics because we com-
puted from number of components and their relationships.

14

Chapter 3

Related Works

This chapter presents some of the research work has been done on the metrics that
measure separation of concerns.

3.1 Separation of Concerns Metrics

In our research study, we focus on the reduction of crosscutting concerns and increasing
of maintainability and reusability of AOSD comparing to UDSD. In software measurement
community, there are some metrics defined to measure the separation of concerns of
software systems. Separation of concerns refers to the ability to identify, encapsulate and
manipulate those parts of software that are relevant to a particular concern [13].

3.1.1 Sant’Anna C.’s Metrics

Sant ’Anna C. et al. proposed the metrics suite to capture information about design
and code in terms of fundamental software attributes of aspect-oriented systems, such as
separation of concerns, coupling, cohesion and size. In the coupling, cohesion and size
aspects, the metrics were defined from CK metrics because the CK metrics are based on
a sound measurement theory and have been widely used and empirically validated. In
the separation of concerns aspect, there are three metrics defined as follows [14]:

• Concern Diffusion over Components (CDC). CDC is a design metric that counts
the number of primary components whose main purpose is to contribute to the
implementation of a concern. Furthermore, it counts the number of components
that access the primary components by using them in attribute declarations, for-
mal parameters, return types throws declarations and local variables, or call their
methods.

The higher values of CDC metric means the more components contribute to fulfill a
given concern. One concern should not scatter to too many components. Therefore,
low values of CDC metric are desirable.

15

• Concern Diffusion over Operations (CDO). CDO counts the number of primary
operations whose main purpose is to contribute to the implementation of a concern.
In addition, it counts the number of methods and advices that access any primary
component by calling their methods or using them in formal parameters, return
types, throws declarations and local variables. Constructors also are counted as
operations.

In the same way as CDC, the higher CDO metric means the more operations con-
tribute to fulfill a given concern. Therefore, the low values of CDO metric are
desirable.

• Concern Diffusion over LOC (CDLOC). CDLOC counts the number of transition
points for each concern through the lines of code. Transition points are the point in
the code where there is a transition from the lines of code that do not implement a
given concern to the lines of code that implement a given concern.

The lower the CDLOC, the more localized is the concern code. Therefore, low values
of CDLOC metric are desirable.

Although these metrics can measure separation of concerns of software systems, but
this is just one aspect of this problem. CDC and CDO metric can measure how much a
given concern diffuse to the systems in terms of components and operations. However,
they do not measure concerns that cut across each other. This causes a problem that
concerns cannot be separated from each other. Consequently, we have to measure this
aspect of the separation of concerns.

Again, in our research study, we focus on the products before implementation phase,
but CDLOC metric is measured from source code, so this metric is beyond our scope.

3.1.2 Conejero J.’s Metrics

Conejero J. et al. proposed metrics for crosscutting concerns as predictors of software
instability. The problem of crosscutting concerns is usually described in terms of scattering
and tangling. Scattering occurs when the realization of a concern is spread over the
software modules whilst tangling occurs when the concern realization is mixed with other
concerns in a module [15]. In this research, three sets of metrics were defined; metrics
for scattering, metrics for tangling, and metrics for crosscutting concerns. These metrics
were used to measure the crosscutting of concerns of software systems in requirements
phase. The use case descriptions were used as the materials to be measured.

In our research, we focus on the reduction of crosscutting concerns of AOSD comparing
to UDSD. These three sets of metrics can be used to identify the scattering, tangling, and
crosscutting concerns attributes of software systems. Therefore, we apply these metrics
to our research. However, as mentioned in Section 2.1.1 and 2.2.2, the requirements phase
of UDSD and the requirements phase AOSD have the same process and create the same
products. In this phase, we define the use case model from requirement specification and
describe each use case in use case descriptions. Consequently, in order to compare system
implemented by UDSD and system implemented by AOSD, we apply these metrics to the

16

use-case realization; analysis and design phase. The definition and mechanism of these
metrics will be explained in more detail in Section 4.2.2.

17

Chapter 4

Our Approach

This chapter presents the approach that we use in our research in order to achieve our
objectives; to evaluate of AOSD complexity in the comparison to UDSD complexity to
see how much AOSD can help improve maintainability in UDSD and how much AOSD
can help reduce the effect of crosscutting concerns, which can be divided into scattering
and tangling. First, we describe about how to compare these two approaches. Then,
we explain about metrics suite used in our research; change impact metrics suite and
crosscutting concerns metrics suite.

4.1 How to Compare UDSD and AOSD

For the two systems implemented by the same approach, we can apply metrics to
measure both of them without any transformations or rules to compare and then can
compare the measures of the same metrics easily. On the other hand, in order to compare
systems implemented by different approaches, we need mechanisms or rules to normalize
them into the same level of abstraction.

Although, UDSD and AOSD with use cases have been developed from the same back-
ground theory, but there are some differences between these two approaches. The differ-
ences occur because AOSD added new constructs to the systems. Those constructs are
aspects and their elements; advices and intertype declarations. In our research study, we
have to find the way to compare systems implemented by UDSD and systems implemented
by AOSD in a consistent and meaningful manner.

Figueiredo, E. et al. proposed a generic concern-oriented meta-model of the structural
abstractions defined for aspect-oriented system [16] as shown in Figure 4.1. It not only
defines possible relations of concerns and the system’s structure, but also subsumes key
abstractions for module specifications. Each type of abstraction is alternatively called an
element. Concerns can be realized by an arbitrary set of elements. For the clarification,
in this meta-model, they used the arrow with diamond rectangle and the arrow without
diamond rectangle as a dependency between elements. This diamond rectangle does not
mean the aggregation defined in UML model, but the arrow with diamond rectangle
means one-to-many relationship and the arrow without diamond rectangle means one-to-

18

one dependency. An aspect-oriented system S consists of a set of components, denoted
by C(S). A components c has an interface, I(c). Besides, each component c consists of a
set of attributes, Att(c), a set of operations, Op(c), and a set of declaration, Dec(c). The
set of members of a component c is defined by M(c) = Att(c)∪Op(c)∪Dec(c).

For generality purposes, a component is a unified abstraction to both aspectual and
non-aspectual modules. This decision makes the meta-model paradigm and language
independent.

An operation o consists of a return type, Rt(o), a set of parameters, Par(o), a pointcut
expression, PE(o), and a set of statements, St(o). A declaration d can also have a pointcut
expression, PE(d).

On top of the structure, we can define concerns. A concern is not an abstraction of
a modeling or programming language, such as components and operations. However, a
concern can be considered as an abstraction which is addressed by those elements that
have the purpose of realizing it.

The set of concerns addressed by the system S is defined as Con(S). Furthermore, a
concern con can be realized by a set of components, C(con), a set of attributes, Att(con),
a set of operations, Op(con), or a set of declarations, Dec(con). The set of members that
implement a concern con is defined as M(con) = Op(con)∪Att(con)∪Dec(con).

Figure 4.1: Abstract Meta-Model of Aspect-Oriented Systems [16]

This structure is abstract enough to be instantiated for different modeling and program-
ming languages. In our research, we focus on the systems implemented by UDSD and
systems implemented by AOSD. Therefore, in order to compare these two approaches in
a consistent and meaningful manner, we instantiate this meta-model structure for UDSD
and AOSD as shown in Table 4.1. In Table 4.1, we describe the instantiations of each
element in the meta-model for UDSD and AOSD approach. The instantiation for sys-
tem element is UDSD system and AOSD system for UDSD and AOSD respectively. For
concern element, we refer to use case in both approaches because the use-case technique
provides the means to systematically model stakeholder concerns by walking through
meaningful interactions between end users and the system [2]. Therefore, use case can
refer concern from stakeholder. The component in UDSD is class or interface. But in
AOSD, there are class, interface and aspect as components. The interface in both UDSD

19

and AOSD is method signature. The attributes in UDSD are class variable and field. In
AOSD, intertype attribute has been added to be an attribute of the system. The operation
in UDSD is either method or constructor. In AOSD, there are method, constructor, inter-
type method, intertype constructor, and advice as operations. The declaration appears
only in AOSD systems. The declaration in AOSD is either pointcut or declare statement.

Table 4.1: Meta-Model Instantiation for UDSD and AOSD Systems
Element UDSD AOSD

System UDSD System AOSD System

Concern Use Case Use Case

Component Class and Interface Class, Interface, and Aspect

Interface Method Signature Method Signature

Attribute Class Variable and Field
Class Variable, Field, and
Intertype Attribute

Operation Method and Constructor
Method, Constructor, Inter-
type Method and Construc-
tor, and Advice

Declaration -
Pointcut and Declare State-
ment

4.2 Our Metrics Suites for Evaluating UDSD and

AOSD

After we define how to compare the UDSD and AOSD systems, we have to define
metrics that can extract the values of attributes of systems in order to see the efficiency
of AOSD over UDSD.

4.2.1 Change Impact Metrics Suite

In early stage of our research, we have focused on how AOSD approach improves
maintainability of UDSD systems. Maintainability means the ease with which a software
system or component can be modified to correct faults, improve performance or other
attributes, or adapt to a changed environment [17]. From this definition, the maintain-
ability directly relates to the change to the system. Therefore, we propose the metrics
suite to measure how system is affected by the change.

Change Definition and Type of Change

Software change is inevitable. This is because new requirements emerge, the business
environment changes, errors must be repaired, new equipment must be accommodated, or

20

the performance or reliability may have to be improved. Change to the software systems
can be divided into four types, according to [18];

• Addition. New elements are inserted into the base system.

• Removal. An element in the base system is removed.

• Modification. An element has some properties modified.

• Derivation. Elements are refined and/or move to accommodate the changes.

Components and Relationships

In UDSD and AOSD process, there are products created during each phase. In both
UDSD and AOSD requirements phase, the use case diagram is created. In UDSD analysis
phase, the class diagram and collaboration diagram are created. In AOSD analysis phase,
the use case slice and collaboration diagram are created. In UDSD design phase, the
products are the same as in its analysis phase but they describe system in more detail
about implementation issues. In AOSD design phase, the products are also the same as
its analysis phase.

According to the products created in development process, these products are created
in form of UML diagrams. In fact, there is the same characteristic amongst those dia-
grams. The diagram consists of components and relationships between components. In
use case diagram, there are use cases as components and association between use cases
as relationships. In class diagram, there are classes as components and classes’ associa-
tion as relationships. In use-case slice, there are classes and aspects as components and
relationships between class and class, class and aspect and aspect and aspect as relation-
ships. And in collaboration diagram, there are classes and aspects as components and
their method calls and operation calls as relationships. We can conclude the components
and relationships in each diagram as shown in Table 4.2.

Table 4.2: Component and Relationship of System’s Diagrams

Approach Diagram Component Relationship

UDSD
Use Case Diagram Use Cases Use Case Associations
Class Diagram Classes Class Associations
Collaboration Diagram Classes Method Calls

AOSD
Use Case Diagram Use Cases Use Case Associations

Use-Case Slice Classes and Aspects
Associations of Class and
Class, Class and Aspect, and
Aspect and Aspect

Collaboration Diagram Classes and Aspects
Method Calls and Intertype
Operation and Advice Calls

21

Change Impact Metric Definition

When the change occurs, software systems have to be modified. The system S after
modifying can be divided into four parts;

• Added Part.

This part of the system is the part that new components and new relationships are
introduced to the system. The components of this part are defined as Add(c) and
the relationships of this part are defined as Add(r).

• Modified and Derived Part.

This part of the system is the part that existing components and relationships have
to be modified or reorganized because of the change. The components of this part
are defined as Mod(c) and the relationships of this part are defined as Mod(r).

• Removed Part.

This part of the system is the part that components and relationships have been
removed from the system after modifying the system to deal with change. The
components of this part are defined as Rem(c) and the relationships of this part are
defined as Rem(r).

• No Change Part. This part of the system is the part that is not related to the effect
of change. It is not modified or removed from the system according to the change.
The components of this part are defined as Noc(c) and the relationships of this part
are defined as Noc(r).

The change impact metric is a metric that measures how much the system is affected
by the change comparing to the whole system.

The impact of change on components Imp(c) is defined as;

Imp(c) = Add(c) + Mod(c) + Rem(c) (4.1)

And the impact of change on relationships Imp(r) is defined as;

Imp(r) = Add(r) + Mod(r) + Rem(r) (4.2)

The components in the entire system Sys(c) is defined as;

Sys(c) = Add(c) + Mod(c) + Rem(c) + Noc(c) (4.3)

The ralationships in the entire system Sys(r) is defined as;

Sys(r) = Add(r) + Mod(r) + Rem(r) + Noc(r) (4.4)

The degree of change impact I is defined as;

22

I =
Imp(c) + Imp(r)

Sys(c) + Sys(r)
(4.5)

As can be seen in the formulas, the removed part is still counted as one part of the system
in order to measure the impact of change to the whole system. Because the removed part
is counted as one of the change impact, so the entire system has to include this part to
the measure. For simplicity, we illustrate the system components and relationships after
the change in Figure 4.2.

Figure 4.2: System after Change

For the change impact metric, we can apply this metric to measure the impact of change
in the level of each diagram defined earlier in Table 4.2 or for the entire system by count-
ing all the components and relationships from every diagram created from requirements,
analysis and design phase.

4.2.2 Scattering, Tangling, and Crosscutting Metrics Suite

In our research, one of our goals is to evaluate the reduction of crosscutting concerns
in the systems implemented by AOSD approach comparing to the system implemented
by UDSD approach. Therefore, we need to apply metrics that directly measure the
crosscutting concerns to our research.

A concern is some part of the problem that we want to treat as a single conceptual unit
[4]. Sometimes, a concern affects more than one component and a component contains
parts of multiple concerns. These situations are called scattering and tangling respectively.
These kind of concerns are called crosscutting concern. The consequences caused by
these concerns are reduced comprehensibility, ease of evolution and reusability of software
artifacts. Accordingly, these concerns should be separated.

23

Conejero J. et al. proposed metrics suite for crosscutting concerns as predictors of
software instability. First, they proposed a conceptual framework for crosscutting as a
basis for measurement of crosscutting concerns. Then, they proposed a set of metrics for
measuring scattering, tangling and crosscutting concerns [15].

A Conceptual Framework for Crosscutting

A conceptual framework for crosscutting is based on the study of matrices that represent
particular features of a traceability relationship between two different domains. These
domains are generically called Source and Target. They used the term Crosscutting
Pattern to denote the situation of crosscutting as shown in Figure 4.3.

Figure 4.3: Abstract Meta-Model of the Crosscutting Pattern [15]

The relationship between Source and Target can be formalized by two functions f and
g, where g can be considered as a special inverse function of f. The two functions were
defined as:
∀ s∈ Source, f(s)={t∈Target:there exists a trace relation between s and t}
∀ t∈Target, g(t)={s∈ Source:there exists a trace relation between s and t}
The concepts of scattering, tangling, and crosscutting are defined as specific cases of

these functions.
Defintion 1 [Scattering]: We say that an element s ∈ Source is scattered if card(

f(s))>1, where card refers to cardinality of f(s). In other words, scattering occurs when,
in a mapping between source and target, a source element is related to multiple target
elements.

Defintion 2 [Tangling]: We say that an element t∈ Target is tangled if card(g(t))>1.
Tangling occurs when, in a mapping between source and target, a target element is related
to multiple source elements.

There is a specific combination of scattering and tangling which it is called crosscutting.

24

Defintion 3 [Crosscutting]: Let s1 and s2∈ Soruce, s1≠ s2, we say that s1 crosscuts
s2 if card(f(s1))>1 and ∃ t∈ f(s1): s2∈ g(t). Crosscutting occurs when, in a mapping
between source and target, a source element is scattered over target elements and where
at least one of these target elements, some other source element is tangled [19].

In this meta-model of the crosscutting, we can instantiate the abstraction of it by
defining the specification of the two domains, source and target that has traceability
relationship to each other. In our research, we instantiated the abstract meta-model of
crosscutting by defining use cases as sources and classes, interfaces and aspects, which for
simplicity we call them “modules”, as targets. The instantiation is shown in Table 4.3.

Table 4.3: Crosscutting Meta-Model Instantiation for UDSD and AOSD Systems
Element UDSD AOSD

Source Use Case Use Case

Target
Module (Class and
Interface)

Module (Class, Inter-
face, and Aspect)

Identification of Crosscutting

Conejero J. et al. defined the dependency matrix to represent function f. For example,
in a software system, there are 5 use cases and 6 modules. In this case, modules mean
classes, interfaces and aspects. The dependency of this system is shown in Table 4.4 in
order to trace the dependency between use case and class. A 1 in a cell means that the
class element of the corresponding column contributes to addresses the use case element
of the corresponding row. On the other hand, a 0 means there is no dependency between
the class element of the corresponding column and addresses the use case element of the
corresponding row.

Table 4.4: Example of Dependency Matrix
Module

m[1] m[2] m[3] m[4] m[5] m[6]

U
se

C
a
se

uc[1] 1 0 0 1 0 0
uc[2] 1 0 1 0 1 1
uc[3] 1 0 0 0 0 0
uc[4] 0 1 1 0 0 0
uc[5] 0 0 0 1 1 0

Based on this matrix, two different matrices called scattering matrix and tangling ma-
trix are derived. According to the definition of scattering, we focus on how a use case
is related to classes. Therefore, the scattering matrix is the same matrix as dependency
matrix which it defines use case as rows and module as columns. According to the defini-
tion of tangling, we focus on how a module is related to use cases. Therefore, the tangling

25

matrix is the transpose of dependency matrix which it defines module as rows and use
case as columns. The example of tangling matrix for dependency matrix in Table 4.4 is
shown in Table 4.5.

Table 4.5: Example of Tangling Matrix
Use Case

uc[1] uc[2] uc[3] uc[4] uc[5]

M
o
d
u
le

m[1] 1 1 1 0 0
m[2] 0 0 0 1 0
m[3] 0 1 0 1 0
m[4] 1 0 0 0 1
m[5] 0 1 0 0 1
m[6] 0 1 0 0 0

The crosscutting product matrix is obtained through the multiplication of scattering
matrix and tangling matrix. The crosscutting product matrix shows the quantity of cross-
cutting relations as shown in Table 4.5. In Table 4.5, we show the result of multiplication
of scattering matrix in Table 4.3 and tangling matrix in Table 4.4. This matrix is used to
derive the final crosscutting matrix as shown in Table 4.6. A cell in the final crosscutting
matrix denotes the occurrence of crosscutting, but abstracts the quantity of crosscutting.
In the crosscutting matrix, the diagonal cells are set to be zero because a use case cannot
crosscut itself.

Table 4.6: Example of Crosscutting Product Matrix
Use Case

uc[1] uc[2] uc[3] uc[4] uc[5]

U
se

C
a
se

uc[1] 2 1 1 0 1
uc[2] 1 3 1 1 1
uc[3] 0 0 0 0 0
uc[4] 0 1 0 1 0
uc[5] 1 1 0 0 2

In our research, in order to create dependency matrix, we have to consider the artifacts
that can trace the relationship between use case and module. Therefore, we use the union
of all class diagrams from all use cases as material for dependency matrix in UDSD and
the union of all use-case slices from all use cases as material in AOSD.

Metrics for Scattering

According to the definition of scattering, NScattering of a use case element sk is the
number 1 ’s in the corresponding row (k) of the dependency matrix:

26

Table 4.7: Example of Crosscutting Matrix
Use Case

uc[1] uc[2] uc[3] uc[4] uc[5]

U
se

C
a
se

uc[1] 0 1 1 0 1
uc[2] 1 0 1 1 1
uc[3] 0 0 0 0 0
uc[4] 0 1 0 1 0
uc[5] 1 1 0 0 0

NScattering(sk) =

|T |∑
j=1

dmkj (4.6)

Where |T | is the number of module elements and dmkj is the value of the cell [k,j] of
the scattering matrix. This metric measures how scattered a use case is. This NScattering
metric can be normalized in order to obtain a value between 0 and 1. Then, Degree of
scattering of the use case element sk is defined as:

Degree of scattering(sk) =

∑|T |

j=1 dmkj

|T |
if

∑|T |
j=1 dmkj > 1

0 if
∑|T |

j=1 dmkj = 1

(4.7)

The closer to zero this metric is, the better encapsulated the use case element. On the
other hand, when the metric has a value closer to 1, the use case element is highly spread
over the module elements and it is worse encapsulated. In order to have a global metric
for how much scattering the system ’s use cases are, the concept of Global scattering
(GScattering) were defined which is obtained by calculating the average of the Degree of
scattering values for each use case element:

GScattering =

∑|S|
i=1 Degree of scattering(si)

|S|
(4.8)

Where |S| is the number of analyzed use case elements.

Metrics for Tangling

Similarly to NScattering for scattering, NTangling metric for the module element tk are
defined, where |S| is the number of use case elements and dmki is the value of the cell
[k,i] of the dependency matrix:

NTangling(tk) =

|S|∑
i=1

dmik (4.9)

27

This metric measures the number of use case element addressed by a particular module
element.

Similarly to the steps performed for the scattering metrics and two tangling metrics
were defined: Degree of tangling and GTangling. These metrics represent the normalized
tangling for the module element tk and the global tangling, respectively:

Degree of tangling(tk) =

∑|S|

i=1 dmik

|T |
if

∑|S|
i=1 dmik > 1

0 if
∑|S|

i=1 dmik = 1

(4.10)

GTangling =

∑|T |
j=1 Degree of tangling(tj)

|T |
(4.11)

The Degree of tangling metric may take values between 0 and 1, where he value 0
represents a module element addressing only one use case element. The number of use
case elements addressed by the module element increases as the metric is closer to 1.

Metrics for Crosscutting

Metrics for crosscutting can be divided into three metrics: Crosscutpoints, NCrosscut
and Degree of crosscutting. These metrics are extracted from the crosscutting product
matrix and the crosscutting matrix.

The Crosscutpoints metric is defined for a use case element sk as the number of module
elements where sk is crosscutting to other source elements. This metric is calculated from
the crosscutting product matrix. The Crosscutpoints metric for sk corresponds to the
value of the cell in the diagonal of the row k or, in other words, the cell [k,k] (ccpmkk) in
the crosscutting product matrix.

Crosscutpoints(sk) = ccpmkk (4.12)

The NCrosscut metric is defined for the use case element sk as the number of use case
elements crosscut by sk. The NCrosscut metric for sk is calculated by the addition of all
cells of the row k in the crosscutting matrix:

NCrosscut(sk) =

|S|∑
i=1

ccmki (4.13)

From the Crosscutpoints metric and NCrosscut metric, the Degree of crosscutting metric
of a use case element sk is defined. Degree of crosscutting is normalized between 0 and 1,
so that those use case elements with lower values for this metric are the best modularized.

Degree of crosscutting(sk) =
Crosscutpoints(sk) + Concerns crosscut(sk)

|S| + |T |
(4.14)

To sum up, all the metrics for scattering, tangling, and crosscutting are summarized in
Table 4.7.

28

Table 4.8: Summary of the Scattering, Tangling, and Crosscutting Metrics

Metric Definition Relation with
matrices

Calculation

NScattering
(sk)

Number of mod-
ule elements ad-
dressing use case
element sk

Addition of the val-
ues of cells in row
k in dependency ma-
trix (dm)

=
∑|T |

j=1 dmkj

Degree of
scattering
(sk)

Normalization of
NScattering(sk)
between 0 and 1

=

∑|T |

j=1 dmkj

|T |
if

∑|T |
j=1 dmkj > 1

0 if
∑|T |

j=1 dmkj = 1

GScattering
(sk)

Average of De-
gree of scattering
of the use case el-
ements

=
∑|S|

i=1 Degree of scattering(si)
|S|

NTangling
(tk)

Number of use
case elements ad-
dressed by mod-
ule element tk

Addition of the val-
ues of cells in column
k in dependency ma-
trix (dm)

=
∑|S|

i=1 dmik

Degree of
tangling
(sk)

Normalization of
NTangling(tk)
between 0 and 1

=

∑|S|

i=1 dmik

|T |
if

∑|S|
i=1 dmik > 1

0 if
∑|S|

i=1 dmik = 1

GTangling
(tk)

Average of
Degreeoftangling
of the module
elements

=

∑|T |
j=1 Degree of tangling(tj)

|T |

Crosscut
points (sk)

Number of mod-
ule elements
where the use
case element sk

crosscuts to other
use case elements

Diagonal cell of row
k in the crosscut-
ting product matrix
(ccpm)

= ccpmkk

NCrosscut
(sk)

Number of use
case elements
crosscut by the
use case element
sk

Addition of the val-
ues of cells in row
k in the crosscutting
matrix (ccm)

=
∑|S|

i=1 ccmki

Degree of
crosscutting
(sk)

Addition of the
two last met-
rics normalized
between 0 and 1

=
ccpmkk +

∑|S|
i=1 ccmki

|S| + |T |

29

Chapter 5

Empirical Study and Results

This chapter presents the case study and the results to validate our metrics. First, we
describe about the ATM system that is chosen to be our case study and how it has been
developed to be ready to be measured. Then, we show our results of the measurement
of each metric defined earlier, the comparison between UDSD and AOSD and statistical
analysis of our results. Last, we discuss about the characteristic of AOSD that has an
effect on our results.

5.1 Case Study: ATM System

In order to validate our metrics that are defined earlier, we have to apply these metrics
to some system. In our research, we apply our metrics to ATM system which is intro-
duced in “Designing Concurrent, Distributed, and Real-Time Applications with UML” by
Hassan Gomaa [20]. We have chosen this system because it has well-defined requirements
specification. Therefore, we can build our system implemented by UDSD and by AOSD
in a consistent way.

5.1.1 Problem Description

The problem description for ATM system is defined as follow:
A bank has several automated teller machines (ATMs), which are geographically dis-

tributed and connected via a wide area network to a central server. Each ATM machine
has a card reader, a cash dispenser, a keyboard/ display, and a receipt printer. By using
the ATM machine, a customer can withdraw cash from either a checking or savings ac-
count, query the balance of an account, or transfer funds from one account to another. A
transaction is initiated when a customer inserts an ATM card into the card reader. En-
coded on the magnetic strip on the back of the ATM card are the card number, the start
date, and the expiration date. Assuming the card is recognized, the system validates the
ATM card to determine that the expiration date has not passed, that the user-entered PIN
(personal identification number) matches the PIN maintained by the system, and that
the card is not lost or stolen. The customer is allowed three attempts to enter the correct

30

PIN; the card is confiscated if the third attempt fails. Cards that have been reported lost
or stolen are also confiscated.

If the PIN is validated satisfactorily, the customer is prompted for a withdrawal, query,
or transfer transaction. Before a withdrawal transaction can be approved, the system
determines that sufficient funds exist in the requested account, that the maximum daily
limit will not be exceeded, and that there are sufficient funds at the local cash dispenser.
If the transaction is approved, the requested amount of cash is dispensed, a receipt is
printed containing the information about the transaction, and the card is ejected. Before
a transfer transaction can be approved, the system determines that the customer has
at least two accounts and that there are sufficient funds in the account to be debited.
For approved query and transfer requests, a receipt is printed and the card is ejected. A
customer may cancel a transaction at anytime; the transaction is terminated and the card
is ejected. Customer records, account records, and debit card records are all maintained
at the server.

An ATM operator may start up and close down the ATM to replenish the ATM cash
dispenser and for routine maintenance. It is assumed that functionality to open and close
accounts and to create, update, and delete customer and debit card records is approved
by an existing system and is not part of this problem.

5.1.2 Use Case Model

In the requirements phase, we create the use case model in the same way for both UDSD
and AOSD. First, we define use cases from problem description. Then, we describe each
use case in more detail in use case description.

According to the problem description of ATM system, five use cases are defined;

• Validate PIN use case. This use case describes an event that the system validates
customer PIN.

• Withdraw Funds use case. This use case describes an event that a customer with-
draws specific amount of funds from a bank account.

• Query Account use case. This use case describes an event that a customer receives
the balance of a bank account.

• Transfer Funds use case. This use case describes an event that a customer transfers
funds from a bank account to another.

• Cancel Transaction use case. This use case describes an event that a customer
dismisses current transaction.

All the use cases are defined in use case diagram as shown in Figure 5.1. The detail of
each use case is described in use case descriptions in Appendix A.

31

Figure 5.1: ATM System Use Case Diagram

5.1.3 Analysis Model and Design Model

In analysis phase, the process is different between UDSD and AOSD. Therefore, we have
to develop the system separately. In UDSD, we create class diagram and collaboration
diagram. But in AOSD, we create use-case slice and collaboration diagram based on
use-case slice.

UDSD Analysis Model

In UDSD analysis phase, we create class diagrams and collaboration diagrams as use
case realizations for each use case. The Validate PIN use case is used to exemplify how
the use case has been analyzed. In order to realize a use case, we have to consider the
flow of events in that use case by using the use case description. In Figure 5.2, class
diagram of Validate PIN use case is shown. It shows all the classes, their methods, and
their attributes necessary for realizing the Validate PIN use case.

32

Figure 5.2: Example of UDSD Analysis Model - Class Diagram for Validate PIN Use Case

According to the events flow in use case description, we can derive the collaboration of
the Validate PIN use case. In Figure 5.3, the collaboration of typical flows of the Validate
PIN use case is shown. Note that, we have to consider not only the typical flows but also
the alternate flows.

33

Figure 5.3: Example of UDSD Analysis Model - Collaboration Diagram for Validate PIN
Use Case Typical Flow

AOSD Analysis Model

In AOSD analysis phase, we create use-case slice and collaboration diagrams as use
case realizations for each use case. In order to realize a use case, we have to consider the
flow of events in that use case by using the use case description. In Figure 5.4, use case
slice of Validate PIN use case is shown. It shows all the classes, the aspects, methods,
intertype methods and attributes necessary for realizing the Validate PIN use case.

34

Figure 5.4: Example of AOSD Analysis Model - Use-Case Slice for Validate PIN Use Case

However, after realizing all the use cases in the system, there are some parts of classes,
especially methods, which can be used by many use cases. Therefore, we put these parts
of classes in the non-use-case-specific slice as shown in Figure 5.5. In this Figure, we can
see that input and output devices of ATM system can be used amongst many use cases, so
we put them in I/O Handler slice. Similarly to in I/O Handler slice, Customer Interface
slice (slice interacts with customer), Bank Data Management slice (slice handles data in
banking system), and ATM Data Management slice (slice handles data in ATM) are used
in many use cases, so we make them as separate slice.

35

Figure 5.5: Example of AOSD Analysis Model - Use-Case Slice with Non-Use-Case-
Specific Slice for Validate PIN Use Case

For the collaboration diagram, the method calls are not changed from UDSD to AOSD.
But the containments of methods are changed to be aspects for some methods of classes.
For the classes which are contained in non-use-case-specific slice, the class structures
remain the same. The collaboration diagram for Validate PIN use case typical flows in
analysis phase of AOSD is shown in Figure 5.6. Note that, we have to consider not only
the typical flows but also the alternate flows. In this Figure, there are some methods that
belong to Validate PIN aspect. Therefore, when some classes need to call these methods,
they have to call to Validate PIN aspect. For the ATM Transaction class, there are
methods; init(cardInput) and setAccount(accountNo) that belong to Validate PIN aspect
and a method; updateStatus() that belongs to original ATM Transaction class but it is put
in ATM Data Management slice. Therefore, the updateStatus() method is still directly
called from the ATM Transaction class.

36

Figure 5.6: Example of AOSD Analysis Model - Collaboration Diagram for Validate PIN
Use Case Typical Flow

Design Model

In both UDSD and AOSD design phase, the design model is created based on the
analysis model. The analysis model has been considered in more detail; we consider more
implementation constraints, reorganize the name of classes, aspects, and methods to live
up to the standard of Java and AspectJ, consider the distributed issue of the ATM system.
The ATM system is a client-server system. Therefore, we divide the system into client
side and server side.

In UDSD, the class diagram and collaboration diagram for each use case are refined
in order to meet the implementation constraints. And in AOSD, the use-case slice and
collaboration diagram for each use case are also refined. The process of design phase is
the same as in analysis phase.

37

5.1.4 System after Change

One of our metrics is change impact metric. For measuring this metric, we need to
apply some changes to the system to realize how change affects the system. In our case
study, ATM system, we make new requirement by adding new use case to the system;

• Borrow Money use case. This use case describes an event that a customer can-
not withdraw specific amount of funds from a bank account because of insufficient
amount of money in the bank account, so the customer requests to borrow the
money from the bank. This use case is an extension use case of the Withdraw Funds
use case. The detail of this use case is described in Appendix A.

After applying this change, the new system use case model is shown in Figure 5.7.

Figure 5.7: ATM System Use Case Diagram after Applying Change

The process after we add the Borrow Money use case to the system is the same way as
the process before applying change. In UDSD, we create class diagram and collaboration
diagram for this use case and refine the former artifacts. In AOSD, we create use-case
slice and collaboration diagram for this use case and refine artifacts we created before the
change.

38

5.2 Results of Measurement

In the step of creating the system to be measured, we create the ATM system from
requirements phase to design phase for both UDSD and AOSD and add new requirement
to the system in order that the change impact metrics can be applied. This section
presents the results of the measurement for each metric on the ATM system.

5.2.1 Measures of Change Impact Metrics

In order to measure the change impact metrics suite, we created the ATM system and
then added the Borrow Money use case as a change to the system. We measured the metric
from each artifacts (diagrams) created during the development process by collecting the
number of components and relationships in each diagram and calculated the degree of
change impact metric for each diagram. Moreover, in order to measure the overall impact
of the change, we collected components and relationships in every diagram and calculated
the metric. The results of the measurement of the degree of change impact metric I are
shown in Table 5.1. In addition to the values I, we also show the detail of the number of
components and relationships which are affected by the change (Imp(c)+Imp(r)) and the
number of components and relationships of the entire system (Sys(c)+Sys(r)).

Table 5.1: Measures of Change Impact Metric

Phase Diagram
UDSD AOSD

Imp(c)+
Imp(r)

Sys(c)+
Sys(r)

I
Imp(c)+
Imp(r)

Sys(c)+
Sys(r)

I

Requirements
Use Case Dia-
gram

3 10 0.300 3 10 0.300

Analysis
Class Diagram/
Use-Case Slice

26 76 0.342 24 86 0.279

Collaboration
Diagram

33 116 0.284 30 121 0.248

Design
Class Diagram/
Use-Case Slice

32 98 0.327 30 117 0.256

Collaboration
Diagram

40 141 0.284 38 151 0.252

Overall 134 441 0.304 125 485 0.258

Since, the raw data cannot be interpreted without statistical analysis, we will analyze
these data statistically in Section 5.3.2. Then, the interpretation of the data will be
described in Section 5.4.1.

39

5.2.2 Measures of Scattering, Tangling and Crosscutting Met-
rics

In order to measure scattering, tangling and crosscutting metrics, we use the class
diagrams in UDSD and the use-case slices in AOSD from analysis and design phase as
materials to trace the dependency between use cases and modules (classes or aspects).
First, we consolidate class diagrams from all use cases into consolidated class diagram for
UDSD system, and also consolidated use-case slice for AOSD system. Then, we create
the dependency matrix for the system and calculate the crosscutting product matrix and
crosscutting matrix. Note that, the process of creating these matrices are described in
Section 4.2.2. Next, we calculate all the metrics from the dependency matrix, crosscutting
product matrix and crosscutting matrix.

For the scattering (NScattering and Degree of scattering) and crosscutting (Crosscut-
points, NCrosscut, and Degree of Crosscutting) metrics, we calculate each of them for each
use case. In our case study, the system consists of five use cases; ATM01 Validate PIN,
ATM02 Withdraw Funds, ATM03 Query Account, ATM04 Transfer Funds, and ATM05
Cancel Transaction. Then, we calculate the average of these values. Moreover, we calcu-
late these metrics for analysis phase and design phase. The results of measurement are
shown in Table 5.2 and Table 5.3.

Table 5.2: Measures of Scattering and Crosscutting Metric of UDSD System
UDSD

Analysis Design

N
S
ca

tt
er

in
g

D
eg

re
e

of
sc

at
te

ri
n
g

C
ro

ss
cu

tp
oi

n
ts

N
C

ro
ss

cu
t

D
eg

re
e

of
cr

os
sc

u
tt

in
g

N
S
ca

tt
er

in
g

D
eg

re
e

of
sc

at
te

ri
n
g

C
ro

ss
cu

tp
oi

n
ts

N
C

ro
ss

cu
t

D
eg

re
e

of
cr

os
sc

u
tt

in
g

U
se

C
a
se

ATM01 11 0.48 11 4 0.54 14 0.48 14 4 0.53
ATM02 15 0.65 15 4 0.68 18 0.62 18 4 0.65
ATM03 9 0.39 9 4 0.46 12 0.41 12 4 0.47
ATM04 11 0.48 11 4 0.54 14 0.48 14 4 0.53
ATM05 6 0.26 6 4 0.36 6 0.21 6 4 0.29

Global/Average 0.45 0.52 0.44 0.49

40

Table 5.3: Measures of Scattering and Crosscutting Metric of AOSD System
AOSD

Analysis Design

N
S
ca

tt
er

in
g

D
eg

re
e

of
sc

at
te

ri
n
g

C
ro

ss
cu

tp
oi

n
ts

N
C

ro
ss

cu
t

D
eg

re
e

of
cr

os
sc

u
tt

in
g

N
S
ca

tt
er

in
g

D
eg

re
e

of
sc

at
te

ri
n
g

C
ro

ss
cu

tp
oi

n
ts

N
C

ro
ss

cu
t

D
eg

re
e

of
cr

os
sc

u
tt

in
g

U
se

C
a
se

ATM01 10 0.37 10 4 0.44 14 0.38 14 4 0.43
ATM02 13 0.48 13 4 0.53 17 0.46 17 4 0.50
ATM03 8 0.30 8 4 0.38 12 0.32 12 4 0.38
ATM04 10 0.37 10 4 0.44 14 0.38 14 4 0.43
ATM05 6 0.22 6 4 0.31 6 0.16 6 4 0.24

Global/Average 0.35 0.42 0.34 0.39

For the tangling (NTangling, Degree of tangling) metrics, we calculate these metrics
for each module (class or aspect). Then, we calculate the GTangling metric which is the
average of Degree of tangling. The values of GTangling for both UDSD and AOSD in
analysis and design phase are shown in Table 5.4.

Table 5.4: Measures of Tangling Metric

Metric
UDSD AOSD

Analysis Design Analysis Design
GTangling 0.34 0.32 0.21 0.20

Similarly to the results of change impact metrics suite, the raw data cannot be inter-
preted without statistical analysis, we will analyze the data of scattering, tangling, and
crosscutting metrics suite statistically in Section 5.3.2. Then, the interpretation of the
data will be described in Section 5.4.2.

5.3 Statistical Analysis for Our Results Using T-Test

Although, the results in section 5.2.1 and 5.2.2 show that AOSD can help improve
the maintainability and reduce the effect of crosscutting concern problems, consisting of
scattering and tangling, in UDSD, but the difference of the values of these metrics are
quite small. The difference of values of each metric of UDSD and AOSD is shown in Table
5.5.

41

Table 5.5: Difference of Measures between UDSD and AOSD

Metric
UDSD AOSD Difference (UDSD - AOSD)

Analysis Design Analysis Design Analysis Design
Degree of
Change
impact I of
class diagram/
use-case slice

0.342 0.327 0.279 0.256 0.063 0.071

Degree of
Change
impact I of
collaboration
diagram

0.284 0.284 0.248 0.252 0.036 0.032

GScattering 0.452 0.441 0.348 0.341 0.104 0.100
GTangling 0.339 0.324 0.215 0.200 0.124 0.124
Average of
Degree of
crosscutting

0.514 0.494 0.419 0.395 0.095 0.099

However, we cannot conclude that AOSD approach is more effective than UDSD ap-
proach by just the subtraction of two sets of results. Therefore, we have to find some
evidence showing that the differences are significant. In our research, we applied t-test in
order to prove that our results have statistical significance and be able to conclude our
results properly.

5.3.1 T-Test Definition and Procedure

The t-test is probably the most commonly used statistical data analysis procedure for
hypothesis testing. Actually, there are several kinds of t-tests, but the most common is
the “two-sample t-test” or also known as the “Student’s t-tes”. The two sample t-test
simply tests whether or not the two independent populations have different mean values
on some measure [21, 22].

For example, in our research, we have the hypothesis that our results from AOSD
and from UDSD have the significant difference. Therefore, our null hypothesis, which is
assumed to be true until proven wrong, is that there is really no difference between the
results from UDSD and from AOSD.

In our research, we gather the results from UDSD and AOSD system and observe that
the results from AOSD system are lower than the results from UDSD system. However,
we have to find the evidence that the differences represent whether the real difference
between the two populations, or just a chance difference in our samples.

The statistics t-test allows us to answer this question by using the t-test statistic to

42

determine a p-value that indicates how likely we could have gotten these results by chance.
By convention, if there is less than 5 percent chance of getting the observed differences by
chance, we reject the null hypothesis and conclude that we found a statistically significant
difference between the two groups.

The procedure of t-test is as follows;

1. Set the null hypothesis that the means of two groups are the same. And the alter-
native hypothesis is that the means of two groups are different.

2. Compute the values needed for continuing t-test; the mean of group one X1, the
mean of group two X2, standard deviation of group one S1, standard deviation of
group two S2, the sample size in group one n1, the sample size in group two n2, the
degree of freedom d.f., the estimator of the standard deviation of the two groups
SX1−X2

, and the t statistic value. The formulas for d.f., SX1−X2
, t are shown in

Table 5.6. Note that, there are different formulas for the two groups that have equal
variance and unequal variance.

Table 5.6: T-Test Formulas
Variance of
Two
Groups

d.f. SX1`X2
t

Equal
n1 + n2 − 2

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

(n1 + n2 − 2

X1 − X2

SX1−X2

√
1

n1

+
1

n2

Unequal

(
S2

1

n1

+
S2

2

n2

)2

(
S2

1

n1

)2

n1 − 1
+

(
S2

2

n2

)2

n2 − 1

√
S2

1

n1

+
S2

2

n2

X1 − X2

SX1−X2

3. Calculate the p-value with the specified degree of freedom by looking into the t-
distribution table. The p-value is the probability value of a t-test. If the p-value
is less than 0.05, this means that there is less than 5 percent chance of getting the
observed differences by chance, we reject the null hypothesis and conclude that we
found a statistically significant difference between the two groups.

43

5.3.2 T-Test Calculation for Our Metrics Results

In our research, we measured each of our metrics from the system implemented by
UDSD and the system implemented by AOSD. The results show that the measures from
AOSD are lower than UDSD, but the difference seems to be small. We have to find
the evidence whether the difference is significant or not. Therefore, the t-test has been
organized. In this section, we show the results of t-test calculation for each metric. Note
that, we cannot assume that the variance of UDSD system and AOSD system is equal or
unequal, so we calculate the t-test for both cases.

T-Test Calculation for Change Impact Metrics

In our research, we measured Degree of Change Impact I metric for each diagram
created in the development process; use case diagram, analysis class diagram, analysis
collaboration diagram, design class diagram, and design collaboration diagram for UDSD
system, and use case diagram, analysis use-case slice, analysis collaboration diagram,
design use-case slice, and design collaboration diagram for AOSD system. However, the
Degree of Change Impact I measures for both UDSD and AOSD are the same value
because we created the same use case diagram for both approaches. Therefore, we do not
include the Degree of Change Impact I measures to the t-test calculation. The results
of t-test calculation for Degree of Change Impact I metric are shown in Table 5.7. The
measures from UDSD system is defined as group one and the measure from AOSD system
is defined as group two.

Table 5.7: T-Test Calculation for Degree of Change Impact I Measures

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.3093 0.2588
n 4 4
S 0.0298 0.0139

Equal Variance

d.f. 6
SX1`X2

3.072
t 3.072

p-value 0.0109

Unequal Variance

d.f. 4.246
SX1`X2

0.0164
t 3.079

p-value 0.0185

From the t-test calculation result, we can notice that the p-value for equal variance
case is 0.0109 and the p-value for unequal variance case is 0.0185 which they are lower
than 0.05. Therefore, we can reject the null hypothesis and conclude that the difference

44

between the average of Degree of Change Impact I of UDSD system and AOSD system
is statistically significant.

T-Test Calculation for Scattering Metrics

For the scattering metrics, we use GScattering metric to compare UDSD system and
AOSD system. The GScattering metric is the average of the values of Degree of scattering
metric of each use case. Therefore, we use the values of Degree of scattering metric as
the data in the group and the value of GScattering metric as the mean of the group. In
our research, we collected the values of Degree of scattering metric in analysis and design
phase separately. Therefore, we organize the t-test for the results of both phases. The
results of t-test calculation for scattering metric values at analysis phase and design phase
are shown in Table 5.8 and Table 5.9, respectively.

Table 5.8: T-Test Calculation for Scattering Metric Measures at Analysis

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.4522 0.3481
n 5 5
S 0.1429 0.09669

Equal Variance

d.f. 8
SX1`X2

0.1220
t 1.350

p-value 0.1070

Unequal Variance

d.f. 7.024
SX1`X2

0.0771
t 1.350

p-value 0.1095

45

Table 5.9: T-Test Calculation for Scattering Metric Measures at Analysis

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.4414 0.3405
n 5 5
S 0.1511 0.1108

Equal Variance

d.f. 8
SX1`X2

0.1325
t 1.204

p-value 0.1315

Unequal Variance

d.f. 7.337
SX1`X2

0.0838
t 1.204

p-value 0.1339

From the t-test calculation result, we can notice that the p-values for scattering metrics
of both analysis and design phase are higher than 0.05. Therefore, we can conclude that
the null hypothesis is true and the difference between the values of GScattering of UDSD
system and AOSD system is not statistical significant.

T-Test Calculation for Tangling Metrics

Similarly to scattering metrics, for the tangling metrics, we use GTangling metric to
compare UDSD system and AOSD system. The GTangling metric is the average of the
values of Degree of tangling metric of each module in the system. The module means class
or aspect. Therefore, we use the values of Degree of tangling metric as the data in the
group and the value of GTangling metric as the mean of the group. In our research, we
collected the values of Degree of tangling metric in analysis and design phase separately.
Therefore, we organize the t-test for the results of both phases. The results of t-test
calculation for tangling metric values at analysis phase and design phase are shown in
Table 5.10 and Table 5.11, respectively.

46

Table 5.10: T-Test Calculation for Tangling Metric Measures at Analysis

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.3391 0.2148
n 23 27
S 0.4197 0.3840

Equal Variance

d.f. 48
SX1`X2

0.4008
t 1.093

p-value 0.1399

Unequal Variance

d.f. 45.14
SX1`X2

0.1145
t 1.085

p-value 0.1419

Table 5.11: T-Test Calculation for Tangling Metric Measures at Design

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.3241 0.200
n 29 37
S 0.4120 0.3682

Equal Variance

d.f. 64
SX1`X2

0.3880
t 1.290

p-value 0.1008

Unequal Variance

d.f. 56.74
SX1`X2

0.0976
t 1.272

p-value 0.1043

From the t-test calculation result, we can notice that the p-values for tangling metrics
of both analysis and design phase are higher than 0.05. Therefore, we can conclude that
the difference between the values of GTangling of UDSD system and AOSD system is not
statistical significant.

T-Test Calculation for Crosscutting Metrics

For the crosscutting metrics, we use the average of the Degree of crosscutting metric of
each use case to compare UDSD system and AOSD system. Therefore, we use the values
of Degree of crosscutting metric as the data in the group. In our research, we collected the

47

values of Degree of crosscutting metric in analysis and design phase separately. Therefore,
we organize the t-test for the results of both phases. The results of t-test calculation for
crosscutting metric values at analysis phase and design phase are shown in Table 5.12 and
Table 5.13, respectively.

Table 5.12: T-Test Calculation for Crosscutting Metric Measures at Analysis

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.5143 0.4188
n 5 5
S 0.1174 0.0815

Equal Variance

d.f. 8
SX1`X2

0.1011
t 1.494

p-value 0.0868

Unequal Variance

d.f. 7.129
SX1`X2

0.0639
t 1.494

p-value 0.0894

Table 5.13: T-Test Calculation for Crosscutting Metric Measures at Design

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.4941 0.3952
n 5 5
S 0.1289 0.0976

Equal Variance

d.f. 8
SX1`X2

0.1143
t 1.368

p-value 0.1043

Unequal Variance

d.f. 7.452
SX1`X2

0.0723
t 1.368

p-value 0.1068

From the t-test calculation result, we can notice that the p-values for crosscutting
metrics of both analysis and design phase are higher than 0.05. Therefore, we can conclude
that the difference between the average values of Degree of crosscutting metric of UDSD
system and AOSD system is not statistical significant.

48

5.4 Discussion

After the measurements and the calculation of t-test for each metrics suite, we can
discuss about our results based on the data from measurements and the results of t-test.
First, we discuss about the results from change impact metrics suite. Then, we discuss
about the results from scattering, tangling, and crosscutting metrics suite.

5.4.1 Discussion for Change Impact Metrics

According to the definition of change impact metric described in Section 4.2, we can
compare UDSD complexity and AOSD complexity in terms of effect of change by com-
paring the values I measured from the diagrams in the same level of abstraction.

In the requirements phase, we can compare the use case diagram of the two approaches.
However, both UDSD and AOSD use the common use case diagram, so there is no differ-
ence between these two values.

In the analysis and design phase, the measures of change impact metric from UDSD
class diagram and AOSD use-case slice are compared. Moreover, the measures from
collaboration diagrams from both approaches are also compared. From the values shown
in Table 5.1, we can notice that the measure values I of UDSD are higher than the measure
values I of AOSD for all diagrams. This can directly refer that when a change occurs, the
effect of change to the system implemented by UDSD is more than the effect of change
to the system implemented by AOSD. Then, we look at this comparison in more detail.
Comparing to UDSD, the lower I values of AOSD come from the lower Imp(c) + Imp(r)
and the higher Sys(c) + Sys(r) as shown in Figure 5.8. This means that the number of
components and relationships of AOSD that are affected by the change is lower than those
in UDSD and the number of components and relationships of the AOSD entire system is
higher than those in UDSD entire system.

Figure 5.8: Explanation of Lower Change Impact in AOSD Comparing to UDSD

For the overall degree of change impact, we calculated from the sum of the number of
components and relationships affected by the change from all diagrams divided by the
number of components and relationships from all diagrams. According to the results
shown in Table 5.1, the measure of degree of change impact for AOSD is lower than the
measure for UDSD. These measure values are in the same trend as the comparison of
measures from each diagram.

One of our objectives is to evaluate how AOSD improve maintainability in UDSD. The
change impact metric can be used to refer to the maintainability of the system. The more

49

effects the system receives from change, the less ease to maintain of the system is. From
this case study, we can notice that the system implemented by UDSD received more effect
from change than the system implemented by AOSD. Therefore, we can infer that the
AOSD system is easier to maintain than UDSD system.

According to the results of t-test, we can conclude that our results for degree of change
impact I metric can be used to identify the difference between the ATM systems imple-
mented by UDSD and AOSD in term of maintainability. In this case, the AOSD can help
increase maintainability on UDSD according to the raw data of measurements and the
difference is significant according to the statistic analysis.

5.4.2 Discussion for Scattering, Tangling, and Crosscutting Met-
rics

One of our research objectives is to evaluate how much AOSD reduce the crosscutting
concerns problem in UDSD. The scattering, tangling, and crosscutting metrics can derive
this attribute of the software system. Since, crosscutting concerns can be divided into
two problems; scattering and tangling.

For the scattering metrics, in both analysis and design phase, please consider the GScat-
tering values which are the average values of Degree of scattering metric of each use case.
The GScattering values of AOSD are lower than those of UDSD. This means AOSD mod-
ules (classes and aspects) are less scattered than UDSD modules (classes). This is because
the unique characteristic of AOSD that it uses aspects to encapsulate the part of classes
(methods of classes) that are specific to the use case. Therefore, it reduces the number
of modules of the use case and the modules that fulfill a specified use case are less spread
to the system than modules fulfilling the same use case in UDSD system.

For the tangling metrics, please consider the values of GTangling metric in both analysis
and design phase. The GTangling metric is a metric that is calculated from the average
values of the Degree of tangling metric of each module of the system. According to the
results, the GTangling values of AOSD are lower than those of UDSD. This means the
modules in AOSD system are less tangled with many use cases than the modules in UDSD
system. This is because the advantage of aspects that they can encapsulate parts of the
classes specific to use case in one containing module. Therefore, aspects reduce effect of
tangling problem in classes.

For the crosscutting metrics, please consider the values of the average of Degree of
crosscutting metric in both analysis and design phase. The Degree of crosscutting metric
is the combination of scattering and tangling. It considers how much modules of specified
use case is spread to the system by calculating Crosscutpoints metric and considers how
much this use case cut across other use cases in the system by calculating NCrosscut
metric. According to the results, the values of the average of Degree of crosscutting
metric of AOSD system are lower than those of UDSD system. This means, in the AOSD
system, the use cases cut across each other and the modules of use case are spread to the
system less than in UDSD system.

However, according to the t-test results for scattering, tangling, and crosscutting met-

50

rics, our results of these metrics cannot be used to identify the difference between the
ATM systems implemented by UDSD and AOSD in term of separation of concerns. The
ATM system implemented by AOSD might have less effect of crosscutting concerns than
the ATM system implemented by UDSD according to the raw data but the efficiency of
AOSD is too low according to the statistic analysis.

5.5 Effect of AOSD Characteristic on Our Results

AOSD is said to be an approach that can help increase the maintainability and reduce
the effect of crosscutting concerns of the UDSD approach. In term of maintainability,
AOSD uses aspects to encapsulate new components and new relationships that fulfill the
change and reduce the effect of change to the existing system. In term of crosscutting
concerns, AOSD uses aspects to encapsulate modules which are specific to the use case
in order to keep use cases separate from each other

According to the advantages of using aspects, we expected that AOSD can increase
the efficiency of UDSD dramatically. However, our results show that AOSD might help
increase the maintainability and separation of concerns of UDSD but not in a large scale.
In this section, we describe why the difference of results from both approaches is quite
small.

5.5.1 The Ideal Case and Practical Case for Crosscutting Con-
cerns

The situation of crosscutting concerns is described as some concerns in the system affect
more than one component and some components contain parts of multiple concerns. This
is the combination of scattering and tangling, respectively. For simplicity, please look at
the Hotel Management System which we used as an example to describe scattering and
tangling problems in Chapter 2. In Figure 5.9, we show that after realizing each use case
in the system, some components contain parts that fulfill different use cases and ideally
in a component that contains several parts, these parts are not related. In this case, each
part contains methods and attributes which are implemented to fulfill a certain use case.
For example, the Room component contains three parts that fulfill Reserve Room use case,
Check In Customer use case, and Check Out Customer use case but these three parts are
not related.

51

Figure 5.9: The Ideal Case for Crosscutting Concerns

For this crosscutting concerns situation, AOSD uses aspects to encapsulate the parts
that are specific to a certain use case and then it uses use-case slice to encapsulate the
classes that are specific to the use case and the aspect. For example, in Figure 5.10,
Reserve Room use-case slice contains Customer Screen class and Reserve Room class
which are used only for this use case and part of Reservation class and part of Room
class are put in the Reserve Room aspect as one containing module. As a result, the
Reserve Room use case does not have to depend on the base 1 Reservation class and the
base Room class but it depends on Reserve Room aspect instead. Note that, in this case,
the base class means a class that is used to fulfill a certain use case but it is also used by
other use cases. Therefore, it is divided into several parts to fulfill different use cases but
because of the use of aspects to encapsulate parts of the base classes which are specific to
the use case, the use case has no dependency to the base class but to the aspect instead.
In Figure 5.10, the base classes (Staff Screen class, Reservation class, and Room class) are
shown in the lowest row.

1The base class means a class that is used to fulfill a certain use case but it is also used by other use
cases. After applying aspects to encapsulate the parts that are specific to a certain use case, there are
still base classes for aspects to refer and merge the specific parts together.

52

Figure 5.10: Use-Case Slice and Aspect for Ideal Crosscutting Concerns

For this ideal case, the results of the measurement of our metrics would show a big dif-
ference between UDSD system and AOSD system. Since, for the change impact metrics,
when change occurs, we realize the change requirements and encapsulate them with as-
pects and use-case slices. Therefore, the change will not affect the base classes and as a re-
sult, the number of components and relationships in the modified part (Mod(c)+Mod(r)),
that is affected by the change, in the AOSD system will decrease. Then, AOSD system
receives less effect from change than UDSD system.

For the scattering, tangling, and crosscutting metrics, there is no more dependency
between use case and base classes, but there is a dependency between use case and an
aspect instead. As a result, the number of modules which fulfill a certain use case will
decrease, so the effect of scattering is lower in AOSD system. Moreover, there is no more
tangling in the AOSD system because parts that are specific to a certain use case are
encapsulated in an aspect. Finally, there is no more crosscutting between use cases.

However, in the real world, for a component that contains several parts, these parts
have some methods or attributes that can be used in many use cases. For simplicity,
we call these parts as “common parts”. The practical case for crosscutting concerns is
shown in Figure 5.11. For example, in the Room class, there is a method called retrieve()
to retrieve data of a room. This method is used in common for Reserve Room use case,
Check In Customer use case, and Check Out Customer use case. Therefore, it is put in
the common parts.

53

Figure 5.11: The Practical Case for Crosscutting Concerns

5.5.2 The Use of Non-Use-Case-Specific Slice

In order to manage the common parts, AOSD provides non-use-case-specific slice as
containment for them. When we realize use cases, if there are methods that are used
in many use cases, we put these methods in non-use-case-specific slice. For example, in
ATM system, there are four non-use-case-specific slices for containing the common parts
of classes; I/O Handler slice, Customer Interface slice, Bank Data Management slice, and
ATM Data Management slice. When a use-case slice needs to use these common parts,
we just put the extend dependency to these non-use-case-specific slices. In Figure 5.12,
we show Validate PIN use-case slice extending the four non-use-case-specific slices.

As a consequence of using non-use-case-specific slices to contain the common parts, for
scattering, tangling, and crosscutting metrics, the use case still has the dependency to the
base classes and also has a dependency to an aspect. Consequently, use cases are more
scattered than the ideal case of crosscutting concerns. Some classes that have common
parts are still tangled because use cases use the common parts, and then there still has
dependency relationship between use case and class. Moreover, use cases cut across each
other because they use the same methods in common parts.

For the change impact metrics, some classes still have dependency to the base classes
to access the common parts’ methods and also have dependency to an aspect. Therefore,
when change occurs, the change can affect the base classes, and then the number of
components and relationships in modified part (Mod(c)+Mod(r)) will increase from the
ideal case of crosscutting concerns.

To sum up, the use of non-use-case-specific slice to contain the common parts hinders
the efficiency of AOSD on the improvement of maintainability and the reduction of cross-
cutting concerns of UDSD. Therefore, we can notice from our results that the difference
of results between UDSD system and AOSD system are quite small.

54

Figure 5.12: Validate PIN Use-Case Slice Extending the Four Non-Use-Case-Specific Slices

55

5.5.3 AOSD System without Non-Use-Case-Specific Slice

Let’s imagine that if we ignore the use of non-use-case-specific slices, we have to duplicate
the common methods and put the common parts together with specific parts of the
classes in the aspect in each use-case slice. The results measured from the ATM system
implemented by AOSD without non-use-case-specific slice (NUCS) are shown in Table
5.14. We also calculate the difference between the results of ATM system implemented
by UDSD and the results of ATM system implemented by AOSD without non-use-case-
specific slice.

Table 5.14: Results of ATM System Implemented by AOSD without NUCS

Metric
UDSD

AOSD without
NUCS

Difference
(UDSD - AOSD)

Analysis Design Analysis Design Analysis Design
Degree of
Change
impact I of
class diagram/
use-case slice

0.342 0.327 0.123 0.125 0.219 0.202

Degree of
Change
impact I of
collaboration
diagram

0.284 0.284 0.169 0.170 0.115 0.114

GScattering 0.452 0.441 0.119 0.135 0.333 0.306
GTangling 0.339 0.324 0.000 0.000 0.339 0.324
Average of
Degree of
crosscutting

0.514 0.494 0.100 0.119 0.414 0.375

Again, we cannot conclude the difference of results with only the subtraction of results.
Therefore, we do the t-test to prove whether the difference of our results has statistic
significance or not.

T-Test Calculation for Change Impact Metrics

The result of t-test for change impact I measures in case of UDSD and AOSD without
non-use-case-specific slice is shown in Table 5.15.

From the t-test calculation result, we can notice that the p-value for equal variance
case and the p-value for unequal variance case is 0.00009 which they are lower than 0.05.
Therefore, we can reject the null hypothesis and conclude that the difference between
the average of Degree of Change Impact I of UDSD system and AOSD system without
non-use-case-specific slice is statistically significant.

56

Table 5.15: T-Test Calculation for Degree of Change Impact I Measures (for UDSD and
AOSD without NUCS)

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.3093 0.1468
n 4 4
S 0.0298 0.0263

Equal Variance

d.f. 6
SX1`X2

0.0281
t 8.177

p-value 0.00009

Unequal Variance

d.f. 5.909
SX1`X2

0.0199
t 8.177

p-value 0.00009

T-Test Calculation for Scattering Metrics

The results of t-test calculation for scattering metric values at analysis and design phase
in case of UDSD and AOSD without non-use-case-specific slice are shown in Table 5.16
and Table 5.17, respectively.

57

Table 5.16: T-Test Calculation for Scattering Metric Measures at Analysis (for UDSD
and AOSD without NUCS)

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.4522 0.1185
n 5 5
S 0.1429 0.0609

Equal Variance

d.f. 8
SX1`X2

0.1098
t 4.804

p-value 0.00067

Unequal Variance

d.f. 5.407
SX1`X2

0.0695
t 4.804

p-value 0.00243

Table 5.17: T-Test Calculation for Scattering Metric Measures at Design (for UDSD and
AOSD without NUCS)

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.4414 0.1351
n 5 5
S 0.1511 0.0604

Equal Variance

d.f. 8
SX1`X2

0.1151
t 4.209

p-value 0.00148

Unequal Variance

d.f. 5.246
SX1`X2

0.0728
t 4.209

p-value 0.00421

From the t-test calculation result, we can notice that the p-values for scattering metrics
of both analysis and design phase are lower than 0.05. Therefore, we can reject the null
hypothesis and conclude that the difference between the values of GScattering of UDSD
system and AOSD system without non-use-case-specific slice is statistical significant.

58

T-Test Calculation for Tangling Metrics

The results of t-test calculation for tangling metric values at analysis and design phase in
case of UDSD and AOSD without non-use-case-specific slice are shown in Table 5.18 and
Table 5.19, respectively.

Table 5.18: T-Test Calculation for Tangling Metric Measures at Analysis (for UDSD and
AOSD without NUCS)

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.3391 0
n 23 27
S 0.4197 0

Equal Variance

d.f. 48
SX1`X2

0.2841
t 4.206

p-value 0.00006

Unequal Variance

d.f. 22
SX1`X2

0.0875
t 3.875

p-value 0.00041

Table 5.19: T-Test Calculation for Tangling Metric Measures at Design (for UDSD and
AOSD without NUCS)

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.3241 0
n 29 37
S 0.4120 0

Equal Variance

d.f. 64
SX1`X2

0.2725
t 4.795

p-value 0.000005

Unequal Variance

d.f. 28
SX1`X2

0.0765
t 4.236

p-value 0.00011

From the t-test calculation result, we can notice that the p-values for tangling metrics

59

of both analysis and design phase are lower than 0.05. Therefore, we can reject the null
hypothesis and conclude that the difference between the values of GTangling of UDSD
system and AOSD system without non-use-case-specific slice is statistical significant.

T-Test Calculation for Crosscutting Metrics

The results of t-test calculation for crosscutting metric values at analysis and design phase
in case of UDSD and AOSD without non-use-case-specific slice are shown in Table 5.20
and Table 5.21, respectively.

Table 5.20: T-Test Calculation for Crosscutting Metric Measures at Analysis (for UDSD
and AOSD without NUCS)

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.5143 0.1000
n 5 5
S 0.1174 0.0513

Equal Variance

d.f. 8
SX1`X2

0.0906
t 7.231

p-value 0.00005

Unequal Variance

d.f. 5.474
SX1`X2

0.0573
t 7.231

p-value 0.00040

60

Table 5.21: T-Test Calculation for Crosscutting Metric Measures at Design (for UDSD
and AOSD without NUCS)

Variable
UDSD
(Group 1)

AOSD
(Group 2)

X 0.4941 0.1190
n 5 5
S 0.1289 0.0532

Equal Variance

d.f. 8
SX1`X2

0.0986
t 6.015

p-value 0.00016

Unequal Variance

d.f. 5.324
SX1`X2

0.0624
t 6.015

p-value 0.00091

From the t-test calculation result, we can notice that the p-values for crosscutting
metrics of both analysis and design phase are lower than 0.05. Therefore, we can reject
the null hypothesis and conclude that the difference between the average values of Degree
of crosscutting metric of UDSD system and AOSD system without non-use-case-specific
slice is statistical significant.

To sum up, after ignoring the use of non-use-case-specific slices, we can notice that the
results for all of our metrics show the big differences between the ATM system imple-
mented by UDSD and the system implemented by AOSD without non-use-case-specific
slices and these differences are statistical significant. Therefore, we can conclude that ig-
noring the use of non-use-case-specific slices can help the system to become an ideal case of
crosscutting concerns and we can reach the full efficiency of AOSD in terms of increasing
maintainability and reducing the effect of crosscutting concerns. However, without the
non-use-case-specific slices, we need to duplicate the parts which locate in the common
parts and put them into the aspect of many use cases. Therefore, it reduces reusability of
the system and increases the size of the system. As a result, we have to find the trade-off
between the reduction of crosscutting concerns and reusability of the system.

61

Chapter 6

Conclusion and Future Works

Aspect-Oriented Software Development (AOSD) with use cases proposed by Ivar
Jacobson [2] is said to be an approach which helps increase maintainability and reduce
the effect of crosscutting concerns of the system implemented by Use Case Driven Software
Development (UDSD) [1]. However, there is still no evidence to literally show the efficiency
of AOSD over UDSD yet.

In this paper, we proposed one metrics suite called change impact metrics to evaluate
how the change affects the system after the change occurs. Since, the maintainability
relates directly to the change [17], this metrics suite can refer to the maintainability of
the system. It was defined based on the number of components and relationships in
each artifact created from requirements phase to design phase. Moreover, we applied
one metrics suite called scattering, tangling, and crosscutting metrics suite proposed by
Conejero J. et al. to evaluate how much the separation of concerns in the system. This
metrics suite was defined based on the traceability dependency between source and target,
which in our research, source refers to use case and target refers to module. Then, we
derived the dependency matrix, crosscutting product matrix and crosscutting matrix from
the traceability dependency relationships. In our research, we used class diagram created
in analysis and design phase of UDSD and use-case slice created in analysis and design
phase of AOSD as materials to define the dependency between use case and module.

In AOSD, there are some unique features such as aspects, intertype methods and at-
tributes which do not appear in UDSD system. In order to compare the UDSD and
AOSD system in a meaningful and consistent manner, we instantiated concern-oriented
meta-model proposed by Figueiredo, E. et al. as a base for comparing the two systems
[16].

An empirical study was carried out to evaluate our metrics. We used the ATM system
which is introduced in “Designing Concurrent, Distributed, and Real-Time Applications
with UML” [20] as a case study. We implemented two ATM systems from requirements
phase to design phase; one implemented by UDSD and the other implemented by AOSD.
Then, in order to measure the change impact metrics, we applied change to the system
by introducing new use case. After implementing the two systems, we measured each of
our metrics from both systems.

The results of our empirical study show that the AOSD system is more maintainable

62

and has less effect of crosscutting concerns than the UDSD system. However, there is only
small difference between measures of each metric. This is because in the real world some
classes contain not only the parts (methods and attributes) that fulfill different use cases
and are not related to each other, but also the parts that are used by many use cases,
which we called common parts. AOSD provides non-use-case-specific slice to contain
these common parts. As a result, use case still has the dependency to the base class in
common parts and some classes still has relationships to the base classes, so when the
change occurs, it can also affect these common parts. Therefore, the efficiency of AOSD
is hindered by the use of non-use-case-specific slices. However, if we remove the use of
non-use-case-specific slices out of the system, it reduces the reusability of the system and
increases the system size because of the common parts. Consequently, we have to consider
the trade-off between separation of concerns and reusability.

Our plans for future works, we concern about the following issues;

• The aspect-oriented software development with use cases proposed by Ivar Jacob-
son is a holistic approach to develop software system with separation of concerns.
He proposed not only the approach for separating the functional concerns from
each other, but also the approach for separating nonfunctional concerns from the
functional concerns and the approach for separating platform-specific concerns from
non-platform-specific concerns. In our research, we just considered the approach for
separating the functional concerns from each other, so it is a good plan to explore
more about other approaches.

• In our research, the change impact metrics were defined based on the number of
components and relationships. In fact, the complexities of all components and
relationships are not equal. Therefore, we should consider the complexity of them
and refine our change impact metrics.

• The case study that we used in our research was derived from textbook, so it is
not the example from the real projects. Therefore, we need to apply our metrics to
the projects in the industry to see more different viewpoints. Moreover, the ATM
system is just a small project, so we might have more observations by using bigger
projects as our case studies.

• The validation of our metrics.

In software engineering empirical studies, the internal validity and external validity
of the studies are one of the concern issues. An internally valid study is one that
has been carried out correctly, such that we can have confidence in the study re-
sults. In this case, we applied statistical analysis to analyze the confidence of our
results statistically, so we can say that our study is internally valid. An external
validation requires a study to be confirmed by internal and external replication of its
experiments using different new information, so that its finding can be confidently
generalized. In the case of external validation, we have to apply our metrics to more
case studies in order to generalize our metrics to many different viewpoints.

63

Bibliography

[1] Ivar Jacobson, Grady Booch, and James Rumbaugh. “The Unified Software Devel-
opment Process”. Addison Wesley Longman Inc, 2000.

[2] Ivar Jacobson, and Pan-Wei Ng. “Aspect-Oriented Software Development with Use
Cases”. Pearson Education Inc, 2004.

[3] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier and John Irwin. “Aspect-Oriented Programming”. Computer
Science Volume 1241/1997, pp. 220-242, 1997.

[4] Tarr, P. et al. “N Derees of Separation: Multi-Dimensional Separation of Concerns”.
Proceedings of the 21st International Conference on Software Engineering, May 1999.

[5] Horst Zuse. “A Framework of Software Measurement”. Walter De Gruyter, 1997.

[6] Everald E. Mills. “Software Metrics”. SEI Curriculum Module SEI-CM-12-1.1, De-
cember 1998.

[7] S. R. Chidamber and C. F. Kemerer. “A Metrics Suite for Object Oriented Design”.
IEEE Transactions on Software Engineering, 20(6):476-493, 1994.

[8] Jacqueline A. Mcquillian and James F. Power. “On the Application of Software
Metrics to UML Models”. MoDELs 2006 Workshops, pp. 217-226, 2007.

[9] Jacqueline A. Mcquillian and James F. Power. “A Definition of the Chidamber and
Kemerer Metrics Suite for UML”. Technical report, National University of Ireland
(2006).

[10] Fenton, N., Lawrence Pfleeger, S. “Software Metrics: A Rigorous and Practical
Approach”. International Thomson Computer Press, 1996.

[11] M. Ceccato and P. Tonella. “Measuring the Effects of Software Aspectization”. In
WARE’04 Workshop, 2004.

[12] Kotrappa Sirbi and Prakash Jayanth Kulkarni. “Metrics for Aspect Oriented
Programming-An Empirical Study”. International Journal of Computer Applica-
tions, Vol.5, 2010.

64

[13] Tarr, P. et al. “N Degrees of Separation: Multi-Dimensional Separation of Concerns”.
Proceedings of the 21st International Conference on Software Engineering, May 1999.

[14] Sant’fAnna C. et al. “On the Reuse and Maintenance of Aspect-Oriented Software:
An Assessment Framework”. SBES’03: Proceedings of the Brazilian Symposium on
Software Engineering, pp. 19-34, 2003.

[15] Conejero, J., Figueiredo, E., Garcia, A., Hernandez, J., Jurado, E. “Early Crosscut-
ting Metrics as Predictors of Software Instability”. In 47th International Conference
Objects, Models, Components, Patterns (TOOLS), 2009.

[16] Figueiredo, E. et al. “On the Maintainability of Aspect-Oriented Software: A
Concern-Oriented Measurement Framework”. Proc. of European Conf. on Soft.
Maint. and Reeng. (CSMR). Athens, 2008.

[17] D.M. Coleman, D. Ash, B. Lowther, and P.W. Oman. “Using Metrics to Evaluate
Software System Maintainability”. Computer, vol. 27, no. 8, pp. 44-49, Aug. 1994.

[18] Farias, K., Garcia, A. and Whittle, J. “Assessing the Impact of Aspects on Model
Composition Effort”. In: 9th Int. Conf. AOSD� f10, Saint Mello, France 2009.

[19] Berg, K. van den, Conejero, J., Hernandez, J. “Analysis of Crosscutting in Early
Software Development Phases based on Traceability”. In: Rashid, A., Aksit, M.
(eds.). Transactions on AOSD III. LNCS, vol. 4620, pp.73–104, 2007.

[20] Hassan Gomaa. “Designing Concurrent, Distributed, and Real-Time Applications
with UML”. Addison-Wesley, Object Technology Series, 2000.

[21] Simon Hurst. “The Characteristic Function of the Student-t Distribution”. Financial
Mathematics Research Report No. FMRR006-95, Statistics Research Report No.
SRR044-95, 1995.

[22] Boneau, C. Alan. “The effects of violations of assumptions underlying the t test”.
Psychological Bulletin 57 (1): 49-64, 1960.

65

Appendix A

Use Case Description of the Case
Study: ATM Sytem

This chapter presents all of the use case description of the ATM system which we cre-
ated during requirements phase. This system contains six use cases (including use case
after change): Validate PIN use case, Withdraw Funds use case, Query Account use case,
Transfer Funds use case, Cancel Transaction use case, and Borrow Money use case.

66

Table A.1: Validate PIN Use Case Description

Use-Case Name: Validate PIN
Use-Case ID: ATM01
Use-Case Type: Concrete Use Case
Source: -
Actor: ATM Customer
Description: This use case describes an event that the system validates customer

PIN.
Precondition: ATM is idle, displaying a Welcome message.
Typical Course
of Events:

Actor Action System Response
Step 1: Customer inserts the
ATM Card into the Card Reader

Step 4: Customer enters PIN.

Step 2: If the system recognizes
the card, it reads the card num-
ber.
Step 3: System prompts cus-
tomer for PIN number
Step 5: System checks the expi-
ration date and whether the card
is lost or stolen.
Step 6: If card is valid, the sys-
tem then checks whether the user-
entered PIN matches the card
PIN maintained by the system.
Step 7: If PIN numbers match,
the system checks what account
is accessible with the ATM Card.
Step 8: System displays cus-
tomer account and prompts cus-
tomer for transaction type: With-
drawal, Query, or Transfer.

Alternate
Courses:

Alt-Step 2: If the system does not recognize the card, the card is
ejected.
Alt-Step 5: If the system determines that the card date has ex-
pired, the card is confiscated.
Alt-Step 6: If system determines that the card has been reported
lost or stolen, the card is confiscated.
Alt-Step 7: If the customer-entered PIN does not match the PIN
number for this card, the system re-prompts for the PIN.
Alt-Step 7: If the customer enters the incorrect PIN three times,
the system confiscates the card.

Postcondition: Customer PIN has been validated.

67

Table A.2: Withdraw Funds Use Case Description

Use-Case Name: Withdraw Funds
Use-Case ID: ATM02
Use-Case Type: Concrete Use Case
Source: Including ATM01
Actor: ATM Customer
Description: This use case describes an event that a customer withdraws specific

amount of funds from a bank account.
Precondition: ATM is idle, displaying a Welcome message.
Typical Course
of Events:

Actor Action System Response

Step 2: Customer selects With-
drawal, enters the amount to be
withdrawn.

Step 1: Include Validate PIN
(ATM01).
Step 3: System checks whether
customer has enough funds in the
account and whether the daily
limit will not be exceeded.
Step 4: If all checks are suc-
cessful, the system authorizes dis-
pensing of cash.
Step 5: System dispenses the
cash amount.
Step 6: System prints a re-
ceipt showing transaction num-
ber, transaction type, amount
withdrawn, and account balance.
Step 7: System ejects card.
Step 8: System displays Wel-
come message.

Alternate
Courses:

Alt-Step 4: If the system determines that there are insufficient
funds in the customer’s account, it displays an apology and ejects
the card.
Alt-Step 4: If system determines that the maximum allowable
daily withdrawal amount has been exceeded, it displays an apology
and ejects the card.
Alt-Step: If the ATM is out of funds, the system displays an
apology, ejects the card, and shuts down the ATM.

Postcondition: Customer funds have been withdrawn.

68

Table A.3: Query Account Use Case Description

Use-Case Name: Query Account
Use-Case ID: ATM03
Use-Case Type: Concrete Use Case
Source: Including ATM01
Actor: ATM Customer
Description: This use case describes an event that a customer receives the bal-

ance of a bank account.
Precondition: ATM is idle, displaying a Welcome message.
Typical Course
of Events:

Actor Action System Response

Step 2: Customer selects Query.

Step 1: Include Validate PIN
(ATM01).
Step 3: System reads account
balance.
Step 4: System prints a re-
ceipt showing transaction num-
ber, transaction type, and ac-
count balance.
Step 5: System ejects card.
Step 6: System displays Wel-
come message.

Alternate
Courses:

-

Postcondition: Customer account has been queried.

69

Table A.4: Transfer Funds Use Case Description

Use-Case Name: Transfer Funds
Use-Case ID: ATM04
Use-Case Type: Concrete Use Case
Source: Including ATM01
Actor: ATM Customer
Description: This use case describes an event that a customer transfers funds

from a bank account to another.
Precondition: ATM is idle, displaying a Welcome message.
Typical Course
of Events:

Actor Action System Response

Step 2: Customer selects Trans-
fer and enters amount, and re-
ceiver account.

Step 1: Include Validate PIN
(ATM01).
Step 3: If the system determines
the customer has enough funds in
the customer account, it performs
the transfer.
Step 4: System prints re-
ceipt showing transaction num-
ber, transaction type, amount
transferred and account balance.
Step 5: System ejects card.
Step 6: System displays Wel-
come message.

Alternate
Courses:

Alt-Step 3: If the system determines that the receiver account
number is invalid, it displays an error message and ejects the card.
Alt-Step 3: If the system determines that there are insufficient
funds in the customer ’s from account, it displays an apology and
ejects the card.

Postcondition: Customer funds have been transferred.

70

Table A.5: Cancel Transaction Use Case Description

Use-Case Name: Cancel Transaction
Use-Case ID: ATM05
Use-Case Type: Concrete Use Case
Source: -
Actor: ATM Customer
Description: This use case describes an event that a customer dismisses current

transaction.
Precondition: ATM is in use and during a transaction being executed and there

is a Cancel button on the current page on the ATM screen.
Typical Course
of Events:

Actor Action System Response
Step 1: Customer press Cancel
button.

Step 2: System dismisses the
transaction being executed.
Step 3: System ejects card.
Step 4: System displays Wel-
come message.

Alternate
Courses:

-

Postcondition: The transaction has been cancelled.

71

Table A.6: Borrow Money Use Case Description (Addition According to the Change)

Use-Case Name: Borrow Money
Use-Case ID: ATM06
Use-Case Type: Extension Use Case
Source: Extending ATM02
Actor: ATM Customer
Description: This use case describes an event that a customer cannot withdraw

specific amount of funds from a bank account because of insufficient
amount of money in the bank account, so the customer requests to
borrow the money from the bank.

Precondition: There is not enough amount of money in the bank account to be
withdrawn according to the customer’s required amount.

Typical Course
of Events:

Actor Action System Response
Step 1: Customer selects Borrow
Money.

Step 2: System checks whether
the required amount of money
does not exceed the maximum
borrowing limit.
Step 3: If check is successful,
the system authorizes dispensing
of cash.
Step 4: System dispenses the
cash amount.
Step 5: System prints a re-
ceipt showing transaction num-
ber, transaction type, amount
withdrawn, and account balance.
Step 6: System ejects card.
Step 7: System displays Wel-
come message.

Alternate
Courses:

Alt-Step 3: If system determines that the maximum allowable
borrowing amount has been exceeded, it displays an apology and
ejects the card.

Postcondition: The remaining customer funds have been withdrawn and the money
has been borrowed.

72

