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Abstract The primary objective of this paper is to apply the CHATUE algorithm,
presented in the Part-1 paper of this article, to multi-user Single Carrier Frequency Division
Multiple Access (SC-FDMA) Systems. The CHATUE algorithm connects turbo equalizers
neighboring in time in the absence of Cyclic Prefix or Guard Interval, where the latest ver-
sion of the reduced complexity equalization technique, Frequency Domain Soft Cancellation
Minimum Mean Square Error turbo equalization is utilized not only to mitigate the
inter-carrier interference but also to eliminate the inter-block interferences from the neigh-
boring blocks. Furthermore, doped accumulator is combined with our proposed CHA-
TUE-SC-FDMA system. Extrinsic Information Transfer analysis is used to demonstrate
the improvement in convergence property as well as to analyze the bit error rate thresh-
old. This paper provides in detail the time-concatenated turbo equalization algorithm for
SC-FDMA, referred to as CHATUE-SC-FDMA, and evaluates its performances. When deriv-
ing the algorithm, we also propose, without imposing significant performance degradation,
an approximation technique to eliminate the necessity of the covariance matrix inversion.
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1 Introduction

The Long-Term Evolution (LTE) project in the framework of the Evolved-Universal
Terrestrial Radio Access Network (E-UTRAN) has adopted Orthogonal Frequency Divi-
sion Multiplexing (OFDM) for downlink transmission in next generation wireless cellular
communications systems (4G) [1], because of its flexibility in satisfying each user’s Qual-
ity-of-Service (QoS) requirements. On the other hand, Single Carrier Frequency Division
Multiple Access (SC-FDMA) [2] has been adopted as the uplink transmission technique
because of its lower Peak-to-Average Power Ratio (PAPR) than OFDM, and hence is well
suited for power efficient transmission at the mobile terminals. As in OFDM, SC-FDMA
exhibits robustness against frequency-selectivity with the aid of a low complexity sub-opti-
mal frequency domain turbo equalization technique, of which technological bases have been
presented in the Part-1 paper of this article [3].

The traditional SC-FDMA uses cyclic prefix (CP) as a guard interval (GI) to avoid the
Inter-Block Interference (IBI), resulting from fading multi-path propagation. With the CP-
Transmission, the channel matrix has a circulant structure, and hence is effective in signifi-
cantly reducing the computational complexity for signal detection, such as [4,5], where [4]
applies the decision feedback equalization (DFE) to SC-FDMA systems; a frequency domain
DFE algorithm is presented in [5], which avoids the necessity to calculate the inverse matri-
ces, required to obtain feedback and feed-forward filters. However, CP transmission systems
incur decrease in power and spectral efficiencies. Furthermore, if the time duration of the
CP is shorter than the channel impulse response, the overall system performance is severely
degraded by the interferences. As a result, despite the fact that SC-FDMA with CP/GI has
advantages [2,6] such as low PAPR, robustness against carrier frequency offset, and low
computational complexity, it has also disadvantages such as loss in the power and spectral
efficiencies due to the necessity of the CP transmission.

The original version of the technique proposed in this article is partly presented in [7].
This paper is a sister paper of its Part-1 article [3], and the primary objective of this paper is
to apply the major results of the Part-1 article to SC-FDMA systems.

Despite the volume of the publications on no GI transmission techniques for OFDM and
single carrier block transmission, only a few have been published for SC-FDMA-GI/CP-free
transmission. In-depth literature survey and performance comparison for GI-free transmission
techniques are provided in the Part-1 paper for OFDM and single carrier block transmission.
For multiuser SC-FDMA systems, a blind eigen-analysis based beamforming algorithm has
been proposed in [8] to eliminate the self-interference caused by insufficient CP.

In the Part-1 paper, the idea of connecting the neighboring equalization blocks in
time has been proposed. This concept is referred to as CHained TUrbo Equalization
(CHATUE), with which the necessity of transmitting GI can well be avoided while elimi-
nating the Inter-Block Interference (IBI) components through the exchange of Log-Like-
lihood Ratio (LLR) between the neighboring blocks. To collect the total signal energy,
sampling of the received signal has to continue until the end of IBI due to the last sym-
bol in the current block, which overlaps the head of the following block. The latest ver-
sion of the reduced complexity equalization technique-Frequency Domain Soft Cancellation
MMSE (FD/SC-MMSE) [9] turbo equalization is utilized in the Part-1 paper, which can
effectively eliminate the interference components without requiring heavy computational
burden.

In this paper, we propose a novel frequency domain turbo equalization technique
for SC-FDMA systems without CP, by making several relevant modifications on the
CHATUE algorithm [3] so that it can be well adjusted to the SC-FDMA sub-carrier mapping.
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Furthermore, we utilized the Doped Accumulator (DA) in our proposed system to further
improve the performance.

Results of the convergence property and BER performance evaluations are presented
in this paper for the proposed CHATUE-SC-FDMA as well as for the traditional OFDM
with CP transmission, referred to as CP-SC-FDMA. The simulation results show that
BER performance versus per-bit energy-to-noise spectral density ratio with the proposed
CHATUE-SC-FDMA and CP-SC-FDMA techniques are almost identical. This indicates
that by using the proposed CHATUE-SC-FDMA technique, the loss in spectrum efficiency
due to the CP transmission can totally be recovered. Furthermore, by using the time duration,
made available by eliminating the CP/GI, we can employ even lower rate code, and the use
of the lower rate code can enhance the power efficiency of the system, if the frame structure
should not be changed due to some practical reason (in the other words, if spectrum efficiency
has to be the same as the traditional CP-SC-FDMA).

This paper is organized as follows; Sect. 2 shows the system model as well as mathe-
matical derivations of the equations related to the model. Section 3 describes the CHATUE
algorithm for SC-FDMA. Quantitative complexity evaluation is also provided in Sect. 3.
The Sect. 4 presents Extrinsic Information Transfer (EXIT) chart to analyse the convergence
behavior of the proposed system. The performance comparison against traditional SC-FDMA
with CP transmission as well as against another CP-free block transmission technique, CP
compensation [10], is presented in Sect. 5. Conclusions are drawn in Sect. 6.

In this paper, the bold mathematical symbols indicate the matrix. Past and future blocks
are indicated by •′, •′′. respectively. A diagonal matrix constructed by taking the diagonal
components of the argument matrix is denoted by diag(•), Hermitian and Transpose of a
matrix are indicated by •H , •T , respectively. E(•) stands for the expectation of its argument.
•̂ indicates the estimate of a variable. tr(•) denotes trace product and IK indicates a K × K
identity matrix. Furthermore, Le, La and L p denote the extrinsic, a priori and a posteriori
LLRs, respectively.

2 System Model

In this paper we consider a multi-user Single-Input Single-Output SC-FDMA system. Basic
structure of the SC-FDMA transceiver this paper assumes is shown in Fig. 1. The informa-
tion bits are encoded (Ci,t ), random interleaved (�i,t ), doped-accumulated and modulated
to obtain the signal vectors s′

i,t−1, si,t , and s′′
i,t+1, where i is the user index, and t stands

for the current block. After performing the sub-carrier mapping, which is represented by
the mapping matrix Di , the frequency-domain signal is converted back to the time-domain,
and transmitted over the frequency-selective block quasi-static multi-path Rayleigh fading
channels.

Multiplying by the matrix J, the equivalent block-wise Toeplitz current channel matrix
Hi,t can be converted into a circulant matrix, JHi,t . The received composite signal can be
expressed as

rt =
I∑

i=1

ri,t + Jn, (1)

where

ri,t = JHi,t FH
M Di FK si,t + JH′

i,t−1FH
M Di FK s′

i,t−1 + JH′′
i,t+1FH

M Di FK s′′
i,t+1 (2)
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Fig. 1 The proposed transceiver structure without CP in multiuser SC-FDMA
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Fig. 2 SC-FDMA’s sub-carrier mapping

with I denoting the number of users. n is a zero mean complex white Gaussian noise vector
with variance σ 2

n .
Note that the equivalent signal vectors transmitted in the past, current and future blocks

s′
i,t−1, si,t , s′′

i,t+1, and their corresponding equivalent block-wise channel matrices H′
i,t−1,

Hi,t , H′′
i,t+1 as well as the structure of matrix J are detailed in Appendix.

The SC-FDMA system assumed in this paper employs a frequency bin allocation matrix
Di , where the dimensionality of Di depends on each user’s Quality of Service (QoS) require-
ment. As shown in Fig. 2, Di is a M × K matrix, i.e. for the i th user, the κth sub-carrier
component of the K-point Discrete Fourier Transform (DFT) is mapped to the mth sub-carrier
of the M-point DFT, where 0 ≤ κ ≤ K − 1, 0 ≤ m ≤ M − 1.

For localized sub-carrier mapping,

Di =
{

1 m = Ru · M + κ

0 otherwise
(3)

and for distributed sub-carrier mapping,

Di =
{

1 m = Ru + K
M · κ

0 otherwise
(4)

with Ru indicating the resource unit allocation [4], which is subjected to 0 ≤ Ru ≤ K
M − 1.

It is assumed that Di is the same over the past, current, and future blocks. Since Di is
an orthogonal matrix, DT

i Di = IK . The M-point DFT matrix FM is larger in size than the
K -point DFT matrix FK . It is well known that the DFT matrix FM is a unitary matrix,
i,e. FM FH

M = FH
M FM = IM .
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In this paper, we define the system-signal to noise ratio (SNR) by

SNR =
∑I

i=1 Pi

B N0
(5)

with Pi , B, N0 denoting the power allocated to the i th user, total bandwidth, and noise power
spectral density, respectively.

3 Proposed CHATUE-SC-FDMA Algorithm

3.1 Soft Cancellation

We utilize the soft estimates of the past, current, and future blocks ŝ′
t−1, ŝt and ŝ′′

t+1, respec-
tively, to construct a soft replica of the receive signal as

r̂t =
I∑

i=1

JHi,t FH
M Di FK ŝi,t +

I∑

i=1

JH′
i,t−1FH

M Di FK ŝ′
i,t−1

+
I∑

i=1

JH′′
i,t+1FH

M Di FK ŝ′′
i,t+1 (6)

It is assumed that the channel matrices and the allocation matrices are known to the receiver.
The soft estimates of the kth symbol in the current, past, and future blocks for the i th user
are given by

ŝi,t (k) = E[si,t (k)|Le,C−1
i

] = tanh
{

Le,C−1
i

[si,t (k)]/2
}

, (7)

ŝ′
i,t−1(k) = E[s′

i,t−1(k)|L ′
p,C−1

i,t−1
] = tanh

{
L ′

p,C−1
i,t−1

[s′
i,t−1(k)]/2

}
, (8)

and

ŝ′′
i,t+1(k) = E[s′′

i,t+1(k)|L ′′
p,C−1

i,t+1
] = tanh

{
L ′′

p,C−1
i,t+1

[s′′
i,t+1(k)]/2

}
, (9)

when Binary Phase Shift Keying (BPSK) modulation is assumed. It should be noted that
in the iterations between the equalizers, referred to as vertical iterations, the a posteriori
LLR of the decoder from the past and future blocks, L ′

p,C−1
i,t−1

and L ′′
p,C−1

i,t+1
, respectively, are

exchanged of as shown in Fig. 3. We, then, perform Soft Cancellation (SC) of ICI and IBI
components, of which residual is given by

r̃t = rt − r̂t . (10)

The residual ICI and IBI components can be further suppressed by Minimum Mean Square
Error (MMSE) algorithm as shown in Appendix. By performing the sub-carrier de-mapping,
the i th users’ signals are separated as

r̃i,t = FH
K DT

i FM r̃t = FH
K DT

i FM JHi,t FH
M Di FK (si,t − ŝi,t ) + IBI, (11)

FH
K DT

i FM JHi,t FH
M Di FK (si,t − ŝi,t ) = H̄i,t (si,t − ŝi,t ), (12)

where, as mentioned before, JHi,t is a circulant matrix, and hence

�i,t = DT
i FM JHi,t FH

M Di (13)
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Fig. 3 Chained turbo
equalization, where Ei,t and C−1

i,t
stand for the FD-SC/MMSE
equalizer and BCJR decoder,
respectively, and the mutual
information from the (t − 2)th
and (t + 2)th blocks, MIi,t−2
and MIi,t+2, are set at 0 output
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becomes a diagonal matrix, since the sub-carrier mapping matrix Di does not change in the
frequency domain structure of the channel matrix. Finally, the equivalent channel matrix
H̄i,t is found to be a circulant matrix, and hence we can make use of the beneficial points of
the FD/SC-MMSE equalization algorithm.

After soft cancellation, the restoral term for the kth symbol is added, as

s̃(k)i,t = ri,t − r̂i,t + h̄(k)i,t ŝ(k)i,t = r̃i,t + h̄(k)i,t ŝ(k)i,t , (14)

where h̄(k)i,k denotes the kth column vector of the equivalent current channel matrix H̄i,t .

3.2 Equalizer Output

The block-wise equalization result is given in the form of vector zi,t , as

zi,t =(Ik + �i,t Si,t )
−1

[
�i,t ŝi,t + FH

K �H
i,t FK �−1

i,t r̃i,t

]

= (Ik + �i,t Si,t )
−1

[
�i,t ŝi,t + FH

K �H
i,t X

−1FK ˜ri,t

]
∈ C K×1, (15)

where the �i,t can be expressed as

�i,t = diag
[
H̄H

i,t�
−1
i,t H̄i,t

]

= diag
[
FH

K �H
i,t FK �−1

i,t FH
K �i,t FK

]

= diag
[
FH

K �H
i,t X

−1�i,t FK

]
∈ C K×K (16)

with X being the frequency domain covariance matrices given by

X = FK�i,tFK
H = �i,t FK �i,t FH

K �H
i,t +FK σ 2

i DT
i JJH Di FH

K

+ FK H̄′
i,t−1�

′
i,t−1H̄′H

i,t−1FH
K

+ FK H̄′′
i,t+1�

′′
i,t+1H̄′′H

i,t+1FH
K ∈ C K×K (17)

and

σ 2
i = K

M
σ 2

n . (18)

for the i th user.
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We assume that the MMSE filter output zi,t can be approximated as an equivalent Gaussian
channel output having input si,t , as

zi,t = μsi,t + ν, (19)

where

μ = E[zi,t · si,t∗] = 1

K
tr

[
�i,t (IK + �i,t Si,t )

−1] , (20)

with E[|si,t |2] = 1 for BPSK modulation and ν being equivalent noise vector with variance
given by

σ 2
ν = μ(1 − μ). (21)

Now, we can convert the MMSE filter output into an extrinsic LLR, as

La,E = ln
Pr

(
z|s[k]

i,t = +1
)

Pr
(

z|s[k]
i,t = −1

) = 4�(z)
1 − μ

, (22)

where �(z) denotes the real part of the complex vector z.

3.3 Approximation

Now, it is found that the computational complexity is due mainly to the covariance
matrix inversion X−1 in our proposed CHATUE-SC-FDMA systems, as indicated by
Eqs. (15)–(17). Notice that it can be divided into the covariance matrices of residual ICI,
noise, and IBI (past and future) components. The traditional FD-SC/MMSE can exploit the
circulant matrix property for the ICI part, by using F�FH ≈ 1

K tr[�]IK [11] to approximate
it by a diagonal matrix. As shown in Fig. 4, since the central part of residual IBI contains
the most important information, it is reasonable that we also use the diagonal approximation
for the IBI part as well. Now that X−1 can be approximated by a diagonal matrix, no heavy
computation for matrix inversion is needed in our proposed CHATUE-SC-FDMA algorithm
in practice.

Residual IBI from past and future NoiseICI

50 100 150 200 250

50

100

150

200

250

0

050 100 150 200 250

50

100

150

200

250

0

050 100 150 200 250

50

100

150

200

250

0

0

Fig. 4 Shape of covariance matrices, at mutual information of the current, the past and the future to 0.6
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Table 1 Computational complexity of CP-SC-FDMA, CHATUE-SC-FDMA with/without DA and CP com-
pensation

Complex operations CP CHATUE CP compensation

Addition 8K 2 14K 2 + 5K (6 + K )K 2 + 3K

Multiplication 14K 2 − 2K 20K 2 + 2K (7 + K )K 2 + 4K

Division K 2 K 2 K 2 + K

Finally, X can be expressed as

X ≈ �i,t�i,t�
H
i,t+ diag

(
FK σ 2

i DT
i JJH Di FH

K + FK H̄′
i,t−1�

′
i,t−1H̄′H

i,t−1FH
K

+ FK H̄′′
i,t+1�

′′
i,t+1H̄′′H

i,t+1FH
K

)

≈ �i,t�i,t�
H
i,t +

1

K
tr

[
σ 2

i DT
i JJH Di + H̄′

i,t−1�
′
i,t−1H̄′H

i,t−1 + H̄′′
i,t+1�

′′
i,t+1H̄′′H

i,t+1

]
IK

(23)

3.4 Complexity Analysis

Without the approximation presented in Sect. 3.3, the matrix inversion X−1 in Eqs. (15)–
(17) obviously dominates the computational complexity of our proposed scheme. However,
with the approximation presented in Sect. 3.3, it imposes no longer unacceptable compu-
tational complexity. A quantitative comparison of the overall computational complexity is
provided in Table 1.1 It is found from Table 1 that the both CP-SC-FDMA and CHATUE-
SC-FDMA require the same order of complexity O(K 2) (per iteration). We also evaluated
the computational complexity with another CP-free technique, which is not for SC-FDMA
but for single-carrier signaling, CP compensation technique presented in [10], and found that
it requires complexity of O(K 3), as shown in Table 1. Therefore, it can be concluded that the
CHATUE-SC-FDMA algorithm can eliminate IBI without imposing unacceptably higher
computational complexity over the traditional CP-SC-FDMA.

4 EXIT Analysis

Extrinsic Transfer Information (EXIT) chart is used to analyze convergence property of the
turbo equalizer. In this Section we investigate the effects of providing LLR from the past
and future blocks as well as using DA. The mutual information (MI) between LLR and the
transmitted bit S is given by

MIi,t = 1

2

∑

s=+1,−1

∞∫

−∞
pi (ε|S = s)log2

[
2pi (ε|S = s)

pi (ε|S = −1) + pi (ε|S = +1)

]
dε. (24)

Equation (24) can be evaluated by measuring the histogram of the probabilities pi (ε|S = ±1),
and using some numerical integration technique.

To analyze the impact of the use of the a posteriori LLR feedback from the future and the
past, we conducted EXIT analysis in an exemplifying system scenario. In the simulation, it
was assumed that the number of sub-carriers is M = 512 and the length of CP is M/8 = 64.

1 Computational steps for DFT and IDFT are not included in Table 1.
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Fig. 5 EXIT chart of CHATUE-SC-FDMA at Eb/N0 = 5 dB without DA for user 1, where IA-E and IE-D
indicate the a priori mutual information for the equalizer and the extrinsic mutual information for the decoder,
respectively. IE-E and IA-D denote the extrinsic mutual information for the equalizer, and the a priori mutual
information for the decoder, respectively

The number of users is I = 2 and K = 256 sub-carriers were mapped to each user. BPSK
and distributed sub-carrier mapping scheme were used. A rate 1/2 memory 2 nonsystem-
atic recursive convolutional code (RSRCC) encoder was used, and DA’s doping rate p = 8
was assumed. The decoder for DA, denoted by DA−1, utilized the traditional Bahl–Cocke–
Jelink–Raviv (BCJR) [12] algorithm. Each channel path was generated using Jakes’ model,
and block fading was assumed. By setting the MI from the (t − 2)th and (t + 2)th blocks at
zero, we can keep the low latency (i.e, truncation length = 3). We used the EXIT projection
technique because I = 2. i.e, when evaluating the MI exchange of the 1st user, given the a
priori mutual information MI1,t , the 2nd user performs iterations as many times as no more
increase in MI is achieved for the equalizer-decoder loops with t = −1, 0, 1.

Figure 5 shows the lower bound and the upper bound of the EXIT curves obtained, respec-
tively, where MI from the past and the future is equal to zero, corresponding to the case where
IBI components are not cancelled at all, and MI from past and future equal to one, corre-
sponding to the case where IBI can be completely cancelled. It is found from the figure that
providing LLR from the neighboring blocks lifts up the equalizer’s EXIT curve to avoid the
intersection with the decoder’s EXIT curve: without the LLR feedback from the neighboring
blocks, intersection happens at the point P; with the LLRs feedback, it is lifted up to the
point Q; and hence the performance is improved. The trajectory illustrates that at least three
iteration are needed in this case.

It is shown in Fig. 6a that by utilizing the DA [13,14], the equalizer’s EXIT curve can
reach the top-right (1,1) MI point, and furthermore the gap between equalizer and decoder is
smaller than the case shown in Fig. 5, and hence the information-rate lose from the capacity
can will be reduced [15]. However, it is found from the trajectory that much more iterations
are needed than the case of Fig. 5. Figure 6b also shows the corresponding bit error rate
(BER) curve. It is found that if the MI from the past and future blocks is equal to one, much
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Fig. 6 EXIT chart of CHATUE-SC-FDMA with DA and the corresponding BER performance for user 1

better performance can be achieved than the case when MI from the past and future blocks
is equal zero; this observation is consistent to the analysis shown in Fig. 6a.

5 Performance Comparison

5.1 Bit Error Rate Performance

The parameters used in this section are the same as those used in Sect. 4. Note that with
the CP transmission, the CP length is assumed to be equal to the multi-path length L . With
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Fig. 7 BER performance of CHATUE for SC-FDMA without DA

CHATUE-SC-FDMA, the vertical LLR exchange to the past and future equalizers is followed
by one horizontal iteration between the equalizer and decoder in the current block.

Figure 7a and b show the BER performance with the 1st and the 2st users, respectively,
without DA. It is found that CHATUE-SC-FDMA even without DA, CHATUE-SC-FDMA
can achieve better performance than traditional CP-SC-FDMA, when Eb/N0 < 8 dB for the
both users. It should be noted that with the traditional CP-SC-FDMA system the CP length
is 64 and block length is 512 in the simulations. Hence, we can save up to 100 × L/M
(CP length / block length) % spectral efficiency.
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Fig. 8 BER performance of CHATUE for SC-FDMA with DA

Figure 8a and b show with DA the BER curves of the 1st and the 2nd users, respectively.
It is found that by utilizing a DA the performance can further be improved by almost 2.5 dB
over the traditional CP-SC-FDMA with FD/SC-MMSE equalization.

Since each user is independently transmitted with the non-overlapping sub-carrier alloca-
tion, there is no inter-user-interference, and hence the performance should be independent of
the number of users. However, as shown in Fig. 9 the BER performance of CHATUE-SC-
FDMA degrades as the number of users increases. This is because to keep the orthogonality
in sub-carrier mapping, the interlever size for each user has to be smaller when increasing
the number of users, and thereby, CHATUE-SC-FDMA turbo equalization can not achieve
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Fig. 9 BER performance with multiple users at Eb/N0 = 6 dB

high enough gain through iterations. Figure 9 also shows BER performance achieved by
performing over-frame interleving. It is found that the BER performance is not significantly
affected, even when the 512 sub-carriers are shared by 64 users. However, detailed consid-
erations on the over-frame interleving technique is out of the scope of this paper. In fact, we
have found other relevant advantageous points with the over-frame interleaving technique in
the CHATUE framework, which will be reported in another publication.

5.2 Puncturing

It is obvious that for the industry, it is not preferable to change the frame structure speci-
fied already by a standard. We also evaluated the performances of traditional CP-SC-FDMA
and CHATUE-SC-FDMA with the same block length. We punctured the same memory
length code for FD-SC/MMSE with CP, to keep the information bit rate the same as with
CHATUE-SC-FDMA, which leads to

N × 1

Rcp
× Mcp

Kcp
+ L = N × 1

Rchatue
× Mchatue

Kchatue
, (25)

where N denotes the size of information part before encoding. i.e, when K = 256 and
M = 512, the puncturing pattern

P =
[

1 1 1 0
1 1 1 1

]
(26)

is used to adjust the information bit rate of the two schemes.
The beneficial point of CHATUE-SC-FDMA is that we can use lower rate coding (strong

code) by utilizing the time duration made available by not having to transmit CP. As shown
in Fig. 10, CHATUE-SC-FDMA can yield better performance than CP-SC-FDMA while
keeping the same information rate. Combined use of CHATUE-SC-FDMA with DA can be
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Fig. 10 BER performance of CHATUE for SC-FDMA, traditional SC-FDMA punctured with identical block
length and CP compensation

achieved around 3.5 dB better BER performance than punctured traditional CP-SC-FDMA
with FD/SC-MMSE equalization. Figure 10 also shows BER performances with distributed
and localized sub-carrier allocations. It is found that the performances are almost the same.

We also made performance comparison between the CHATUE-SC-FDMA technique and
the CP-compensation technique presented in [10] for single-carrier signaling through com-
puter simulations. We first modified the algorithm presented in [10] such that it can also be
suited for SC-FDMA (the modified algorithm is referred to as CPC-SC-FDMA in this paper),
and then evaluated its BER performance under the same parameter setting as that used in
CHATUE-SC-FDMA. Figure 10 also shows BER curves of CPC-SC-FDMA with distributed
and localized sub-carrier allocations. It is found that CHATUE-SC-FDMA without DA can
achieve 0.5 dB better performance than CPC-SC-FDMA in a BER range of 10−4 − 10−5;
with DA, proposed CHATUE-SC-FDMA achieves roughly 3 dB better performance than
CPC-SC-FDMA. It should be emphasized here that as described in Sect. 3.4, the computa-
tional complexity required by the CHATUE algorithm is of O(K 2) while that by CPC is
of O(K 3). Hence, it can be concluded that the proposed CHATUE-SC-FDMA technique
outperforms that presented in [10], while reducing the complexity.

6 Conclusions

This paper has applied the CHATUE concept, presented in the part-1 paper of this article, to
SC-FDMA, for which significant modifications were made on the original CHATUE algo-
rithm. It has been shown that the CHATUE algorithm, combined with the doped accumulator,
can achieve excellent ICI and IBI cancellation performances for multi-user SC-FDMA sys-
tems. By utilizing the structure of the residual covariances where diagonal elements dominate
the matrix, an approximation technique is proposed. With the approximation, the neces-
sity for the matrix inversion can be avoided, and hence the computational complexity is
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significantly low. Our proposed CHATUE-SC-FDMA systems can achieve 100 × L/M (CP
length / block length) % improvement in higher spectral efficiency compared to traditional
CP-SC-FDMA with FD/SC-MMSE equalization. On the other hand, if number of the infor-
mation bits per block has to be kept identical (CHATUE-SC-FDMA has the same spectral
efficiency as CP-SC-FDMA), CHATUE-SC-FDMA can use even lower rate code for error
protection than CP-SC-FDMA by utilizing the time duration made available by not having
to transmit CP. In this case CHATUE-SC-FDMA can achieve better BER performance than
CP-SC-FDMA, and hence the power efficiency can be improved.

Appendix: Signal Model and MMSE Algorithm for CHATUE-SC-FDMA

At the transmitter, as shown in Fig. 1, information bits to be transmitted is encoded by the
encoder Ci,t , interleaved by random interleaver �i,t , doped-Accumulated and modulated to
obtain the signal vector si,t at the symbol index t (current) for i th user, which is denoted by

si,t = [
s(0)i,t , s(1)i,t , . . . , s(K − 1)i,t

]T ∈ C K×1 (27)

The transmitted signal at the block index t − 1 (past) is given by

s′
i,t−1 = [

0, . . . , 0, s(K − L + 1)i,t−1, . . . , s(K − 1)i,t−1
]T ∈ C K×1, (28)

and that at the block index t + 1 (future) by

s′′
i,t+1 = [

s(0)i,t+1, . . . , s(L − 2)i,t+1, 0, . . . , 0
]T ∈ C K×1. (29)

With CHATUE, CP transmission is not used, for which the channel matrix for the current
block has a Toeplitz structure, as

Hi,t =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(0)i,t 0
... h(0)i,t

h(L − 1)i,t
...

. . .

h(L − 1)i,t
... h(0)i,t

. . .
...

0 h(L − 1)i,t

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C (K+L−1)×K , (30)

while the channel matrix for the interference components from the past block is

H′
i,t−1 =

⎡

⎢⎢⎢⎢⎢⎣

h(L − 1)i,t−1 · · · h(1)i,t−1
. . .

...

h(L − 1)i,t−1

0

⎤

⎥⎥⎥⎥⎥⎦
∈ C (K+L−1)×K , (31)

and from future block is

H′′
i,t+1 =

⎡

⎢⎢⎢⎢⎢⎣

0

h(0)i,t+1
...

. . .

h(L − 2)i,t+1 · · · h(L − 2)i,t+1

⎤

⎥⎥⎥⎥⎥⎦
∈ C (K+L−1)×K . (32)
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Toeplitz structure of Hi,t of Eq. (30) can be converted to curculant structure by multiplying
the J matrix given by

J =

⎡

⎢⎢⎢⎢⎢⎣

1 0
1

1 1
. . .

. . .

0 1 1

⎤

⎥⎥⎥⎥⎥⎦
∈ C K×(K+L−1), (33)

as explained in the sentence before Eq. (1).
MMSE weight is given by

wi,t (k) = arg min
wH

i,t (k)

∣∣∣wH
i,t (k)s̃i,t (k) − si,t (k)

∣∣∣
2
. (34)

To obtain the solution to this optimization problem, we need to solve

E

[
∂

∂wH
i,t (k)

∣∣∣wH
i,t s̃(k)i,t − si,t (k)

∣∣∣

]
= 0, (35)

where s̃(k)i,t is given by Eq. (14). By taking partial derivative, we obtain

wi,t (k) = E[|r̃i,t + h̄i,t (k)s̃i,t (k)|]2)−1E[(r̃i,t + h̄i,t (k)s̃i,t (k))s̃∗
i,t (k)]

=
(

H̄i,t�i,t H̄H
i,t + σ 2

i DT
i JJH Di + H̄′

i,t−1�
′
i,t H̄

′H
i,t−1 + H̄′′

i,t+1�
′′
i,t H̄

′′H
i,t+1

+ h̄i,t (k)|si,t (k)|2h̄H
i,t (k)

)−1
h̄i,t (k)

=
(
�i,t + h̄i,t (k)|si,t (k)|2h̄ H

i,t (k)
)−1

h̄i,t (k), (36)

where the modulation-level covariance matrix is given by

�i,t = diag
{
E[|ŝi,t |2] − |ŝi,t |2

}
. (37)

The output of FD/SC-MMSE z(k)i,t can be expressed as

z(k)i,t = wH
i,t (k)s̃i,t (k) = wH

i,t (k)(r̃i,t + hi,t (k)ŝi,t (k))

= (1 + γ (k)|ŝi,t (k)|2)−1hH
i,t (k)�−1

i,t · (r̃i,t (k) + hi,t (k)ŝi,t (k)), (38)

where

γ (k) = hH
i,t (k)�−1

i,t hi,t (k) (39)

with

�i,t = H̄i,t�i,t H̄i , t H +H̄′
i,t−1�

′
i,t−1H̄′H

i,t−1+H̄′′
i,t+1�

′′
i,t+1H̄′′H

i,t+1+σ 2
i DT

i JJH Di . (40)

By sorting zi,t (k) over k into a vector zi,t , we have the block-wise expression

zi,t = (Ik + �i,t Si,t )
−1

[
�i,t ŝi,t + H̄H

i,t�
−1
i,t r̃i,t

]
. (41)
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Now, recall Eq. (13), we have

zi,t = (Ik + �i,t Si,t )
−1

[
�i,t ŝi,t + FH

K �H FK �−1
i,t r̃i,t

]

= (Ik + �i,t Si,t )
−1

[
�i,t ŝi,t + FH

K �H X−1FK r̃i,t

]
(42)

with

Si,t = diag
(∣∣ŝ2

t

∣∣). (43)

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
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