
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Proof Score Approach to Analysis of Electronic

Commerce Protocols

Author(s) Ogata, Kazuhiro; Futatsugi, Kokichi

Citation
International Journal of Software Engineering and

Knowledge Engineering, 20(2): 253-287

Issue Date 2010

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/9947

Rights

Electronic version of an article published as

International Journal of Software Engineering and

Knowledge Engineering, 20(2), 2010, 253-287.

DOI:10.1142/S0218194010004712. Copyright World

Scientific Publishing Company,

http://dx.doi.org/10.1142/S0218194010004712

Description

April 3, 2009 10:38 WSPC/Guidelines paper

International Journal of Software Engineering and Knowledge Engineering
c© World Scientific Publishing Company

Proof Score Approach to Analysis of Electronic Commerce Protocols

Kazuhiro Ogata∗

School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
ogata@jaist.ac.jp

Kokichi Futatsugi

School of Information Science
Japan Advanced Institute of Science and Technology (JAIST),

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
kokichi@jaist.ac.jp

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Proof scores are documents of comprehensible plans to prove theorems. The proof score
approach to systems analysis is a method in which proof scores are used to verify that
systems enjoy properties (or analyze systems). In this paper, we describe a way to analyze
electronic commerce protocols with the proof score approach, which has been developed
and refined through several case studies conducted.

Keywords: Algebraic specification; formal methods; security; rewriting; specification; ver-
ification.

1. Introduction

The advance of network technology and cryptography have made it possible
to conduct commercial transactions electronically. Many electronic commerce (e-
commerce) protocols have been then proposed, among which are iKP4,3, SET37,
NetBill8, Horn-Preneel26, TLS12 and Mondexa. E-commerce protocols can be con-
sidered one of the key infrastructures in the modern and future advanced informa-
tion society. On the other hand, e-commerce protocols are subject to subtle flaws,
which can be difficult to reveal by testing, like other security protocols such as the
NSPK authentication protocol44 whose flaw has been reported by Lowe33,34. There-
fore, such protocols are worth analyzing formally. Moreover, formal analyzes should

∗He was also with NEC Software Hokuriku, Ltd. (1 Anyoji, Hakusan, Ishikawa 920-2141, Japan)
when earlier versions of the paper were written.
ahttp://www.mondex.com/

1

April 3, 2009 10:38 WSPC/Guidelines paper

2 Kazuhiro Ogata and Kokichi Futatsugi

be supported by tools so as to avoid as many human errors as possible.
There are mainly two kinds of tools available in order to formally analyze

systems including e-commerce protocols: model checkers38,15 and interactive the-
orem provers45,5,20. Model checkers and interactive theorem provers are comple-
mentary in the following sense: (1) Model checkers can verify automatically that
systems enjoy properties, provided that systems have bounded number of (reach-
able) states; (2) Model checkers can provide automatically counterexamples when
systems whose (reachable) state spaces are bounded do not enjoy properties; (3) In-
teractive theorem provers can verify that systems whose reachable state spaces are
even unbounded enjoy properties, although computer-human interaction is basically
needed; (4) Interactive theorem provers can help humans understand systems more
profoundly by revealing hidden facts (lemmas) of the systems. Moreover, dedicated
security protocol analysis tools have been proposed35,39,28,61, which are equipped
with specification languages in which security protocols can be straightforwardly
written and translators that takes abstract descriptions of security protocols writ-
ten in such specification languages and generate those that can be dealt with by
model checkers and/or theorem provers.

Proof scores are documents of comprehensible plans to prove theorems. The
proof score approach to systems analysis is a method in which proof scores are
used to verify that systems enjoy properties (or analyze systems). The proof score
approach to systems analysis has been mainly devoted by researchers in the OBJ
community22,20. In the approach, algebraic specification language processors are
used as interactive theorem provers. Roughly speaking, systems are analyzed as
follows: (1) Write a system in an algebraic specification language L as an algebraic
specification S, which is basically a set of equations; (2) Write properties in L; Let
P be the set of such properties and let P ′ be the empty set; (3) If P is empty, the
analysis has been successfully finished, which means that the system enjoys all the
properties in P ′; Otherwise, extract a property p from P and go next; (4) Write
a proof plan called a proof score in L to prove that p holds for S, which involves
case analyzes and/or lemma discoveries; (5) Execute (or play) the proof score with
an L’s processor based on equational reasoning using rewriting; If results are as
expected for all cases, which means that p holds for S, provided that all lemmas
used are proved, then put p into P ′, put lemmas used that are not in P ′ into P and
go to (3); Otherwise, do further case analyzes and/or discover/use other lemmas to
rewrite the proof score, and go to (5); a counterexample may be found in this stage.

Compared to systems analysis using other existing interactive theorem provers
such as Isabelle/HOL45 and Coq5, the proof score approach to systems analysis has
some advantages18: (1) balanced human-computer interaction and (2) flexible but
clear structure of proof scores. The former means that humans are able to focus
on proof plans, while tedious and detailed computations can be left to computers;
humans do not necessarily have to know what deductive rules or equations should
be applied to goals to prove. The latter means that lemmas do not need to be
proved in advance and proof scores can help humans comprehend the corresponding

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 3

proofs; a proof that a property holds for a system can be conducted even when all
lemmas used have not been proved, and results obtained by case analyzes and
lemmas discovered are explicitly and clearly written in proof scores. On the other
hand, the proof score approach to systems analysis is less rigorous than systems
analysis using other existing interactive theorem provers such as Isabelle/HOL and
Coq. Proofs constructed under the support of such an interactive theorem prover
are basically guaranteed to be correct, while humans might overlook some cases
to consider and/or proofs of some lemmas in the proof score approach because
there are no tools available to check such oversights. We have been developing some
tools60,41,42,43 to make the proof score approach more rigorous.

We have conducted case studies47,50,51,48,52, with the proof score approach, in
which we have formally analyzed iKP4,3, SET37, NetBill8, Horn-Preneel26, TLS12

and Mondex30. Precisely, the OTS/CafeOBJ method49,11,53, which is an instance of
the proof score approach to systems analysis, has been used. In the OTS/CafeOBJ
method, observational transition systems (OTSs) are used as models of systems
and CafeOBJ9, an algebraic specification language, is used; OTSs are transition
systems, which are straightforwardly written in equations. CafeOBJ is equipped
with its processor called the CafeOBJ system, which is used as an interactive the-
orem prover. In one case study47 with the OTS/CafeOBJ method, we have found
out a counterexample showing that 2KP and 3KP do not enjoy a property, which is
called Payment Agreement, and proposed one possible modification that lets 2KP
and 3KP enjoy the property46.

What can be done for e-commerce protocols with the method describe in this pa-
per is to prove that such protocols whose reachable state spaces are even unbounded
enjoy security properties expressed as invariant properties on the assumption that
there exist malicious principals. Thanks to our way of modeling messages and net-
works, we can express various properties such that some events always precede
others in terms of invariant properties only.

In this paper, we describe a way to analyze e-commerce protocols with the
OTS/CafeOBJ method, which has been developed and refined through our experi-
ences. A modified version of (simplified) 3KP46 is used as an example. The protocol
is called AM3KP. Payment Agreement46 is taken into account to describe how to
express security properties and how to write proof scores to verify that security
properties hold for e-commerce protocols.

1.1. Related Work

We mention some related work: (1) analyses of e-commerce protocols with model
checkers, (2) analyses of e-commerce protocols with interactive theorem provers, (3)
dedicated security protocol analysis tools, and (4) Mondex case studies.

April 3, 2009 10:38 WSPC/Guidelines paper

4 Kazuhiro Ogata and Kokichi Futatsugi

Analyses with Model Checkers

Lu and Smolka36 analyze a system consisting of two cardholders, one merchant and
one payment gateway that perform payment transactions according to SET with
the FDR model checker. One protocol run is considered. One of the cardholders has
a legitimate credit card, and the other does not. Both cardholders may try to pay
less than the amount agreed on previously with the merchant. The merchant may
try to overcharge a cardholder. The payment gateway is trustable. Five properties
are checked to the system with FDR.

Heintze, Tygar, Wing and Wong24 analyze NetBill and a digital cash proto-
col with FDR concerning money atomicity and goods atomicity. Money atomicity
means that money should neither be created nor destroyed by e-commerce proto-
cols, and goods atomicity that a merchant should receive payment if and only if the
consumer receives the goods. For each of the protocols, a finite model consisting one
consumer, one merchant and one bank is made and one protocol run is considered.
FDR is used to check if the models satisfy money atomicity and goods atomicity.
As the results of the analyses, NetBill satisfies both properties, while the digital
cash protocol does neither property.

Mitchell, Shmatikov and Sternet40 use the Murϕ model checker to check seven
simple protocols derived from the SSL 3.0 handshake protocol. The primal reason
why they have analyzed the protocols is to identify the purpose of certain message
fields (version number, nonce, etc.) in some steps of the protocol. The analysis starts
with the simplest version of the handshake protocol from which some fields are
omitted, and the fields are gradually added to the protocol. The first six protocols
have been found badly flawed and the model checker has found many attacks.
The model checker has been used to check the final protocol with two clients, one
server, no more than two simultaneous open sessions per server and no more than
one resumption per session, and no attacks have been discovered.

Analyses with Interactive Theorem Provers

Bolignano6 proposes a way of expressing and verifying properties of e-commerce
protocols such as SET. Bolignano claims that some properties relevant to those
protocols cannot be directly expressed by simple invariants and should rely on the
history of each protocol run. Such properties include one that a principal can be
sure as the time when the principal receives a message that this message really
originates from some intended principal and has not been tempered with. Hence
such a property is expressed by a pair of a regular language or a finite automaton
L and a filtering function ff x(y) where x is used to parameterize the function and
y ranges in the domain of actions corresponding to transmission and receipt of
messages. L is used to observe that any finite protocol run follows the property, and
ff x(y) selects actions relevant to the property from the protocol run. A property
expressed by L and ff x(y) is satisfied if and only if for any finite trace t and for
any x, ff x(y) ∈ L. The proof can be reduced to that of a simple invariant property,

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 5

which is supported by Coq.
Paulson’s inductive method57 is used to analyze Cardholder Registration phase

of SET and the SET purchase protocols (the simplified and combined Payment
Authorization with Purchase Request). The inductive method models a system
in which an arbitrary number of principals including the intruder take part in a
protocol by inductively defining traces generated by a set of rules that correspond
to the possible actions of the principals including the intruder. Security properties
can be stated as predicates over the traces. It can be inductively proved that a
certain property holds of all possible traces for a certain protocol. The proof can
be supported by Isabelle/HOL. On Cardholder Registration phase of SET, it is
verified that if a trusted certificate authority (CA) keeps track of the registered
keys, the protocol is robust enough to guarantee that two different agents will never
get the same key certified by the same CA; however, different agents may collude
and register the same key with different CAs2. On the SET purchase protocols, it
is verified that the protocols enjoy several desirable properties1. Besides, it is found
that the Cardholder and Payment Gateway cannot agree on the latter’s identity,
giving rise to potential vulnerabilities. A possible modification is proposed.

Paulson58 analyzes the TLS handshake protocol with his inductive method. In
the protocol analyzed by Paulson, servers always sent their certificates to clients,
the key exchange method considered is RSA, and clients optionally send their cer-
tificates and ClientKeyExchange messages to servers. In his model of the protocol,
a malicious principal called the spy is taken into account and it is supposed that
any session key, if used, may end up in the hands of the spy, which is denoted by
the rule Oops. One of the results of the analysis is that session resumption turns
out to be safe even if the spy has obtained session keys from earlier sessions.

Dedicated Security Protocol Analysis Tools

Casper35 takes an abstract description of a security protocol and a property to
be checked, and produces CSP processes that can be analyzed by the FDR model
checker. Since FDR can deal with finite-state CSP processes only, users need to feed
the number of principals involved, nonces used, etc. into Casper. The main purpose
of Casper is to find security flaws lurked in security protocols with model checking,
and the main target is authentication protocols.

CAPSL39 is a specification language for security protocols. A specification of a
security protocol and some properties written in CAPSL is translated into another
description written in CIL, which is the CAPSL intermediate language. Protocol
descriptions in CIL are state transition representations, which can be straightfor-
wardly translated into those that can be directly dealt with by some generic analysis
tool. Although any generic analysis tool can be used, Maude is mainly concerned.
The main purpose of CAPSL is the same as that of Casper, and the main target is
authentication protocols.

CASRUL28 has a similar flavor of Casper, but produces security protocol de-

April 3, 2009 10:38 WSPC/Guidelines paper

6 Kazuhiro Ogata and Kokichi Futatsugi

scriptions that can be fed into the theorem prover daTac, which is based on first or-
der deduction modulo associativity and commutativity axioms. Although CASRUL
could be used to prove that some security properties hold for security protocols that
have unbounded number of states because daTac is a theorem prover, the paper28

only describes how to find security flaws lurked in security protocols, and the main
target is authentication protocols.

AVISPA61 is equipped with High-Level Protocol Specification Language
(HLPSL) and Intermediate Format (IF), which correspond to CAPSL and CIL, re-
spectively. Abstract descriptions of security protocols in HLPSL are translated into
those written in IF, which are then converted into those that can be directly ana-
lyzed by one of the four analysis tools, which are (1) an on-the-fly model checker,
(2) a CL-based attack searcher, (3) a SAT-based model checker, and (4) a tree-
automata-based protocol analyzer. Although a tree-automata-based protocol ana-
lyzer can be used to prove that some security properties hold for security protocols
that have unbounded number of states, the main purpose seems to find security
flaws lurked in security protocols. Unlike Casper, CAPSL and CASRUL, however,
AVISPA has been used to analyze SET.

Mondex Case Studies

Mondex case studies29 have been conducted as part of the world-wide Grand Chal-
lenge in Verified Software25. Mondex was originally analyzed as follows62: (1) three
models (abstract, intermediate and concrete models) of Mondex were described in
the Z notation, and (2) it was proved that the intermediate model is a refinement
of the abstract model and the concrete model is a refinement of the intermediate
model by hand. Several research groups have mechanized the proof of correctness
of Mondex with different formal methods and tools.

Freitas and Woodcock17 have mechanized the proof with the Z/Eves theorem
prover.

George and Haxthausen19 have mechanized the proof by translating models
written in the RAISE specification language (RSL) into those for the PVS theorem
provers. They have also translated models in RSL into those for the SAL model
checkers.

Butler and Yadav7 have used Event-B to make 10 models of Mondex and per-
formed nine refinement proofs with its associated proof tools. The reason why they
have made more than three models is because the gap between two consecutive
models can be smaller, making refinement proofs easier.

Ramananandro59 has used Alloy to model check the refinement steps.
The Mondex case studies mentioned above do not suppose that there exist ma-

licious principals but just assume that messages exchanged are protected by some
appropriate cryptographic mechanisms. Haneberg, Schellhorn, Grandy and Reif23

have made models of Mondex as abstract state machines (ASMs) and performed
the refinement proofs with the KIV theorem provers. Unlike the other Mondex case

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 7

studies, they have taken into account malicious principals.
Kuhlmann and Gogolla32 have used UML and OCL to validate the abstract

model of Mondex using both positive and negative test cases.
All the Mondex case studies except for the final one, which does not use any

formal verification techniques, make multiple different models of Mondex and use
refinement techniques to prove that Mondex enjoys some security properties. On
the other hand, the authors’ group30 makes one model of Mondex and proves that
Mondex enjoys some security properties with the method described in this paper.

1.2. Outline of the Paper

Section 2 introduces the OTS/CafeOBJ method. Section 3 gives a description of
AM3KP and Payment Agreement. Section 4 describes our way to model and specify
e-commerce protocols; AM3KP is used as an example. Section 5 describes our way of
expressing security properties; Payment Agreement is used as an example. Section 6
describes our way of writing proof scores; part of the proof scores to verify that
Payment Agreement holds for AM3KP are used as examples. Section 7 concludes
the paper, mentioning some future issues as well.

2. The OTS/CafeOBJ Method

In this section, we describe CafeOBJ, observational transition systems (OTSs), and
how to specify OTSs in CafeOBJ. We will describe how to write proof scores of
invariant properties in CafeOBJ in Subsection 6.1.

2.1. CafeOBJ

CafeOBJb9 is based on three logical foundations: (1) order-sorted algebras20, (2)
hidden algebras10,21, and (3) preorder algebras (which are similar to rewriting logic
on which Maude, a sibling language of CafeOBJ, is based). The OTS/CafeOBJ
method uses the first two: order-sorted algebras and hidden algebras. Abstract ma-
chines as well as abstract data types can be specified in CafeOBJ. There are two
kinds of sorts in CafeOBJ, which are visible and hidden sorts. A visible sort denotes
an abstract data type, while a hidden sort denotes the state space of an abstract
machine. There are three kinds of operators (or operations) with respect to hid-
den sorts, which are hidden constants, action operators and observation operators.
Hidden constants can be used to denote initial states of abstract machines, action
operators denote state transitions of abstract machines, and observation operators
let us know the situation where abstract machines are located. A hidden constant
takes zero or more (typically zero) data and returns a state. Both an action operator
and an observation operator take a state of an abstract machine and zero or more
data. The action operator returns the successor state of the state with respect to

bhttp://www.ldl.jaist.ac.jp/cafeobj/

April 3, 2009 10:38 WSPC/Guidelines paper

8 Kazuhiro Ogata and Kokichi Futatsugi

the state transition denoted by the action operator plus the data. The observation
operator returns a value that characterizes the situation where the abstract machine
is located.

Visible sorts are declared by enclosing [and], and hidden sorts are declared
by enclosing *[and]*. Action and observation operators are declared by starting
with bop, and other operators including hidden constants are declared by starting
with op. After bop or op, an operator name is written, followed by a colon : and a
list of sorts, and then, -> and a sort are written. The list of sorts is called the arity
of the operator, and the sort after -> is called the coarity of the operator. The pair
of the arity and coarity is called the rank of the operator. When declaring more
than one operator whose rank is the same simultaneously, bops and ops are used
instead of bop and op. Operators with the empty arity are called constants.

Properties of operators are specified (or properties are defined) in equations.
There are two kinds of equations, which are conventional and behavioral equations.
Both can have conditions. A conventional equation says that two data values are
equal, and a behavioral equation says that two states are equal in that any ob-
servation returns a same data value in the two states and any sequence of actions
preserves it. A nonconditional conventional (behavioral) equation is declared by
starting with eq (beq), and a conditional conventional (behavioral) equation with
ceq (cbeq). After eq (beq), two terms connected with = are written, ended with a
full stop. After ceq (cbeq), two terms connected with = are written, followed by if,
and then, a term denoting the condition and a full stop are written.

The CafeOBJ system uses declared equations as left-to-right rewrite rules and
rewrites (or reduces) a given term. The command red is used to reduce a given
term. This executability makes it possible to simulate a specified system and verify
that a specified system enjoys properties.

Basic units of CafeOBJ specifications are modules. The CafeOBJ system pro-
vides built-in modules where basic data types such as truth values are specified.
The module of truth values is BOOL.

Since truth values are indispensable for conditional equations, BOOL is automat-
ically imported by almost every module unless otherwise stated. The import of
BOOL lets us use the visible sort Bool denoting truth values, the constants true and
false denoting true and false, and operators denoting some basic logical operators.
Among the operators are not_, _and_, _or_, _xor_, _implies_ and _iff_ denoting
negation (¬), conjunction (∧), disjunction (∨), exclusive disjunction (xor), implica-
tion (⇒) and logical equivalence (⇔), respectively. The operator if_then_else_fi
corresponding to if statements in programming languages is also available. An un-
derscore _ indicates the place where an argument is put.

BOOL plays an essential role in verification with the CafeOBJ system. If the
equations available in the module are regarded as left-to-right rewrite rules, they
are complete with respect to propositional logic27. Therefore, any term denoting a
propositional formula that is always true (or false) is surely reduced to true (or
false). Generally, a term denoting a propositional formula is reduced to a term

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 9

denoting an exclusively disjunctive normal form of the propositional formula.

2.2. Observational Transition Systems (OTSs)

We suppose that there exists a universal state space denoted Υ and that each data
type used in OTSs is provided. The data types include Bool for truth values. A
data type is denoted D with a subscript such as Do1.

Definition 1. (OTSs) An OTS49,53 S is 〈O, I, T 〉 such that

• O : A finite set of observers. Each observer ox1:Do1,...,xm:Dom
: Υ → Do

is an indexed function that has m indexes x1, . . . , xm whose types are
Do1, . . . , Dom. The equivalence relation (υ1 =S υ2) between two states
υ1, υ2 ∈ Υ is defined as ∀ox1,...,xm

: O. (ox1,...,xm
(υ1) = ox1,...,xm

(υ2)), where
∀ox1,...,xm

: O is the abbreviation of ∀ox1,...,xm
: O.∀x1 : Do1 . . . ∀xm : Dom.

• I : The set of initial states such that I ⊆ Υ.
• T : A finite set of transitions. Each transition ty1:Dt1,...,yn:Dtn

: Υ → Υ is an
indexed function that has n indexes y1, . . . , yn whose types are Dt1, . . . , Dtn

provided that ty1,...,yn
(υ1) =S ty1,...,yn

(υ2) for each [υ] ∈ Υ/=S , each
υ1, υ2 ∈ [υ] and each yk : Dtk for k = 1, . . . , n. ty1,...,yn

(υ) is called the
successor state of υ with respect to S. Each transition ty1,...,yn

has the con-
dition c-ty1:Dt1,...,yn:Dtn

: Υ → Bool, which is called the effective condition
of the transition. If c-ty1,...,yn

(υ) does not hold, then ty1,...,yn
(υ) =S υ.

Definition 2. (Reachable states) Given an OTS S, reachable states with re-
spect to S are inductively defined:

• Each υinit ∈ I is reachable with respect to S.
• For each ty1,...,yn

∈ T and each yk : Dtk for k = 1. . . . , n, tx1,...,xn
(υ) is

reachable with respect to S if υ ∈ Υ is reachable with respect to S.

Let RS be the set of all reachable states with respect to S.

Predicates whose types are Υ → Bool are called state predicates. All properties
considered in this paper are invariants.

Definition 3. (Invariants) Any state predicate p : Υ → Bool is called invariant
with respect to S if p holds in all reachable states with respect to S, i.e. ∀υ :
RS . p(υ). ∀υ : RS . p(υ) may be expressed as invariantS p. S may be omitted from
invariantS p if it is clear from the context.

We suppose that each state predicate p considered in this paper has the form
∀z1 : Dp1 . . . ∀za : Dpa. P (υ, z1, . . . , za), where υ, z1, . . . , za are all variables in p and
P (υ, z1, . . . , za) does not contain any quantifiers. All universal quantifiers may be
omitted from ∀z1 : Dp1 . . . ∀za : Dpa. P (υ, z1, . . . , za) when the state predicate is
written.

April 3, 2009 10:38 WSPC/Guidelines paper

10 Kazuhiro Ogata and Kokichi Futatsugi

2.3. Specifying OTSs in CafeOBJ

We suppose that a visible sort V∗ corresponding to each data type D∗ used in
OTSs and the related operators are provided. Xk and Yk are CafeOBJ variables
corresponding to indexes xk and yk of observers and transitions, respectively.

The universal state space Υ is represented by a hidden sort, say H declared as
[H] by enclosing it with *[and]*. Given an OTS S, an arbitrary initial state
is represented by a hidden constant, say init, each observer ox1,...,xm

is represented
by an observation operator, say o, and each transition ty1,...,yn

is represented by an
action operator, say t. The hidden constant init, the observation operator o and the
action operator t are declared as follows:

op init : -> H

bop o : H Vo1 . . . Vom -> Vo

bop t : H Vt1 . . . Vtn ->H

We suppose that the value returned by ox1,...,xm
in an arbitrary initial state can

be expressed as f(x1, . . . , xm). This is expressed by the following equation:

eq o(init,X1, . . . ,Xm) = f(X1, . . . ,Xm) .

f(X1, . . . ,Xm) is the CafeOBJ term corresponding to f(x1, . . . , xm).
Each transition ty1,...,yn

is defined by describing what the value returned by each
observer ox1,...,xm

in the successor state becomes when ty1,...,yn
is applied in a state

υ. When c-ty1,...,yn
(υ) holds, this is expressed generally by a conditional equation

that has the form

ceq o(t(S,Y1, . . . ,Yn),X1, . . . ,Xm) = e-t(S,Y1, . . . ,Yn,X1, . . . ,Xm)
if c-t(S,Y1, . . . ,Yn) .

S is a CafeOBJ variable of H, corresponding to υ. e-t(S,Y1, . . . ,Yn,X1, . . . ,Xm),
which does not contain any action operators, is the CafeOBJ term corresponding to
the value returned by ox1,...,xm

in the successor state denoted by t(S,Y1, . . . ,Yn).
c-t(S,Y1, . . . ,Yn) is the CafeOBJ term corresponding to c-ty1,...,yn

(υ).
If c-ty1,...,yn

(υ) always holds in any state υ or the value returned by ox1,...,xm
is

not affected by applying ty1,...,yn
in any state υ (i.e. regardless of the truth value of

c-ty1,...,yn
(υ)), then a usual equation is used instead of a conditional equation. The

usual equation has the form

eq o(t(S,Y1, . . . ,Yn),X1, . . . ,Xm) = e-t(S,Y1, . . . ,Yn,X1, . . . ,Xm) .

e-t(S,Y1, . . . ,Yn,X1, . . . ,Xm) is o(S,X1, . . . ,Xm) if the value returned by ox1,...,xm

is not affected by applying ty1,...,yn
in any state.

When c-ty1,...,yn
(υ) does not hold, ty1,...,yn

essentially changes nothing, which is
expressed by a conditional equation that has the form

bceq t(S,Y1, . . . ,Yn) = S if not c-t(S,Y1, . . . ,Yn) .

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 11

3. AM3KP and Payment Agreement

AM3KP46 is a payment protocol based on the existing credit-card payment system
and can be described as follows:

Initiate: B −→ S : IDB

Invoice: S −→ B : Clear,SigS

Payment: B −→ S : EncSlip,SigB

Auth-Request: S −→ A : Clear,EncSlip,Sig2S ,SigB

Auth-Response: A −→ S : RCODE,SigA

The protocol involves three parties called B (Buyer), S (Seller) and A (Acquirer).
We suppose that each principal X has a private key KX that enables signing and
decryption, and its public counterpart K−1

X that enables signature verification and
encryption is securely conveyed to every other principal; KX is known to only X.

Cryptographic primitives used are a one-way hash function H(·), a keyed one-
way hash function Hk(K, ·), a public-key encryption function EX(·) with K−1

X and
a digitally signing function SX(·) with KX . Basic values used are: RB (a random
number generated by B to form B’s pseudo-ID IDB), BAN (B’s account number),
and RCODE (a response from the credit card authorization system). Composite
values used are:

• IDB : Hk(RB ,BAN),
• Common : S,B, IDB ,
• Clear : H(Common),
• SLIP : H(Common),BAN,RB ,
• EncSlip : EA(SLIP),
• SigA : SA(RCODE,H(Common)),
• SigS : SS(H(Common)),
• Sig2S : SS(H(Common),EncSlip), and
• SigB : SB(EncSlip,H(Common)))

To initiate a protocol run, B generates RB , computes IDB and sends IDB to S as
an Initiate message. On receipt of the Initiate message, S makes Clear and SigS , and
sends them to B as an Invoice message. On receipt of the Invoice message, B retrieves
a hash value and a digital signature from the message. B checks if the hash value
equals H(Common) and verifies the digital signature with K−1

S . When successful, B

constructs EncSlip and SigB , and sends them to S as a Payment message. On receipt
of the Payment message, S retrieves a ciphertext and a digital signature, and verifies
the digital signature with K−1

B . When successful, S computes Sig2S and sends Clear
that has been sent as part of the Invoice message in this protocol run, the ciphertext,
Sig2S and the digital signature to A as an Auth-Request message. On receipt of the
Auth-Request message, A retrieves a hash value h1, a ciphertext and two digital
signatures. A tries to decrypt the ciphertext with KA. When successful, A obtains a
hash value h2, an account number and a random number, and builds H(Common)

April 3, 2009 10:38 WSPC/Guidelines paper

12 Kazuhiro Ogata and Kokichi Futatsugi

using the account number, the random number, S and B. A checks if both h1 and h2

equal H(Common) and verifies the two digital signatures with K−1
S and K−1

B . When
successful, A forwards the account number and B to the credit card authorization
system so as to obtain on-line authorization of this payment. On receipt of RCODE
from the authorization system, A computes SigA, and sends RCODE and SigA to S

as an Auth-Response message. On receipt of the Auth-Response message, S retrieves
a value and a digital signature, and verifies the digital signature with K−1

A . When
successful, the value lets S know whether the payment has been authorized. S may
forward the value and the digital signature to B.

For AM3KP, we discuss the property called Payment Agreement46:

If an acquirer authorizes a payment, then both the buyer and seller
concerned always agree on it.

In AM3KP, that an acquirer authorizes a payment implies that the acquirer re-
ceives the valid Auth-Request message with respect to the payment. That the buyer
and seller concerned agree on the payment is that they have sent the Initiate and
Payment messages, and the Invoice and Auth-Request messages corresponding to
the valid Auth-Request message, respectively. Therefore Payment Agreement can be
rephrased as follows:

If an acquirer receives a valid Auth-Request message stating that
a buyer pays a seller some amount, no matter who has sent the
valid Auth-Request message, then the buyer has always sent the
Initiate and Payment messages corresponding to the valid Auth-

Request message to the seller, and the seller has always sent the
Invoice and Auth-Request messages corresponding to the valid Auth-

Request message to the buyer and the acquirer, respectively.

4. Modeling and Specification of E-Commerce Protocols

4.1. Assumptions

We suppose that the cryptosystem used is perfect. We also suppose that there not
only exist trustable principals but also malicious (untrustable) principals. Trustable
principals exactly follow the protocol, while malicious principals may do something
against the protocol as well, namely eavesdropping on and/or faking messages so as
to attack and/or confuse the protocol. Instead of describing each of the malicious
principals, however, the combination and cooperation of the malicious principals is
modeled as the most general intruder à la Dolev and Yao14. The intruder can do
the following:

• Eavesdrop on every message flowing in the network,
• Glean as much information as possible from the message, and
• Fake and send messages based on the gleaned information.

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 13

But, the intruder cannot break the perfect cryptosystem such that he/she cannot
decrypt a ciphertext unless he/she knows the key to decrypt, cannot make a digital
signature unless he/she knows the key to sign, and cannot predict unknown values
such as random numbers. Since properties discussed are only invariants that are a
subclass of safety properties, we do not take interception of messages into account.
The intruder also acts as a trustable principal.

For AM3KP, we also suppose that there exists one and only one legitimate
(trustable) acquirer and the legitimate acquirer is known to every other principal.

4.2. Formalization of Basic Data Types

Basic data types used in protocols such as random numbers and ciphertexts are
formalized in terms of order-sorted algebras. Basic data types are denoted by visible
sorts; data constructors and functions of such types are denoted by operators; values
of such types are denoted by terms whose sorts correspond to the types.

AM3KP uses the 17 basic data types that correspond to BANs, RCODEs, pub-
lic keys, private keys, buyers, sellers, acquirers, random numbers, keyed hashes of
BANs, hashes of Commons, Commons, Clears, SLIPs, instances of SigA, instances
of SigS , instances of Sig2S , and instances of SigB , which are denoted by the visible
sorts Ban, Rcode, Pkey, Skey, Buyer, Seller, Acquirer, Rand, Hban, Hcom, Common,
Clear, Slip, Eslp, Siga, Sigs, Sigs2, and Sigb, respectively. We use operators to
denote data constructors and functions of those data types; the operators are as
follows:

• Given a BAN n, the term b(n) denotes the buyer identified by n, and given
a buyer b, ban(b) denotes his/her BAN. Given a buyer, a seller or an ac-
quirer x, pk(x) and sk(x) denote his/her public key and private key. The
constants ib, is and ia whose sorts are Buyer, Seller and Acquirer de-
note the intruder that acts as a buyer, a seller and an acquirer, respectively.
Although we suppose that there exists one and only one legitimate acquirer,
the constant ia is used to fake messages seemingly sent by the legitimate
acquirer. The constant la of Acquirer denotes the legitimate acquirer; la
does not equal ia.

• Given a buyer b and a random number r, nxt(b, r) denotes a random num-
ber generated by the buyer b, which is different from those (including r)
that have been generated so far, and gtr(r) returns the buyer who has
generated r.

• Given a Common c, h(c) denotes the hash of c. Given a random number
r and a BAN n, h(r,n) denotes the keyed hash of n with r, and given a
hashed BAN hn, r(hn) returns the random number used to compute hn.

• Given a seller s, a buyer b and a hashed BAN hn, com(s,b,hn) denotes
the Common consisting of s, b and hn. Given a Common c, s(c), b(c) and
hban(c) return the seller, the buyer and the hashed BAN that constitute c.

• Given a hashed Common hc, cl(hc) denotes the Clear that consists of hc,

April 3, 2009 10:38 WSPC/Guidelines paper

14 Kazuhiro Ogata and Kokichi Futatsugi

and given a Clear cl, hcom(cl) returns the hashed Common that constitutes
cl.

• Given a hashed Common hc, a BAN n and a random number r, slp(hc,n, r)
denotes the SLIP that consists of hc, n and r. Given a SLIP slp, hcom(slp),
ban(slp) and rand(slp) return the hashed Common, the BAN and the ran-
dom number that constitute slp.

• Given a public key pk and a SLIP slp, enc(pk, slp) denotes the EncSlip that
is slp encrypted with pk. Given an EncSlip e, pk(e) and slip(e) returns
the public key and the SLIP used to compute e.

• Given a private key sk, an RCODE rc and a hashed Common hc,
sig(sk, rc,hc) denotes the instance of SigA that is the digital signature of
rc and hc computed with sk. Given an instance ga of SigA, sk(ga), rc(ga)
and hc(ga) return the private key, the RCODE and the hashed Common
used to compute ga.

• Given a private key sk and a hashed Common hc, sig(sk,hc) denotes the
instance of SigS that is the digital signature of hc computed with sk. Given
an instance gs of SigS , sk(gs) and hc(gs) return the private key and the
hashed Common used to compute gs.

• Given a private key sk, a hashed Common hc and an EncSlip e, sig(sk,hc, e)
denotes the instance of Sig2S that is the digital signature of hc and e

computed with sk. Given an instance gs2 of Sig2S , sk(gs2), hc(gs2) and
es(gs2) return the private key, the hashed Common and the EncSlip used
to compute gs2.

• Given a private key sk, an EncSlip e and a hashed Common hc, sig(sk, e,hc)
denotes the instance of SigB that is the digital signature of e and hc com-
puted with sk. Given an instance gb of SigB , sk(gb), es(gb) and hc(gb)
return the private key, the EncSlip and the hashed Common used to com-
pute gb.

For each of the 17 visible sorts, the binary operator _=_ is used, which checks if two
terms of the visible sort denote the same value.

4.3. Formalization of Messages

Messages are denoted by a visible sort, say Msg. Each kind of message is denoted
by an operator msg, which has at least three arguments. The declaration of the
operator msg looks like:

op msg : P1 P1 P2 D1 . . .Dn -> Msg

where Pi for i = 1, 2 is a visible sort denoting a class of principals, and Di for
i = 1, . . . , n is a visible sort denoting a data type. The fourth and the later argu-
ments denote the body of the corresponding message. The first, second and third
arguments mean the actual sender, the seeming source and the destination of the

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 15

corresponding message. The first argument is meta-information that is only avail-
able to the outside observer and the principal that has sent the corresponding
message. The first argument cannot be forged by the intruder, while the remaining
arguments may be forged by the intruder. Therefore, assuming that there exists a
message denoted by the term msg(p′

1,p1,p2,d1, . . . ,dn), we can deduce the follow-
ing: (1) It is true that the principal p′

1 has sent the message; (2) If p′
1 is trustable,

p1 equals p′
1; (3) If p′

1 is the intruder, p1 may not equal p′
1, which means that the

intruder has faked the message; (4) If p1 is the intruder, p′
1 is also the intruder; (5)

If p′
1 does not equal p1, p′

1 is the intruder.
For AM3KP, the five operators are used to denote the five kinds of messages.

The operators are declared as follows:

op im : Buyer Buyer Seller Hban -> Msg

op vm : Seller Seller Buyer Clear Sigs -> Msg

op pm : Buyer Buyer Seller Eslp Sigb -> Msg

op qm : Seller Seller Acquirer Clear Eslp

Sigs2 Sigb -> Msg

op sm : Acquirer Acquirer Seller Rcode Siga -> Msg

im stands for Initiate messages, vm for Invoice messages, pm for Payment messages, qm
for Auth-Request messages and sm for Auth-Response messages. For each xm of the
five operators, we have the operators xc, xs and xd that return the first, second and
third arguments of a given term whose top is xm, respectively, where x = i, v, p, q, s.
We have the operators hban, clear, eslip, rcode, siga, sigs, sigs2 and sigb that
return the hashed BAN, the Clear, the EncSlip, the RCODE, the instance of SigA,
the instance of SigS , the instance of Sig2S and the instance of SigB in a given
message, respectively, if any. We also have the operator xm? that checks if a given
message is xm message, namely a message denoted by a term whose top is xm, where
x = i, v, p, q, s. Moreover, we have the binary operator _=_ that checks if two terms
of Msg denote the same message.

4.4. Formalization of the Network

The network is modeled as a bag (multiset) of messages, which is used as the
storage that the intruder can use. The network is also used as each principal’s
private memory that reminds the principal to send messages, whose first arguments
denote the principal.

Any message that has been sent or put once into the network is supposed to
be never deleted from the network because the intruder can replay the message
repeatedly, although the intruder cannot forge the first argument. Consequently,
the emptiness of the network means that no messages have been sent.

The intruder tries to glean as much information as possible from the network.
For each D of the data types whose values are gleaned by the intruder from the
network, an operator, say vals, is used to denote the collection of values whose

April 3, 2009 10:38 WSPC/Guidelines paper

16 Kazuhiro Ogata and Kokichi Futatsugi

types are D. Let Val be the visible sort denoting D. The operator vals is declared
as follows:

op vals : Network -> ColVals

where Network is the visible sort denoting networks and ColVals is the visible
sort denoting collections of values whose types are D. Given a snapshot nw of the
network, the term vals(nw) denotes the collection of the values (whose types are
D) gleaned by the intruder from nw. What values are in the collection denoted by
vals(nw) is defined in terms of equations.

For AM3KP, the intruder tries to glean 10 kinds of values from the network. The
10 kinds of values are hashed Commons, hashed BANs, BANs, random numbers,
EncSlips, RCODEs, instances of SigA, instances of SigS , instances of Sig2S and
instances of SigB . The collections of those values gleaned by the intruder from the
network are denoted by the following operators respectively:

op hcoms : Network -> ColHcoms

op hbans : Network -> ColHbans

op bans : Network -> ColBans

op rands : Network -> ColRands

op eslps : Network -> ColEslps

op rcodes : Network -> ColRcodes

op sigas : Network -> ColSigas

op sigss : Network -> ColSigss

op sigs2s : Network -> ColSigs2s

op sigbs : Network -> ColSigbs

The set of equations that define hcoms is as follows:

eq HC \in hcoms(void) = false .

ceq HC \in hcoms(M,NW) = true

if vm?(M) and HC = hcom(clear(M)) .

ceq HC \in hcoms(M,NW) = true

if pm?(M) and pk(ia) = pk(eslip(M))

and HC = hcom(slip(eslip(M))) .

ceq HC \in hcoms(M,NW) = true

if qm?(M) and HC = hcom(clear(M)) .

ceq HC \in hcoms(M,NW) = true

if qm?(M) and pk(ia) = pk(eslip(M))

and HC = hcom(slip(eslip(M))) .

ceq HC \in hcoms(M,NW) = HC \in hcoms(NW)

if not(vm?(M) and HC = hcom(clear(M))) and

not(pm?(M) and pk(ia) = pk(eslip(M))

and HC = hcom(slip(eslip(M))))

and not(qm?(M) and HC = hcom(clear(M))) and

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 17

not(qm?(M) and pk(ia) = pk(eslip(M))

and HC = hcom(slip(eslip(M)))) .

M and NW are CafeOBJ variables whose sorts are Msg and Network. The constant
void denotes the empty bag, and the operator _,_ in M,NW is the data constructor
of nonempty bags. The operator _\in_ is the membership predicate of collections.
If the network is empty, there are no hashed Commons available to the intruder,
which is denoted by the first equation. If there exists a message that includes a
hashed Common in the network, the hashed Common could be gleaned by the
intruder, provided that if the hashed Common is part of a ciphertext, the intruder
must know the key to decrypt the ciphertext. Such messages are Invoice, Payment

and Auth-Request messages. If there exists an Invoice message in the network, the
hashed Common in the message is available to the intruder, which is denoted by the
second equation. If there exists a Payment message in the network and the EncSlip in
the message is encrypted with the intruder’s public key, the hashed Common in the
message is available to the intruder, which is denoted by the third equation. If there
exists an Auth-Request message in the network, the hashed Common appearing in
clear in the message is available to the intruder, which is denoted by the fourth
equation. Besides, if the EncSlip in the message is encrypted with the intruder’s
public key, the other hashed Common in the message is also available to the intruder,
which is denoted by the fifth equation. Whether there exists a hashed Common
available to the intruder in a message does not depend on other messages because
there never exists a message from which a private key is available, which is denoted
by the final equation.

The set of equations that define bans is as follows:

eq ban(ib) \in bans(void) = true .

ceq N \in bans(void) = false if not(N = ban(ib)) .

ceq N \in bans(M,NW) = true

if pm?(M) and pk(ia) = pk(eslip(M))

and N = ban(slip(eslip(M))) .

ceq N \in bans(M,NW) = true

if qm?(M) and pk(ia) = pk(eslip(M))

and N = ban(slip(eslip(M))) .

ceq N \in bans(M,NW) = N \in bans(NW)

if not(pm?(M) and pk(ia) = pk(eslip(M))

and N = ban(slip(eslip(M)))) and

not(qm?(M) and pk(ia) = pk(eslip(M))

and N = ban(slip(eslip(M)))) .

The intruder can use his/her own BAN denoted by ban(ib) at any time, which is
denoted by the first equation. Any other BANs are not available to the intruder if the
network is empty, which is denoted by the second equation. If there exists a message
that includes a BAN in the network, the BAN could be gleaned by the intruder,

April 3, 2009 10:38 WSPC/Guidelines paper

18 Kazuhiro Ogata and Kokichi Futatsugi

provided that if the BAN is part of a ciphertext, the intruder must know the key
to decrypt the ciphertext. Such messages are Payment and Auth-Request messages.
The remaining equations describe how to obtain BANs from such messages like the
equations that define hcoms.

The remaining operators are defined likewise.

4.5. Formalization of Behavior of E-Commerce Protocols

The behavior of an e-commerce protocol is formalized as an OTS. We first select
observers. One indispensable observer, say nw : Υ → Network , is used to observe
the network with which messages are transmitted, where Network is the data type
corresponding to the visible sort Network. Given a state υ of the OTS, nw(υ)
denotes the snapshot of the network in the state υ. We next define the initial
value returned by each observer. Let init denote an arbitrary initial state of the
OTS. Since the network is initially empty, nw(init) is defined as the empty bag.
We then find transitions, which change the value returned by each observer in
conformity with the behavior of the protocol. Transitions are classified into two
classes: (1) transitions in one class represent the behavior of trustable principals,
and (2) transitions in the other class represent the behavior of the intruder. The
former send messages exactly following the protocol, and the latter fake and send
messages based on the gleaned information by the intruder from the network.

The behavior of an e-commerce protocol is basically modeled by sending mes-
sages via a network, which are denoted by transitions. Messages are asynchronously
sent. Receipt of messages is implicitly expressed as the effective conditions of tran-
sitions.

Let SAM3KP be an OTS formalizing AM3KP. SAM3KP has two observers. In
addition to nw , we use one more observer to observe a random number, which
has been generated by a perfect random number generator. The two observers are
represented by the two observation operators that are declared as follows:

bop nw : Protocol -> Network

bop rand : Protocol -> Rand

Protocol is the hidden sort denoting the state space Υ. Given a state p, nw(p)
denotes the snapshot of the network in p and rand(p) denotes the random number
that has been generated most recently by a perfect random number generator in p.

We have the constant init, whose sort is Protocol, that denotes an arbitrary
initial state of SAM3KP. The network is initially empty, and the random number is
initially arbitrary. Therefore, we have one equation defining init:

eq nw(init) = void .

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 19

Formalization of Trustable Principals

Since AM3KP uses five kinds of messages, we use five transitions to formalize the
behavior of trustable principals. The five transitions are represented by the five
action operators sdim, sdvm, sdpm, sdqm and sdsm. sdim stands for sending Initiate

messages, sdvm for sending Invoice messages, sdpm for sending Payment messages,
sdqm for sending Auth-Request messages, and sdsm for sending Auth-Response mes-
sages. The operators are declared as follows:

bop sdim : Protocol Buyer Seller -> Protocol

bop sdvm : Protocol Seller Msg -> Protocol

bop sdpm : Protocol Buyer Rand Msg Msg -> Protocol

bop sdqm : Protocol Seller Hban Msg Msg -> Protocol

bop sdsm : Protocol Msg -> Protocol

Those operators are defined with equations. Let P, B, S, R, M1 and M2 be CafeOBJ
variables whose sorts are Protocol, Buyer, Seller, Rand, Msg and Msg, respectively,
in the rest of this section.

The effective condition of the transition denoted by sdim is always true. The set
of equations that define sdim is as follows:

eq nw(sdim(P,B,S))

= im(B,B,S,h(nxt(B,rand(P)),ban(B))) , nw(P) .

eq rand(sdim(P,B,S)) = nxt(B,rand(P)) .

The equations mean that a buyer B generates a newly fresh random num-
ber denoted by nxt(B,rand(P)), creates an Invoice message denoted by
im(B,B,S,h(nxt(B,rand(P)),ban(B))) and sends it to a seller S by putting it
into the network denoted by nw(P). Note that the comma between im(...) and
nw(P) is the data constructor of non-empty bags.

The effective condition of the transition denoted by sdpm is that there exists a
valid Invoice message in the network, which seems to have been sent by a seller S

to a buyer B and looks like the response to the Initiate message that has been sent
by B to S. If there exists such an Invoice message in the network, B can receive the
message and respond to it by sending a Payment message to S, which is formalized
by the transition.

The effective condition is denoted by the operator c-sdpm that is declared and
defined as follows:

op c-sdpm : Protocol Buyer Rand Msg Msg -> Bool

eq c-sdpm(P,B,R,M1,M2)

= (M1 \in nw(P) and im?(M1) and B = ic(M1) and

B = is(M1) and hban(M1) = h(R,ban(B)) and

M2 \in nw(P) and vm?(M2) and B = vd(M2) and

id(M1) = vs(M2) and

sig(sk(vs(M2)),hcom(clear(M2))) = sigs(M2) and

April 3, 2009 10:38 WSPC/Guidelines paper

20 Kazuhiro Ogata and Kokichi Futatsugi

hcom(clear(M2)) = h(com(id(M1),B,hban(M1)))) .

The term c-sdpm(P,B,R,M1,M2) means that there exists a valid Invoice mes-
sage M2 in the network, which seems to have been sent by a seller vs(M2)

to a buyer B and looks like the response to the Initiate message M1 that has
been sent by B to vs(M2), and a random number R is used in the Initiate mes-
sage. The term M1 \in nw(P) and im?(M1) and B = ic(M1) and B = is(M1)

and hban(M1) = h(R,ban(B)) means that there exists an Initiate message M1, in
which R is used, in the network, which implies that B has sent M1 to id(M1). Note
that B uses the network as his/her private memory that reminds him/her to send
M1 as described in Subsection 4.4. The term M2 \in nw(P) and vm?(M2) and B

= vd(M2) and id(M1) = vs(M2) means that there exists an Invoice message M2

in the network, which implies that vs(M2), which equals id(M1), seems to have
sent M2 to B. The term sig(sk(vs(M2)),hcom(clear(M2))) = sigs(M2) means
that the signature retrieved from M2 is valid, and the term hcom(clear(M2)) =

h(com(id(M1),B,hban(M1))) means that the hashed Common retrieved from M2

is proper with respect to M1.
The set of equations that define sdpm is as follows:

ceq nw(sdpm(P,B,R,M1,M2))

= pm(B,B,vs(M2),

enc(pk(la),slp(hcom(clear(M2)),ban(B),R)),

sig(sk(B),enc(pk(la),

slp(hcom(clear(M2)),ban(B),R)),

hcom(clear(M2)))) , nw(P)

if c-sdpm(P,B,R,M1,M2) .

eq rand(sdpm(P,B,R,M1,M2)) = rand(P) .

bceq sdpm(P,B,R,M1,M2) = P

if not c-sdpm(P,B,R,M1,M2) .

The equations mean that if the effective condition denoted by c-sdpm(P,B,R,

M1,M2) holds, B responds to M2 by sending a Payment message denoted by pm(...)

to the seeming source vs(M2) of M2, and otherwise nothing changes.
The remaining action operators can be defined in terms of equations likewise.

Formalization of the Intruder

Part of the intruder has been modeled as the network. We have defined what infor-
mation the intruder can glean from the network. We next describe what messages
the intruder fakes based on the gleaned information, which are formalized by tran-
sitions.

The transitions corresponding to the intruder’s faking messages are divided into
five classes. Transitions in each class fake messages corresponding to one of the five
kinds. The effective conditions of these transitions are that the intruder can use the

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 21

necessary information to fake messages.
We basically suppose that the intruder can fake any message if the message can

be made of the values gleaned by the intruder. But, we do not have the intruder
fake meaningless messages that do not clearly conform to the protocol and do not
clearly work for the attack of the protocol. For example, the intruder does not fake
a Payment message denoted by pm(ib,b,s,ep,sig(sk(ib),ep,hc)), where b is a
trustable buyer. If the message is faked and sent, a seller s just rejects it because
the signature denoted by sig(sk(ib),ep,hc) is not computed with the private key
of the seeming sender b. Therefore, the message does not attack the protocol.

We have two transitions that fake Initiate messages, six transitions that fake
Invoice messages, five transitions that fake Payment messages, 12 transitions that
fake Auth-Request messages, and four transitions that fake Auth-Response messages.
These transitions are represented by action operators.

We describe how to obtain these transitions. Let us take Payment messages,
for example. Since a Payment message consists of an EncSlip and an instance of
SigB , the intruder can fake a Payment message if an EncSlip is available to the
intruder or able to be computed by the intruder, and so is an instance of SigB . Note
that the intruder chooses an arbitrary seller ID and/or an arbitrary buyer ID. An
EncSlip is computed from a hashed Common, a BAN and a random number with
the legitimate acquirer’s public key, a hashed Common is computed from a seller ID,
a buyer ID and a keyed hash of a BAN, and a keyed hash of a BAN is computed from
a BAN and a random number. All needed to compute an EncSlip is then a BAN
and a random number. Therefore, there are two possibilities to obtain an EncSlip
computed in accordance with the protocol: (1) the intruder has an EncSlip itself and
(2) the intruder has a BAN and a random number. This means that the intruder may
compute an EncSlip denoted by enc(pk(la),slp(h(com(s,b(n),h(r,n))),n,r))

from a BAN n and a random number r, but does not compute an EncSlip denoted
by enc(pk(la),slp(hc,n,r)) from a hashed Common hc, a BAN n and a random
number r because the EncSlip may not follow the protocol. As an EncSlip, there
are four possibilities to obtain an instance of SigB computed in accordance with
the protocol: (1) the intruder has an instance of SigB itself, (2) the intruder has an
EncSlip and a hashed Common, (3) the intruder has an EncSlip and a keyed hash
of a BAN and (4) the intruder has a BAN and a random number. Although the
number of the naive combinations is eight, the necessary combinations among them
are (1,1), (1,2), (1,3), (2,1) and (2,4). Note that the combination (2,4) uses one
BAN and one random number. The reason why the combination (1,4) is redundant
is that a BAN and a random number can be used to compute an EncSlip, and the
reasons why the other combinations are redundant are similar. Consequently, we
have five transitions to fake Payment messages. The remaining transitions to fake
messages of the other four kinds can be obtained likewise.

In this paper, we show the five action operators corresponding to the transitions
faking Payment messages, which are declared as follows:

April 3, 2009 10:38 WSPC/Guidelines paper

22 Kazuhiro Ogata and Kokichi Futatsugi

bop fkpm1 : Protocol Buyer Seller Eslp Sigb -> Protocol

bop fkpm2 : Protocol Seller Ban Rand Sigb -> Protocol

bop fkpm3 : Protocol Buyer Seller Eslp Hcom -> Protocol

bop fkpm4 : Protocol Buyer Seller Eslp Hban -> Protocol

bop fkpm5 : Protocol Seller Ban Rand -> Protocol

fkpm stands for faking Payment messages. Given an EncSlip es and an instance
gb of SigB that are available to the intruder, fkpm1 fakes a Payment message de-
noted by pm(ib,b,s,es,gb), where b and s are an arbitrary buyer and an ar-
bitrary seller. Given a BAN n, a random number r and an instance gb of SigB

that are available to the intruder, fkpm2 fakes a Payment message denoted by
pm(ib,b(n),s,enc(pk(la),slp(h(com(s,b(n),h(r,n))),n,r)),gb), where s is
an arbitrary seller. The remaining fkpm action operators fake Payment messages
likewise.

The effective condition of the transition denoted by fkpm2 is denoted by the
operator c-fkpm2 that is declared and defined as follows:

op c-fkpm2 : Protocol Seller Ban Rand Sigb -> Bool

op c-fkpm2(P,S,N,R,GB)

= (N \in bans(nw(P)) and R \in rands(nw(P))

and GB \in sigbs(nw(P))) .

The set of equations that define fkpm2 is as follows:

ceq nw(fkpm2(P,S,N,R,GB))

= pm(ib,b(N),S,

enc(pk(la),slp(h(com(S,b(N),h(R,N))),N,R)),GB)

, nw(P) if c-fkpm2(P,S,N,R,GB) .

eq rand(fkpm2(P,S,N,R,GB)) = rand(P) .

bceq fkpm2(P,S,N,R,GB) = P

if not c-fkpm2(P,S,N,R,GB) .

The remaining fkpm operators are defined with equations likewise. The action
operators faking other kinds of messages are also declared and defined likewise.

5. Formalization of Properties

In our way of modeling e-commerce protocols, their properties are basically ex-
pressed in terms of the existence of messages in the network and the existence of
values in the collections gleaned by the intruder from the network. Note that all
properties considered are invariants.

Given a state p, let nw(p) denote the network in the state, let vals(nw(p)),
vals1(nw(p)) and vals2(nw(p)) be collections of values gleaned by the intruder from
the network, and let pred be a predicate. Moreover let msg be the data constructor
of some kind of message, let p1, p2 and q denote principals, let i denote the intruder,

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 23

and let b be a message body. Properties of e-commerce protocols are then expressed
using the following nine kinds of invariants:

(1) invariant (x ∈ vals(nw(p)) ⇒ pred(y)).
Secrecy properties can be expressed using this kind of invariant. For exam-

ple, assuming that y = x and pred(x) means that x is generated by the intruder,
this invariant is to claim that values related to vals cannot be obtained illegally
by the intruder.

(2) invariant (x1 ∈ vals1(nw(p)) ⇒ x2 ∈ vals2(nw(p))).
This is a special case of the first kind of invariant. This kind of invariant

makes it possible to express properties of vals1(nw(p)) in terms of those of
vals2(nw(p)). If we know that values related to val2 cannot be obtained ille-
gally by the intruder, then we can deduce that those related to val1 cannot be
obtained illegally by the intruder either from this invariant.

(3) invariant (x ∈ vals(nw(p)) ⇒ m ∈ nw(p)).
This is also a special case of the first kind of invariant. This kind of invariant

means that x is never obtained by the intruder unless m is sent.
(4) invariant (m ∈ nw(p) ⇒ pred(x)).

This kind of invariant means that pred(x) is closely related to the existence
of the message m in the network. Let m be msg(p1, i, q, b) and pred(x) be p1 = i,
and then this invariant holds for all OTSs modeling e-commerce protocols (see
Subsection 4.3).

(5) invariant (m ∈ nw(p) ⇒ x ∈ vals(nw(p))).
This is a special case of the fourth kind of invariant. This kind of invariant

means that x can be gleaned by the intruder from m.
(6) invariant (m1 ∈ nw(p) ⇒ m2 ∈ nw(p)).

This is also a special case of the fourth kind of invariant. One-to-many
correspondences can be expressed using this kind of invariant. This invariant
claims that if there exists m1 in the network, then there also exists m2 in the
network, although it does not claim that there exists one and only one m2 in
the network. Let m1 and m2 be msg1(p2, p1, q1, b1) and msg2(p3, p3, q2, b2). This
invariant then claims that if q1 receives m1, no matter who m1 originates from,
then p3 has always sent m2 to q2.

(7) invariant (msg(p2, p1, q, b) ∈ nw(p) ⇒ msg(p1, p1, q, b) ∈ nw(p)).
This is a special case of the sixth kind of invariant. This kind of invariant

assures that the message originates from the right principal, namely that the
intruder cannot fake this message unless the right principal sends it.

(8) invariant (pred(x) ⇒ y ∈ vals(nw(p))).
This is a general case of the second and fifth kinds of invariant and the

inverse of the first kind of invariant.
(9) invariant (pred(x) ⇒ m ∈ nw(p)).

This is a general case of the third and sixth kinds of invariant and the inverse
of the fourth kind of invariant.

April 3, 2009 10:38 WSPC/Guidelines paper

24 Kazuhiro Ogata and Kokichi Futatsugi

For AM3KP, let us consider formalizing Payment Agreement. In our way of
modeling e-commerce protocols, the receipt of a message, which seems have been
sent by a principal p1, by a principal p2 implies the existence of the message whose
second argument is p1 and third argument is p2 in the network, and the existence of
a message in the network implies the transmission of the message by the principal
denoted by the first argument of the message. Therefore, Payment Agreement can
be expressed in the combination of the sixth, seventh and ninth kinds of invariant.

Before showing the invariant expressing Payment Agreement, the following are
defined:

• mkhc(s,b, r) � h(com(s,b, h(r, ban(b))))
• mkcl(s,b, r) � cl(mkhc(s,b, r))
• mkeslp(s,b, r) � enc(pk(la), slp(mkhc(s,b, r), ban(b), r))
• mkgs2(s,b, r) � sig(sk(s),mkhc(s,b, r),mkeslp(s,b, r))
• mkgb(s,b, r) � sig(sk(b),mkeslp(s,b, r),mkhc(s,b, r))
• mkgs(s,b, r) � sig(sk(s),mkhc(s,b, r))

Those terms denote a hashed Common, a Clear, an EncSlip, an instance of Sig2S , an
instance of SigB and an instance of SigS , respectively, that are built in accordance
with the protocol.

Payment Agreement is then formally expressed as the following invariant:

invariant (¬(s1 = is and b1 = ib) ∧
qm(s2, s1, la,mkcl(s1,b1, r1),mkeslp(s1,b1, r1),

mkgs2(s1,b1, r1),mkgb(s1,b1, r1)) ∈ nw(p)
⇒
im(b1,b1, s1, h(r1, ban(b1))) ∈ nw(p) ∧
vm(s1, s1,b1,mkcl(s1,b1, r1),mkgs(s1,b1, r1)) ∈ nw(p) ∧
pm(b1,b1, s1,mkeslp(s1,b1, r1),mkgb(s1,b1, r1)) ∈ nw(p) ∧
qm(s1, s1, la,mkcl(s1,b1, r1),mkeslp(s1,b1, r1),

mkgs2(s1,b1, r1),mkgb(s1,b1, r1)) ∈ nw(p)) .

Let this invariant be called Inv0. If a protocol run is performed by la, is and ib,
namely the legitimate acquirer and the intruder, it is clear that this setting breaks
the property because the intruder fakes any Auth-Request message stating that ib

pays any amount to is. That is why the first conjunct of the premise of the property
is added. s2 might be the intruder, and if s1 does not equal s2, the Auth-Request

message whose first argument is s2 has been faked by the intruder.

6. Verification of Properties

6.1. Proof Scores of Invariants

We describe how to write proof scores of invariants. Although some invariants may
be proved by rewriting and/or case analyses only, we often need to use induction,
especially simultaneous induction on the structure of reachable states with respect

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 25

to an OTS S49,53. We then describe how to verify invariantS p1 by simultaneous
induction on the structure of reachable states with respect to S by writing proof
scores in CafeOBJ based on the CafeOBJ specification of S.

It is often impossible to prove invariantS p1 alone. We then suppose that it is
possible to prove invariantS p1 together with n − 1 other state predicatesc. Let the
n−1 other state predicates be p2, . . . , pn. That is, we prove invariantS (p1∧ . . .∧pn).
Let xi1, . . . , ximi

whose types are Di1, . . . , Dimi
be all free variables in pi except

for υ whose type is Υ, where i = 1, . . . , n. pi may be written as pi(υ, xi1, . . . , ximi
),

where i = 1, . . . , n, and p1 ∧ . . . ∧ pn may be written as p or p(υ, x11, . . . , xnmn
).

Let init denote an arbitrary initial state of S. For the base case, all we have to
do is to prove

pi(init , xi1, . . . , ximi
) (1)

for i = 1, . . . , n. We suppose that the free variables xi1, . . . , ximi
are universally

quantified. We also suppose that all free variables in every formula are universally
quantified in this subsection unless otherwise stated. (1) is logically equivalent to
p(init , x11, . . . , xnmn

).
For the inductive cases, for each tj1,...,jmj

∈ T all we have to do is to prove

(SIH i ∧ pi(υ, xi1, . . . , ximi
)) ⇒ pi(tj1,...,jmj

(υ), xi1, . . . , ximi
) (2)

for i = 1, . . . , n. SIH i is used to strengthen the basic inductive hypothesis
pi(υ, xi1, . . . , ximi

) and can be in the form pα(υ, eα1, . . . , eαmα
) ∧ pβ(υ, eβ1, . . . ,

eβmβ
) ∧ . . ., where α, β, . . . ∈ {1, . . . , n} and each eι is an expression whose type is

Dι. From (2), we can deduce

(SIH 1 ∧ . . . ∧ SIH n ∧ p(υ, x11, . . . , xnmn
))

⇒ p(tj1,...,jmj
(υ), x11, . . . , xnmn

) .

The formula says that p holds in tj1,...,jmj
(υ) if p holds in υ, which corresponds

to the inductive case where we show that tj1,...,jmj
preserves p for the proof of

invariantS p by induction on the structure of reachable states with respect to S.
From what has been described, all we have to do is to prove (1) and (2) in

order to prove invariantS p. This means that it is possible to write the proof of each
invariantS pi separately, where i = 1, . . . , n. Since we prove multiple state predicates
p1, . . . , pn invariant with respect to S (virtually) simultaneously by induction, we
call the proof method simultaneous induction.

We next describe how to write proof plans of (1) and (2) in CafeOBJ. We suppose
that S is written in CafeOBJ.

We first declare the operators denoting p1, . . . , pn and the equations defining the
operators. The operators and equations are declared in a module, say INV (which
imports the module where S is written), as follows:

cGenerally such n − 1 state predicates should be found while invariantS p1 is being proved.

April 3, 2009 10:38 WSPC/Guidelines paper

26 Kazuhiro Ogata and Kokichi Futatsugi

op invi : H Vi1 . . . Vimi
-> Bool

eq invi(S,Xi1, . . . ,Ximi
) = pi(S,Xi1, . . . ,Ximi

) .

for i = 1, . . . , n. pi(S,Xi1, . . . ,Ximi
) is a CafeOBJ term denoting pi. In the module

INV, we also declare a constant xk denoting an arbitrary value of Vk, where k =
11, . . . , nmn.

We then declare the operators denoting basic formulas to prove in the inductive
cases and the equations defining the operators. The operators and equations are
declared in a module, say ISTEP (which imports INV), as follows:

op istepi : -> Bool

eq istepi = invi(s, xi1, . . . , ximi
) implies invi(s′, xi1, . . . , ximi

) .

for i = 1, . . . , n. s and s′ are constants of H, which are declared in INV and ISTEP,
respectively. s denotes an arbitrary state and s′ denotes an arbitrary successor
state of s. invi(s′, xi1, . . . , ximi

) is the formula to prove in each inductive case and
invi(s, xi1, . . . , ximi

) is an instance of the induction hypothesis. Since the instance
is often used, istepi is defined as above.

The proof plan of (1), written in CafeOBJ, is like

open INV

red invi(init, xi1, . . . , ximi
) .

close

for i = 1, . . . , n. CafeOBJ scripts like this constitute proof scores. Such fragments of
proof scores are called proof passages. Feeding this proof passage into the CafeOBJ
system, if the system returns true, then the proof is successful in the base case.
Otherwise, you need to do case analyses and/or use some lemmas.

The proof of (2) often needs case analysis. We suppose that the state space is
split into l sub-spacesd in order to prove (2) and that each sub-space is characterized
by a state predicate caseik

, where k = 1, . . . , l. The state predicates should satisfy
(casei1 ∨ . . . ∨ caseil

) ⇔ true. Then the proof of (2) can be replaced with

(SIH i ∧ caseik
∧ pi(υ, xi1, . . . , ximi

)) ⇒ pi(tj1,...,jmj
(υ), xi1, . . . , ximi

) (4)

where i = 1, . . . , n and k = 1, . . . , l.
We suppose that tj1,...,jmj

is denoted by a CafeOBJ action operator t and the
CafeOBJ term that denotes SIH i is SIHi. Then the proof passage of (4) is like

open ISTEP

-- arbitrary objects

op y1m1
: − > V1m1

.

· · ·
op yjmj

: − > Vjmj
.

dGenerally such case analysis should be done while invariantS p1 is being proved.

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 27

-- assumptions

Declaration of equations denoting caseik
.

-- successor state

eq s′ = t(s, yj1 , . . . , yjmj
) .

-- check

red SIHi implies istepi .

close

for i = 1, . . . , n and k = 1, . . . , l. A comment starts with -- and terminates at
the end of the line. The constants y1m1

, . . . , yjmj
denote arbitrary values of the

corresponding visible sorts. The state predicate caseik
representing the subcase is

written in equations in the proof passage. SIHi implies istepi is logically equivalent
to (SIHi and invi(s, xi1, . . . , ximi

)) implies invi(s′, xi1, . . . , ximi
). Feeding this proof

passage into the CafeOBJ system, if the system returns true, then the proof that
tj1,...,jmj

preserves pi is successful in the case denoted by caseik
. Otherwise, you

need to do further case analyses and/or use other instances of state predicates to
strengthen the induction hypothesis furthermore.

6.2. Verification of Payment Agreement

We need 17 more invariants in order to prove that AM3KP enjoys Payment Agree-
ment, namely that Inv0 holds for SAM3KP. Five of the invariants, including Inv0,
are proved by rewriting and/or case analyses only, and the remaining are proved by
simultaneous induction on the structure of reachable states with respect to SAM3KP.
We write proof scores in CafeOBJ for all invariant properties.

First we describe the proof of Inv0, which needs to prove four more state pred-
icates invariant. We declare the five operators denoting the five state predicates in
a module INV (which imports the module where SAM3KP is written) as follows:

op inv0 : Protocol Buyer Seller Seller Rand -> Bool

op inv5 : Protocol Buyer Seller Seller Rand -> Bool

op inv9 : Protocol Buyer Seller Seller Rand -> Bool

op inv13 : Protocol Buyer Seller Seller Rand -> Bool

op inv17 : Protocol Buyer Seller Seller Rand -> Bool

The five operators are defined in equations as follows:

eq inv0(P,B1,S1,S2,R1)

= (not(S1 = is and B1 = ib) and

qm(S2,S1,la,mkcl(S1,B1,R1),mkeslp(S1,B1,R1),

mkgs2(S1,B1,R1),mkgb(S1,B1,R1)) \in nw(P)

implies

im(B1,B1,S1,h(R1,ban(B1))) \in nw(P) and

vm(S1,S1,B1,mkcl(S1,B1,R1),mkgs(S1,B1,R1))

\in nw(P) and

April 3, 2009 10:38 WSPC/Guidelines paper

28 Kazuhiro Ogata and Kokichi Futatsugi

pm(B1,B1,S1,mkeslp(S1,B1,R1),mkgb(S1,B1,R1))

\in nw(P) and

qm(S1,S1,la,mkcl(S1,B1,R1),mkeslp(S1,B1,R1),

mkgs2(S1,B1,R1),mkgb(S1,B1,R1)) \in nw(P)) .

eq inv5(P,B1,S1,S2,R1)

= (qm(S2,S1,la,mkcl(S1,B1,R1),mkeslp(S1,B1,R1),

mkgs2(S1,B1,R1),mkgb(S1,B1,R1)) \in nw(P)

implies

qm(S1,S1,la,mkcl(S1,B1,R1),mkeslp(S1,B1,R1),

mkgs2(S1,B1,R1),mkgb(S1,B1,R1)) \in nw(P)) .

eq inv9(P,B1,S1,S2,R1)

= (not(S1 = is and B1 = ib) and

qm(S2,S1,la,mkcl(S1,B1,R1),mkeslp(S1,B1,R1),

mkgs2(S1,B1,R1),mkgb(S1,B1,R1)) \in nw(P)

implies

vm(S1,S1,B1,mkcl(S1,B1,R1),mkgs(S1,B1,R1))

\in nw(P)) .

eq inv13(P,B1,S1,S2,R1)

= (not(S1 = is and B1 = ib) and

qm(S2,S1,la,mkcl(S1,B1,R1),mkeslp(S1,B1,R1),

mkgs2(S1,B1,R1),mkgb(S1,B1,R1)) \in nw(P)

implies

pm(B1,B1,S1,mkeslp(S1,B1,R1),mkgb(S1,B1,R1))

\in nw(P)) .

eq inv17(P,B1,S1,S2,R1)

= (not(S1 = is and B1 = ib) and

qm(S2,S1,la,mkcl(S1,B1,R1),mkeslp(S1,B1,R1),

mkgs2(S1,B1,R1),mkgb(S1,B1,R1)) \in nw(P)

implies

im(B1,B1,S1,h(R1,ban(B1))) \in nw(P)) .

P, B1, S1, S2 and R1 are CafeOBJ variables whose sorts are Protocol, Buyer,
Seller, Seller and Rand, respectively. mkcl(S1,B1,R1), mkeslp(S1,B1,R1),
mkgs2(S1,B1,R1), mkgb(S1,B1,R1) and mkgs(S1, B1,R1) are terms correspond-
ing to mkcl(s,b, r), mkeslp(s,b, r), mkgs2(s,b, r), mkgb(s,b, r) and mkgs(s,b, r),
respectively. In the module INV, we declare constants p of Protocol, b1 of Buyer,
s1 and s2 of Seller, and r1 of Rand.

Assuming that the four state predicates denoted by inv5, inv9, inv13 and
inv17 are invariants with respect to SAM3KP, we can write the proof score of Inv0

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 29

as follows:

open INV

-- check if the predicate is true

red inv5(p,b1,s1,s2,r1) and inv9(p,b1,s1,s2,r1) and

inv13(p,b1,s1,s2,r1) and inv17(p,b1,s1,s2,r1)

implies

inv0(p,b1,s1,s2,r1) .

close

Feeding this proof score into the CafeOBJ system, the system returns true as
expected, which means that the proof is successful, provided that the four invariants
hold for SAM3KP.

Next we describe the plan of the proof that the state predicate denoted by
inv9 is invariant, which needs case analysis. The case is split into four subcases
characterized by the following four state predicates:

(1) (s1 = is) ∧ (m10 \in nw(p))
(2) (s1 = is) ∧ ¬(m10 \in nw(p))
(3) ¬(s1 = is) ∧ (m10 \in nw(p))
(4) ¬(s1 = is) ∧ ¬(m10 \in nw(p))

where m10 is qm(s2,s1,la,mkcl(s1,b1,r1),mkeslp(s1,b1,r1),mkgs2(s1,

b1,r1),mkgb(s1,b1,r1)). The proof passage of subcase 1 needs another state
predicate, that of subcase 3 needs two other state predicates, and those of sub-
cases 2 and 4 do not.

We show the proof passage of subcase 1. We declare and define the operator
denoting the state predicate needed for the subcase in INV as follows:

op inv8 : Protocol Buyer Rand -> Bool

eq inv8(P,B1,R1)

= (not(B1 = ib) and mkeslp(S1,B1,R1) \in eslps(nw(P))

implies

vm(S1,S1,B1,mkcl(S1,B1,R1),mkgs(S1,B1,R1))

\in nw(P)) .

This state predicate means that if an encrypted SLIP including a BAN whose owner
is different from the intruder is available to the intruder, then the seller included in
the encrypted SLIP has always sent the owner the Invoice message corresponding
to the encrypted SLIP.

Assuming that the state predicate denoted by inv8 is invariant with respect to
SAM3KP, we can write the proof passage of subcase 1 as follows:

open INV

-- arbitrary chosen objects

op m10 : -> Msg .

April 3, 2009 10:38 WSPC/Guidelines paper

30 Kazuhiro Ogata and Kokichi Futatsugi

op nw10 : -> Network .

-- assumptions

eq s1 = is .

eq m10 = qm(s2,s1,la,mkcl(s1,b1,r1),mkeslp(s1,b1,r1),

mkgs2(s1,b1,r1),mkgb(s1,b1,r1)) .

eq nw(p) = m10 , nw10 .

-- check if the predicate is true

red inv8(p,b1,r1) implies inv9(p,b1,s1,s2,r1) .

close

The assumption m10 \in nw(p) is expressed by the equation nw(p) = m10 ,

nw10 . Feeding this proof passage into the CafeOBJ system, the system returns
true as expected, which means that the proof is successful in subcase 1. The proof
passages of the remaining subcases can be written likewise.

We also describe the proof that the state predicate denoted by inv8 is invariant,
which needs simultaneous induction on the structure of reachable states with respect
to SAM3KP. The proof score of the invariant is written in the way described in
Subsection 6.1.

We declare and define the operator denoting the basic formula to prove in each
inductive case in a module ISTEP (which imports INV) as follows:

op istep8 : -> Bool

eq istep8 = inv8(p,b1,r1) implies inv8(p’,b1,r1) .

p’ is a constant of Protocol declared in ISTEP. p’ is used to denote an arbitrary
successor state of p, which is used to denoted an arbitrary state.

For the base case, we can write the following proof passage:

open INV

red inv8(init,b1,r1) .

close

The CafeOBJ system returns true for this proof passage.
Let us consider the inductive case where the transition denoted by fkpm2 pre-

serves the state predicate denoted by inv8. The case is split into four subcases
characterized by the following four state predicates:

(1) c-fkpm2(p,s10,n10,r10,sb10) ∧ (b1 = ib)
(2) c-fkpm2(p,s10,n10,r10,sb10) ∧ ¬(b1 = ib) ∧ (n10 = ban(ib))
(3) c-fkpm2(p,s10,n10,r10,sb10) ∧ ¬(b1 = ib) ∧ ¬(n10 = ban(ib))
(4) ¬c-fkpm2(p,s10,n10,r10,sb10)

s10, n10, r10 and sb10 are constants of Seller, Ban, Rand and Sigb, respectively.
The constants are used as the arguments of fkpm2, and declared in each proof
passage of the four subcases. The proof passage of subcase 3 needs another state
predicate and those of the remaining do not.

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 31

We show the proof passage of subcase 3. We declare and define the operator
denoting the state predicate needed for the subcase in INV as follows:

op inv2 : Protocol Ban -> Bool

eq inv2(P,N1)

= (N1 \in bans(nw(P)) implies N1 = ban(ib)) .

N1 is a CafeOBJ variable whose sort is Ban. This state predicate means that BANs
available to the intruder are his/her own BAN only, namely that BANs are really
secret in the protocol. Then, we can write the proof passage of subcase 3 as follows:

open ISTEP

-- arbitrary objects

op s10 : -> Seller . op n10 : -> Ban .

op r10 : -> Rand . op sb10 : -> Sigb .

-- assumptions

-- eq c-fkpm2(p,s10,n10,r10,sb10) = true .

eq n10 \in bans(nw(p)) = true .

eq r10 \in rands(nw(p)) = true .

eq sb10 \in sigbs(nw(p)) = true .

--

eq (b1 = ib) = false .

eq (n10 = ban(ib)) = false .

-- successor state

eq p’ = fkpm2(p,s10,n10,r10,sb10) .

-- check

red inv2(p,n10) implies istep8 .

close

Instead of declaring the equation c-fkpm2(p,s10,n10,r10,sb10) = true, the
three equations are declared to assume that the effective condition holds in p. One
reason is that c-fkpm2(p,s10,n10,r10,sb10) is not in normal form in the sense
of term rewriting. Generally the left-hand side of an equation should be in nor-
mal form to make effective use of the equation as a rewrite rule. The other reason
is that the equation c-fkpm2(p,s10,n10,r10,sb10) = true can be deduced from
the three equations, while the three equations cannot be deduced from the equation
by means of rewriting. The CafeOBJ system returns true for this proof passage.

The proof passages of the remaining subcases can be written likewise. The proof
passages of the remaining inductive cases can also be written likewise, but yet
another invariant is needed. The other invariants can be proved in the ways shown
in this subsection.

The size of all the proof scores is approximately of 20,000 lines. It took about 4
minutes to have the CafeOBJ system load the CafeOBJ specification and execute
all the proof scores on a laptop with 850MHz Pentium III processor and 512MB
memory.

April 3, 2009 10:38 WSPC/Guidelines paper

32 Kazuhiro Ogata and Kokichi Futatsugi

7. Concluding Remarks

We have described the proof score approach to analysis of e-commerce protocols,
which has been developed and refined through several case studies conducted. As
described in Section 1, compared to systems analysis using other existing interactive
theorem provers such as Isabelle/HOL and Coq, the proof score approach to systems
analysis has some advantages: (1) balanced human-computer interaction and (2)
flexible but clear structure of proof scores. Moreover, thanks to our way of modeling
messages and networks, we can express various properties such that some events
always precede others in terms of invariants only. It is not necessary to introduce
other constructs such as finite automata and filtering functions, which may make
verification complicated.

As described in Section 1, the proof score approach to systems analysis is less
rigorous than systems analysis using other existing interactive theorem provers such
as Isabelle/HOL and Coq. To overcome this disadvantage, we have been developing
some tools: Gateau60 and Crème41,42,43. Given state predicates for case splitting
and necessary lemmas, Gateau generates proof scores. Gateau has successfully gen-
erated the proof scores to verify that some security properties hold for the NSLPK
authentication protocol33,34 and the Otway-Rees authentication protocol56. Crème
is an automatic invariant verification tool for algebraic specifications of OTSs. We
have verified fully automatically that some security properties hold for the NSLPK
authentication protocol and the STS authentication protocol13. One piece of our
future work is to apply those tools to analyses of e-commerce protocols.

To take advantage of model checkers, which are complementary to interactive
theorem provers, we have also been developing some tools, which takes CafeOBJ
specifications of OTSs and generates specifications that can be model-checked:
Chocolat/SMV55 and Cafe2Maude31. Chocolat/SMV translates CafeOBJ specifi-
cations of OTSs into SMV specifications, which are model-checked with SMV38.
Cafe2Maude translates CafeOBJ specifications of OTSs into Maude specifications
that can be model-checked with the Maude model checker16. Another piece of our
future work is to apply those tools to analyses of e-commerce protocols.

This paper only focuses on invariant properties. There must be, however,
some security properties that cannot be expressed as invariant properties. The
OTS/CafeOBJ method can deal with some class of liveness properties54. Therefore,
it would be worth pursuing what kind of security properties should be expressed as
liveness properties and extending the method described in this paper to deal with
liveness properties.

There have been proposed some dedicated security analysis tools. It would be
worth integrating the method described in this paper with such a tool.

Acknowledgement

The authors wish to thank anonymous referees who commented on drafts of this
paper.

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 33

References

1. Giampaolo Bella, Fabio Massacci, and Lawrence C. Paulson. The verification of an
industrial payment protocol: The SET purchase phase. In 9th ACM CCS, pages 12–20,
2002.

2. Giampaolo Bella, Fabio Massacci, and Lawrence C. Paulson. Verifying the SET reg-
istration protocols. IEEE J-SAC, 21:77–87, 2003.

3. M. Bellare, J. A. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner, G. Tsudik,
E. Van Herreweghen, and M. Waidner. Design, implementation and deployment of the
iKP secure electronic payment system. IEEE J-SAC, 18(4):611–627, 2000.

4. M. Bellare, J. A. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner, G. Tsudik,
and M. Waidner. iKP – a family of secure electronic payment protocols. In 1st USENIX
EC, pages 89–106, 1995.

5. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment – Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

6. Dominique Bolignano. Towards the formal verification of electronic commerce proto-
cols. In 10th IEEE CSFW, pages 133–146, 1997.

7. Michael Butler and Divakar Yadav. An incremental development of the Mondex sys-
tem in Event-B. Formal Asp. Comput., 20(1):61–77, 2008.

8. Benjamin Cox, J. D. Tygar, and Marvin Sirbu. NetBill security and transaction pro-
tocol. In 1st USENIX EC, pages 77–88, 1995.

9. Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report, volume 6 of AMAST
Series in Computing. World Scientific, 1998.

10. Răzvan Diaconescu and Kokichi Futatsugi. Behavioural coherence in object-oriented
algebraic specification. J. UCS, 6:74–96, 2000.

11. Răzvan Diaconescu, Kokichi Futatsugi, and Kazuhiro Ogata. CafeOBJ: Logical foun-
dations and methodologies. Computing and Informatics, 22:257–283, 2003.

12. T. Dierks and C. Allen. The TLS protocol version 1.0. Request for Commnets: 2246,
http://www.ietf.org/rfc/rfc2246.txt, 1999.

13. Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentication and
authenticated key exchanges. Designs, Codes and Cryptography, 2:107–125, 1992.

14. Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Trans. Info. Theory, IT-29:198–208, 1983.

15. Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The
MIT Press, 2001.

16. Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude LTL
model checker. In 4th WRLA, volume 71 of ENTCS, pages 162–187. Elsevier, 2002.

17. Leo Freitas and Jim Woodcock. Mechanising Mondex with Z/Eves. Formal Asp. Com-
put., 20(1):117–139, 2008.

18. Kokichi Futatsugi, Joseph A. Goguen, and Kazuhiro Ogata. Verifying design with
proof scores. In VSTTE 2005, volume 4171 of LNCS, pages 277–290. Springer, 2008.

19. Chris George and Anne Elisabeth Haxthausen. Specification, proof, and model check-
ing of the Mondex electronic purse using RAISE. Formal Asp. Comput., 20(1):101–116,
2008.

20. Joseph Goguen. Theorem Proving and Algebra. The MIT Press, (to appear).
21. Joseph Goguen and Grant Malcolm. A hidden agenda. TCS, 245:55–101, 2000.
22. Joseph Goguen and Grant Malcolm, editors. Software Engineering with OBJ: Alge-

braic Specification in Action. Kluwer, 2000.
23. Dominik Haneberg, Gerhard Schellhorn, Holger Grandy, and Wolfgang Reif. Verifica-

tion of Mondex electronic purses with KIV: from transactions to a security protocol.
Formal Asp. Comput., 20(1):41–59, 2008.

April 3, 2009 10:38 WSPC/Guidelines paper

34 Kazuhiro Ogata and Kokichi Futatsugi

24. Nevin Heintze, J.D. Tygar, Jeannette Wing, and H. Chi Wong. Model checking elec-
tronic commerce protocols. In 2nd USENIX EC, pages 147–164, 1996.

25. Tony Hoare and Jayadev Misra. Verified software: Theories, tools, experiments vi-
sion of a grand challenge project. In 1st VSTTE, volume 4171 of LNCS, pages 1–18.
Springer, 2008.

26. Gunther Horn and Bart Preneel. Authentication and payment in future mobile sys-
tems. In 5th ESORICS, volume 1485 of LNCS, pages 277–293. Springer, 1998.

27. J. Hsiang and N. Dershowitz. Rewrite methods for clausal and nonclausal theorem
proving. In 10th ICALP, volume 154 of LNCS, pages 331–346. Springer, 1983.

28. Florent Jacquemard, Michael Rusinowitch, and Laurent Vigneron. Compiling and
verifying security protocols. In 7th LPAR, volume 1955 of LNCS, pages 131–160.
Springer, 2000.

29. Cliff B. Jones and Jim Woodcock, editors. Formal Aspects of Computing. Number 1
in 20. Springer, 2008.

30. Weiqiang Kong, Kazuhiro Ogata, and Kokichi Futatsugi. Algebraic approaches to
formal analysis of the mondex electronic purse system. In 6th IFM, volume 4591 of
LNCS, pages 393–412. Springer, 2007.

31. Weiqiang Kong, Kazuhiro Ogata, Takahiro Seino, and Kokichi Futatsugi. A
lightweight integration of theorem proving and model checking for system verifica-
tion. In 12th APSEC, pages 59–66. IEEE CS Press, 2005.

32. Mirco Kuhlmann and Martin Gogolla. Modeling and validating Mondex scenarios
described in UML and OCL with USE. Formal Asp. Comput., 20(1):79–100, 2008.

33. Gavin Lowe. An attack on the Needham-Schroeder public-key authentication protocol.
IPL, 56:131–133, 1995.

34. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In 2nd TACAS, volume 1055 of LNCS, pages 147–166. Springer, 1996.

35. Gavin Lowe. Casper: A compiler for the analysis of security protocols. In 10th IEEE
CSFW, pages 18–30, 1997.

36. Shiyong Lu and Scott A. Smolka. Model checking the Secure Electronic Transaction
(SET) protocol. In 6th MASCOTS, pages 358–365, 1999.

37. MasterCard/Visa. SET secure electronic transactions protocol – book 1: Business
specifications; book 2: Technical specification; book 3: Formal protocol definition.
http://www.setco.org/set specifications.html, May 1997.

38. Kenneth L. McMillan. Symolic Model Checking: An Approach to the State Explosion
Problem. Kluwer, 1993.

39. Jonathan K. Millen and Grit Denker. CAPSL and MuCAPSL. J. Telecomm. & Info.
Tech., 4:16–27, 2002.

40. John C. Mitchell, Vitaly Shmatikov, and Ulrich Stern. Finite-state analysis of SSL 3.0
and related protocols. In DIMACS Workshop on Design and Formal Verification of
Security Protocols, 1997.

41. Masahiro Nakano, Kazuhiro Ogata, Masaki Nakamura, and Kokichi Futatsugi. Auto-
matic verification of the STS authentication protocol with Crème. In 20th ITC-CSCC,
pages 15–16, 2005.

42. Masahiro Nakano, Kazuhiro Ogata, Masaki Nakamura, and Kokichi Futatsugi. Au-
tomating invariant verification of behavioral specifications. In 6th QSIC, pages 49–56.
IEEE CS Press, 2006.

43. Masahiro Nakano, Kazuhiro Ogata, Masaki Nakamura, and Kokichi Futatsugi. Crème:
An automatic invariant prover of behavioral specifications. IJSEKE, 17(6):783–804,
2007.

44. Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in

April 3, 2009 10:38 WSPC/Guidelines paper

Proof Score Approach to Analysis of Electronic Commerce Protocols 35

large networks of computers. CACM, 21(12):993–999, 1978.
45. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof

Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
46. Kazuhiro Ogata and Kokichi Futatsugi. Flaw and modification of the iKP electronic

payment protocols. IPL, 86:57–62, 2003.
47. Kazuhiro Ogata and Kokichi Futatsugi. Formal analysis of the iKP electronic payment

protocols. In 1st ISSS, volume 2609 of LNCS, pages 441–460. Springer, 2003.
48. Kazuhiro Ogata and Kokichi Futatsugi. Formal verification of the Horn-Preneel mi-

cropayment protocol. In 4th VMCAI, volume 2575 of LNCS, pages 238–252. Springer,
2003.

49. Kazuhiro Ogata and Kokichi Futatsugi. Proof scores in the OTS/CafeOBJ method.
In 6th FMOODS, volume 2884 of LNCS, pages 170–184. Springer, 2003.

50. Kazuhiro Ogata and Kokichi Futatsugi. Equational approach to formal verification of
SET. In 4th QSIC, pages 50–59. IEEE CS Press, 2004.

51. Kazuhiro Ogata and Kokichi Futatsugi. Formal analysis of the NetBill electronic com-
merce protocol. In 2nd ISSS, volume 3233 of LNCS, pages 45–64. Springer, 2004.

52. Kazuhiro Ogata and Kokichi Futatsugi. Equational approach to formal analysis of
TLS. In 25th ICDCS, pages 795–804. IEEE CS Press, 2005.

53. Kazuhiro Ogata and Kokichi Futatsugi. Some tips on writing proof scores in the
OTS/CafeOBJ method. In Algebra, Meaning, and Computation: A Festschrift Sym-
posium in Honor of Joseph Goguen, volume 4060 of LNCS, pages 596–615. Springer,
2006.

54. Kazuhiro Ogata and Kokichi Futatsugi. Proof score approach to verification of liveness
properties. IEICE Trans. Inf. & Syst., E91-D(12):2804–2817, 2008.

55. Kazuhiro Ogata, Masahiro Nakano, Masaki Nakamura, and Kokichi Futatsugi. Choco-
lat/SMV: A translator from CafeOBJ into SMV. In 6th PDCAT, pages 416–420. IEEE
CS Press, 2005.

56. D. Otway and O. Rees. Efficient and timely mutual authentication. ACM Operating
Systems Review, 21(1):8–10, 1987.

57. Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols.
J. Comp. Security, 6:85–128, 1998.

58. Lawrence C. Paulson. Inductive analysis of the internet protocol TLS. ACM TISSEC,
2(3):332–351, 1999.

59. Tahina Ramananandro. Mondex , an electronic purse: specification and refinement
checks with the Alloy model-finding method. Formal Asp. Comput., 20(1):21–39, 2008.

60. Takahiro Seino, Kazuhiro Ogata, and Kokichi Futatsugi. A toolkit for generating and
displaying proof scores in the OTS/CafeOBJ method. In 6th RULE, ENTCS. Elsevier,
2005.

61. Luca Viganò. Automated security protocol analysis with the AVISPA tool. In 21st
MFPS, volume 155 of ENTCS. Elsevier, 2005.

62. Jim Woodcock, Susan Stepney, David Cooper, John A. Clark, and Jeremy Jacob.
The certification of the Mondex electronic purse to ITSEC Level E6. Formal Asp.
Comput., 20(1), 2008.

