
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Combination of Forward and Backward

Reachability Analysis Methods

Author(s) Ogata, Kazuhiro; Futatsugi, Kokichi

Citation
Lecture Notes in Computer Science, 6447/2010:

507-517

Issue Date 2010-11-09

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/9948

Rights

This is the author-created version of Springer,

Kazuhiro Ogata and Kokichi Futatsugi, Lecture

Notes in Computer Science, 6447/2010, 2010, 507-

517. The original publication is available at

www.springerlink.com,

http://dx.doi.org/10.1007/978-3-642-16901-4_33

Description

A Combination of Forward & Backward
Reachability Analysis Methods

Kazuhiro Ogata and Kokichi Futatsugi

School of Information Science, JAIST
{ogata, kokichi}@jaist.ac.jp

Abstract. Induction-guided falsification (IGF) is a combination of
bounded model checking (BMC) and structural induction, which can be
used for falsification of invariants. IGF can also be regarded as a com-
bination of forward and backward reachability analysis methods. This is
because BMC is a forward reachability analysis method and structural
induction can be regarded as a backward reachability analysis method.
We report on a case study in which a variant of IGF has been used to
systematically find a counterexample showing that NSPK does not enjoy
the agreement property.
Keywords: agreement property, CafeOBJ, bounded model checking, fal-
sification, NSPK, structural induction, Maude

1 Introduction

Bounded model checking (BMC)[1] has been used to discover a counterexample
showing that a hardware or software system does not enjoy a safety property.
It (or its concept) has been adopted by some software analysis tools such as
Alloy[2]. Basically it starts with some initial states of a system and exhaustively
traverses the state space reachable from the initial states up to some specific
depth. Therefore, BMC is a forward reachability analysis method.

A backward reachability analysis method starts with some states of a system
such that a safety property is broken and traverses the state space reachable in
a backward sense from the states. If it reaches an initial state of the system, the
system does not enjoy the safety property. If the entire state space reachable
in a backward sense from such an arbitrary state does not contain any initial
states, the system enjoys the safety property. Among tools adopting a backward
reachability analysis method is Maude-NPA[3].

We have proposed a combination of BMC and structural induction called
induction-guided falsification (IGF)[4]. IGF uses as BMC the search functionality
provided by CafeOBJ[5] and Maude[6]. In IGF, structural induction is conducted
by human users by writing what are called proof scores in CafeOBJ. IGF can
also be regarded as a combination of forward and backward reachability analysis
methods. This is because structural induction can also be regarded as a backward
reachability analysis method.

In this paper, we review IGF and report on a case study in which a variant of
IGF, where non-necessary lemmas may be used, has been used to systematically

discover a counterexample showing that NSPK[7] does not enjoy the agreement
property. Many case studies have been reported, systematically discovering a
counterexample showing that NSPK does not enjoy the nonce secrecy property[8,
9, 3]. To our best knowledge, however, few case studies have been reported for
the agreement property.

The rest of the paper is organized as follows. §2 describes the OTS/CafeOBJ
method[10] for specification and verification of systems. A simple example is
used to describe the method and demonstrate that (structural) induction can be
used to falsify that a system enjoys a property. §3 describes the search function-
ality. §4 describes a viewpoint that regards (structural) induction as a backward
reachability analysis method, reviews IGF, and introduces a variant of IGF. §5
reports on the case study. §6 mentions some related work. §7 concludes the paper.

2 The OTS/CafeOBJ Method

2.1 Observational Transition Systems

We suppose that there exists a universal state space denoted by Υ and that each
data type used in OTSs is provided. The data types include Bool for Boolean
values. A data type is denoted by D with a subscript such as Do1 and Do.

Definition 1 (OTSs). An observational transition system (OTS) consists of

– O : A set of observers. Each observer is a function o : Υ Do1 . . . Dom → Do.
The equivalence between two states υ1, υ2 (denoted as υ1 =S υ2) is defined
with respect to (wrt) values returned by the observers.

– I : The set of initial states such that I ⊆ Υ .
– T : A set of transitions. Each transition is a function t : Υ Dt1 . . . Dtn → Υ .

Each transition t, together with any other parameters y1, . . . , yn, preserves
the equivalence between two states. Each t has the effective condition c-t :
Υ Dt1 . . . Dtn → Bool. If ¬c-t(υ, y1, . . . , yn), then t(υ1, y1, . . . , yn) =S υ.

Given an OTS S and a state υ, t(υ, y1, . . . , yn) is called a successor state of
υ wrt S for any y1, . . . , yn. We may omit “wrt S” if it is clear from the context.

Definition 2 (Reachable States). Given an OTS S and a set U of states,
the reachable states from U wrt S are inductively defined as follows:

– Each state in U is reachable from U.
– If a state υ ∈ Υ is reachable from U, so is t(υ, y1, . . . , yn) for each t ∈ T

and any other parameters y1, . . . , yn.

We may omit “wrt S” and write “υ is reachable from U” if S is clear from
the context. When U is I, we may omit “from I” and write “υ is reachable wrt
S” or “υ is reachable”.

Let RS,U be the set of all states reachable from U wrt S. RS,U may be
called the state space reachable from U. Let RS be RS,I . RS may be called
the reachable state space. When U is a singleton, say {u}, we may write RS,u,

υ ∈ RS,u is called reachable from u and u is called backward-reachable from
υ ∈ RS,u. Given an OTS S and two states υ1, υ2 ∈ Υ , the depth from υ1 to υ2

wrt S (depthS(υ1, υ2)) is 0 if υ2 =S υ1 and d + 1 if depthS(υ1, υ3) = d and υ2 is
a successor state of υ3. If υ2 is not reachable from υ1, depthS(υ1, υ2) is ∞. Let
R≤d

S,u be {υ ∈ RS,u |depthS(u, υ) ≤ d}.

Definition 3 (Invariants). Given an OTS S, a state predicate p : Υ → Bool
is an invariant wrt S if (∀υ ∈ RS) p(υ).

We may omit “wrt S” and write “p is an invariant” if S is clear from the
context.

CafeOBJ, an algebraic specification language, is used to specify OTSs. Υ
is denoted by a sort, say Sys. Each o ∈ O is denoted by an operator (called
an observation operator) declared as follows: “op o : Sys Do1 ... Dom -> Do”,
where each D∗ is a sort corresponding to D∗.

An arbitrary initial state in I is denoted by an operator declared as fol-
lows: “op init : -> Sys {constr}”. Operators with no arguments such as
init are called constants. For each o ∈ O, declared is an equation “eq
o(init,X1,...,Xm) = f(X1,...,Xm) .”, where each X∗ is a CafeOBJ vari-
able of sort D∗ and f(X1,...,Xm) is a term denoting the value returned by
o, together with any other parameters, in an arbitrary initial state. Note that
each CafeOBJ variable occurring in an equation (or a transition rule; see §3) is
universally quantified and its scope is in the equation (or the transition rule).

Each t ∈ T is denoted by an operator (called a transition operator) de-
clared as follows: “op t : Sys Dt1 ... Dtn -> Sys {constr}”. For each o and
t, a conditional equation is declared: “ceq o(t(S,Y1,...,Yn),X1,...,Xm) =
o-t(S,Y1,...,Yn,X1,...,Xm) if c-t(S,Y1,...,Yn) .”, where c-t(S,...)
corresponds to c-t(υ, . . .) and o-t(S,...) does not use any transition opera-
tors. The equation says how t changes the value observed by o if the effective
condition holds. If o-t(S,...) is always the same as o(S,X1,...,Xm), the con-
dition may be omitted.

For each t, one more conditional equation is declared: “ceq t(S,Y1,...,Yn)
= S if not c-t(S,Y1,...,Yn) .”, which says that t changes nothing if the
effective condition does not hold.

As indicated by {constr}, init and each t are constructors of sort Sys1.
They construct RS .

A simple example is used to describe OTSs. The example used is a flawed
mutual exclusion protocol.

Example 1 (Flawed Mutex Protocol). Multiple processes share a Boolean variable
locked whose initial value is false. Each process executes the pseudo-program:

Loop: “Remainder Section”
rs: wait until locked = false;
es: locked := true;

1 Sort Sys denotes RS but not Υ if the constructor-based logic[11] is adopted, which
is the current underlined logic of the OTS/CafeOBJ method.

“Critical Section”
cs: locked := false;

Initially each process is in Remainder Section (RS). If a process wants to enter
Critical Section (CS), it waits at label rs until locked becomes false and then sets
locked to true at label es before entering CS. When it leaves CS, it sets locked
to false at label cs and then goes back to RS.

How to specify an OTS SFMP formalizing the protocol is described. Two
observers are used. The corresponding observation operators are as follows: “op
locked : Sys -> Bool” and “op pc : Sys Pid -> Label”, where sort Pid
denotes process identifiers (IDs) and sort Label denotes the labels rs, es and cs.
locked returns the value of locked in a given state, and pc returns the label at
which a given process is in a given state.

In the rest of this section, let S, I and J be CafeOBJ variables of sorts Sys,
Pid and Pid, respectively. The values returned by the two observers in an arbi-
trary initial state denoted by init are specified as follows: “eq locked(init)
= false .” and “eq pc(init,I) = rs .”.

Three transitions are used. The corresponding transition operators are as fol-
lows: “ops try enter exit : Sys Pid -> Sys {constr}”. try, enter, and
exit correspond to one iteration of the loop at label rs, the assignment at label
es, and the assignment at label cs, respectively.

The set of equations specifying how try changes the values observed by the
two observers is as follows:

eq locked(try(S,I)) = locked(S) .
ceq pc(try(S,I),J)
= (if I = J then es else pc(S,J) fi) if c-try(S,I) .
ceq try(S,I) = S if not c-try(S,I) .

where c-try(S,I) is defined as pc(S,I) = rs and not locked(S). enter and
exit are defined likewise. Let MUTEX be a module in which SFMP is specified.

2.2 Falsification by Structural Induction

Verification of invariants is conducted by writing proof scores in CafeOBJ and
executing them with the CafeOBJ system. Verification that a state predicate
is an invariant wrt SFMP is used as an example to describe how to write proof
scores in CafeOBJ. The state predicate used is (∀I, J : Pid) inv1(S,I,J), where
inv1(S,I,J) is pc(S,I) = cs and pc(S,J) = cs implies I = J. The pred-
icate formalizes what is called the mutual exclusion property. Let MUTEX-PREDS
be a module in which MUTEX is imported (namely that it is available) and state
predicates to verify such as inv1 are specified.

Verification starts with use of the structural induction on RSFMP (or sort
Sys). Then, we have four CafeOBJ code fragments because there are the four
constructors. Two out of the four CafeOBJ code fragments enclosed with com-
mands open and close are as follows:

open MUTEX-BASE open MUTEX-ISTEP
red inv1(init,i,j) . eq s’ = enter(s,k) . red istep1 .

close close

MUTEX-BASE is a module in which MUTEX-PREDS is imported. s, s’, i, j
and k are constants declared in MUTEX-BASE. s is used to denote an arbi-
trary state, s’ an arbitrary successor state of s, and i, j and k arbitrary
process identifiers. MUTEX-ISTEP is a module in which MUTEX-BASE is im-
ported. istep1 is a constant declared in MUTEX-ISTEP. istep1 is defined as
inv1(s,i,j) implies inv1(s’,i,j). inv1(s’,i,j) is the formula to prove
in each induction case and inv1(s,i,j) is an instance of the induction hypoth-
esis (∀I, J : Pid) inv1(s,I,J). Command open makes a temporary module in
which a given module is imported, and command close destroys such a tem-
porary module. Command red reduces a given term by regarding equations as
left-to-right rewrite rules. The four CafeOBJ code fragments are the proof score
in progress of inv1. CafeOBJ code fragments in proof scores (in progress as well)
are called proof passages. The proof passage for init is for the base case, while
the remaining three ones for the induction step, or the three induction cases.

If CafeOBJ returns true for a proof passage, the proof passage is discharged.
If CafeOBJ returns true for each proof passage in the proof score of a predicate
and all lemmas used in the proof score have been proved, the predicate has been
proved, namely that it is an invariant wrt an OTS concerned.

CafeOBJ returns true for the proof passage for init and then the base
case is discharged. Since CafeOBJ does not return true for the remaining three,
however, we need to transform the proof passages with case splitting and lemma
conjecture/use.

Let us take the induction case for enter. The proof passage is first trans-
formed into two proof passages with case splitting based on the effective con-
dition of enter. The two proof passages correspond to the two cases: (1)
c-enter(s,k) = false, and (2) c-enter(s,k) = true. CafeOBJ returns true
for the first case but not for the second case. Since c-enter(s,k) = true is
equivalent to pc(s,k) = es, the latter can be used instead of the former. Even
if so, CafeOBJ does not return true for the second case.

The proof passage is next transformed into four proof passages with case split-
ting based on the two propositions i = k and j = k found in the result returned
by CafeOBJ. The four proof passages correspond to the four cases: (1) i = k,
j = k, (2) (i = k) = false, (j = k) = false, (3) i = k, (j = k) = false,
and (4) (i = k) = false, j = k. CafeOBJ returns true for the first two cases
but not for the remaining two cases. Let us take the third case.

The corresponding proof passage is then transformed into two proof pas-
sages with case splitting based on the proposition pc(s,j) = cs. The two proof
passages correspond to the two cases: (1) (pc(s,j) = cs) = false, and (2)
pc(s,j) = cs. CafeOBJ returns true for the first case but false for the sec-
ond case.

The proof passage corresponding to the second case is as follows:

open MUTEX-ISTEP

eq pc(s,k) = es . eq i = k . eq (j = k) = false .
eq pc(s,j) = cs . eq s’ = enter(s,k) . red istep1 .
close

If inv1 holds for SFMP, then an arbitrary state s characterized by the first
four equations in the proof passage is unreachable wrt SFMP. Therefore, we can
conjecture a lemma from the four equations to discharge the proof passage. If one
of such equations such as i = k has a fresh constant as one side and CafeOBJ
still returns false even after replacing all the occurrences of the fresh constant
with the other side in the proof passage and deleting the equation, then we can
use the remaining equations to conjecture a lemma.

For this proof passage, a lemma can be conjectured from the following three
equations by basically conjoining the equations with conjunctions, negating the
obtained formula, and replacing fresh constants with appropriate variables: eq
pc(s,i) = es ., eq (j = i) = false ., and eq pc(s,j) = cs . The lemma
is not(pc(S,I) = es and pc(S,J) = cs and not(I = J)), which is referred
as inv2(S,I,J). This lemmas has the property that if inv1 holds for SFMP, so
does inv2. Or in contrapositive form, if inv2 does not hold for SFMP, neither
does inv1. Lemmas that have this property are called necessary lemmas of the
original predicates[4]. inv2 is a necessary lemma of inv1 and only the lemma
needed to discharge the proof score of inv1.

In the verification of inv2, we conjecture the two lemmas not(pc(S,I) = rs
and pc(S,J) = cs and not(I = J) and not(locked(S))) and not(pc(S,I)
= es and pc(S,J) = es and not(I = J)), which are referred as inv3(S,I,J)
and inv4(S,I,J), respectively. Both inv3 and inv4 are necessary lemmas of
inv2.

We only need inv1 as a lemma to discharge the proof score of inv3, but
conjecture the following lemma for inv4: not(pc(S,I) = es and pc(S,J) =
rs and not(I = J) and not(locked(S))), which is referred as inv5(S,I,J).
inv5 is a necessary lemma of inv4.

In the verification that inv5 holds for SFMP, the following lemma
is conjectured: not(pc(S,I) = rs and pc(S,J) = rs and not(I = J) and
not(locked(S))), which is referred as inv6(S,I,J). inv6 is a necessary lemma
of inv5.

inv6(init,i,j) reduces to false if i is different from j, from which we
can conclude that inv1 does not hold for SFMP because every lemma used is
a necessary lemma of its original predicate. This example demonstrates that
structural induction can also be used to falsify that a system enjoys an invariant.

3 Bounded Model Checking (BMC) of OTSs

Instead of a set of equations, a transition rule can also be used to specify each
transition t ∈ T of an OTS S. If so, the search functionality can be used. The
search functionality is in the form:

red init =(n,d)=>* pattern suchThat cond .

where init is a ground term, pattern a state pattern, cond a Boolean term, and n
and d natural numbers or * denoting the infinity. “suchThat cond” is an option.
The search functionality exhaustively traverses R≤d

S,init in a breadth-first manner
so as to find at most n states such that they match pattern and satisfy cond .
When init is an initial state of S and the negation of a state predicate concerned
is expressed in pattern and cond , the search functionality conducts BMC of an
invariant, namely that it exhaustively traverses R≤d

S,init to find a counterexample
showing that the state predicate is not an invariant.

SFMP is used as an example to describe how to specify transitions in transi-
tion rules. To specify transitions in transition rules, it is necessary to design the
configuration of states. Associative-commutative collections of values observed
by observers can be used as the configuration. For the configuration, the fol-
lowing are declared: “op void : -> Sys {constr}” and “op __: Sys Sys ->
Sys {constr assoc comm id: void}”. Sys is the sort denoting states, which
are constructed with void and the juxtaposition operator. The juxtaposition
operator is associative, commutative, and has void as its identity.

Since SFMP has two observers, the following two operators that hold two
kinds of values observed by the two observers are declared: “op (pc[_]:_) :
Pid Label -> Obs {constr}” and “op locked:_: Bool -> Obs {constr}”.
Obs is a subsort of Sys. Therefore, a collection of terms whose sorts are Obs
denotes a state.

If two processes p1 and p2 participate in the protocol, the initial state (de-
noted by init) is expressed as follows: “eq init = (pc[p1]: rs) (pc[p2]:
rs) (locked: false) .”.

Let S, I, J, L1, L2 and B be CafeOBJ variables of sorts Sys, Pid, Pid, Label,
Label and Bool, respectively, in the rest of the section. The three transitions
are specified in transition rules as follows:

trans [try] : (pc[I]: rs) (locked: false)
=> (pc[I]: es) (locked: false) .

trans [enter] : (pc[I]: es) (locked: B)
=> (pc[I]: cs) (locked: true) .

trans [exit] : (pc[I]: cs) (locked: B)
=> (pc[I]: rs) (locked: false) .

where try, enter and exit enclosed with “[” and “]” are the labels (names) of
the three transition rules, respectively.

The following command (the search functionality) can be used to try to
find a counterexample showing that SFMP does not enjoy the mutual exclu-
sion property: “red init =(1,*)=>* (pc[I]: L1) (pc[J]: L2) S suchThat
(not (L1 == cs and L2 == cs implies I == J)) .”. The command can be
equivalently transformed into “red init =(1,*)=>* (pc[I]: cs) (pc[J]:
cs) S .”. Each of the commands can find a counterexample showing that SFMP

does not enjoy the mutual exclusion property.
Since a state in which inv1 does not hold is located at depth 4 from the

initial state, the following command does not find the counterexample: “red
init =(1,3)=>* (pc[I]: cs) (pc[J]: cs) S .”.

depth d

init

not G

not L

transition t

forward
analysis

backward
analysis

Fig. 1. Forward & backward reachabil-
ity analysis

a transition t
with y1,...,yn

υ

υ’

G(υ)

not G(υ’)

Fig. 2. A situation requesting
a lemma in induction

4 Forward & Backward Reachability Analysis

Our primary goal is to discover a counterexample showing that a state predicate
is not an invariant wrt an OTS S.

4.1 Forward Reachability Analysis

Forward reachability analysis is to start with initial states and traverse the
reachable state space to find some states in which some conditions hold (see Fig-
ure 1). Model checking, especially BMC, is a typical forward reachability analysis
method. The search functionality is also a forward reachability analysis method.
The method is fascinating as well as powerful in that it can fully automatically
discover a counterexample showing that a state predicate is not an invariant.
This is how we have found a counterexample showing that SFMP does not enjoy
the mutual exclusion property in §3.

4.2 Backward Reachability Analysis

Backward reachability analysis method is to start with some states υ1, . . . , υn

(which may or may not be reachable) such that a state predicate does not hold
and traverse the state space backward-reachable from υ1, . . . , υn to check if an
initial state of S is backward-reachable from υi for some i ∈ {1, . . . , n} (see Fig-
ure 1). If an initial state of S is backward-reachable from υi, then υi is reachable
and then the predicate is not an invariant. If any initial state is not backward-
reachable from an arbitrary state in which the predicate does not hold, we can
conclude that the predicate is an invariant.

Structural induction can be regarded as a backward reachability analysis
method. Let us consider an induction case for a transition t, together with
y1, . . . , yn. Let υ′ be t(υ, y1, . . . , yn) for an arbitrary state υ and G be a state

predicate concerned. If G(υ) and ¬G(υ′) (see Figure 2), then all we are con-
cerned with is whether υ is reachable. If it is, G is not an invariant. Otherwise,
this induction case is discharged. To this end, what we can do is to conjecture a
lemma. Although we do not know depthS(init , υ) for some initial state init nor
whether υ is reachable, it is true that υ is backward-reachable from υ′. That is to
say, one step is taken back from a state such that G does not hold by structural
induction. This is how we have found a counterexample showing that SFMP does
not enjoy the mutual exclusion property in §2.2.

4.3 Combination

Both forward and backward reachability analysis methods have the pros and
cons. The search functionality can fully automatically discover a counterexample
showing that a state predicate is not an invariant. This is, however, only the case
when a state in which the predicate does not hold is located at a position that is
not far from a given initial state init . The distance to a state υ from init is not
simply depthS(init , υ). Let d be depthS(init , υ) and then the distance crucially
depends on the number of states in R≤d

S,init .
If the reachable state space is huge or unbounded, there exists an upper

bound d such that R≤d
S,init can be exhaustively traversed but R≤d+1

S,init cannot. If
that is the case, the search functionality may not discover any counterexamples
even though there exist some (see Figure 1). This is due to the notorious state
explosion problem. If R≤4

SFMP,init was too large, the search functionality would
not find a counterexample showing that the protocol does not enjoy the mutual
exclusion property.

As described in §2.2, structural induction can be used to find a counterexam-
ple showing that a state predicate is not an invariant wrt an OTS S. Generally,
however, we need to conjecture a lot of necessary lemmas to have one such
that it does not hold for some initial states. It also costs more than the search
functionality.

But, structural induction may alleviate the state explosion problem, which
bothers the search functionality. If R≤4

SFMP,init was too large, we could try to
find a counterexample for inv2, which is a necessary lemma of inv1. The fol-
lowing command finds a counterexample: “red init =(1,3)=>* (pc[I]: es)
(pc[J]: cs) S .”. The command lets us know the reachable state (pc[p2]:
es) (pc[p1]: cs) (locked: true) in which inv2 does not hold. Conse-
quently, inv1 is not an invariant wrt SFMP, either.

This is how we have come up with one possible way to complement each
other, which is called induction-guided falsification (IGF)[4]. IGF is a combina-
tion of the search functionality (or BMC) and structural induction, but can be
regarded as a combination of forward and backward reachability analysis meth-
ods because structural induction can be regarded as a backward reachability
analysis method. If we exactly obey IGF, namely that every lemma conjectured
is a necessary lemma, then once you find a counterexample for a lemma, you
can quickly conclude that the original state predicate is not invariant. Even if

non-necessary lemmas are used, the basic concept behind IGF, namely a com-
bination of forward and backward reachability analysis methods, can be used.
Non-necessary lemmas are less complicated than necessary lemmas.

Given an OTS S and a state predicate p, let LS,p be a set of lemmas that
can discharge the proof score that p is an invariant wrt S. A variant of IGF is
as follows:

Input: an OTS S, a state predicate p, a natural number d;
Output: Verified or Falsified that p is an invariant wrt S;
1. P := enqueue(empty-queue, p) and Q := ∅.
2. Repeat the following until P = empty-queue.
3. q := top(P) and P := dequeue(P).
4. Search R≤d

S for a state υ such that ¬q(υ).
If such a state is not found, go to 8.

5. Search R≤d
S,υ for a state such that ¬p(υ).

If such a state is found, terminate and return Falsified.
6. Search R≤d

S,υ for a state υ such that ¬mainq(υ), where mainq is a state
predicate in Q, for which q is used as a lemma.
If such a state is found, q := mainq, delete q and the state predicates
that are used as lemmas only for q from P and Q and go to 5.

7. Find a lemma q′ of mainq such that q ⇒ q′ and q′ is not equivalent to q,
q := q′ and go to 4.

8. Compute LS,q by structural induction on RS .
9. Q := Q∪ {q} and enqueue each in LS,q − (Q∪ q2s(P)) into P, where

q2s(P) is the set that consists of the elements of P.
10. Terminate and return Verified.

For example, if inv2 was not a necessary lemma of inv1, the following com-
mand would find a counterexample for inv1: “red (pc[p2]: es) (pc[p1]:
cs) (locked: true) =(1,3)=>* (pc[I]: cs) (pc[J]: cs) S .”.

5 Application of the Variant of IGF to NSPK

5.1 NSPK and Agreement Property

NSPK[7] can be described as the three message exchanges:

Init: p → q {np, p}k(q)

Resp: q → p {np, nq}k(p)

Ack: p → q {nq}k(q)

Each principal such as p and q is given a pair of keys (public and private keys).
{m}k(x) is the ciphertext obtained by encrypting m with the principal x’s public
key. nx is a nonce generated by a principal x.

The agreement property is as follows. Whenever a protocol run has been
successfully completed by p and q,

AP1 the principal that p is communicating with is really q, and
AP2 the principal that q is communicating with is really p.

5.2 Specification for Structural Induction

We use the standard assumptions for protocol verification. Among them are
that the cryptsystem used is perfect and the behaviors of malicious principals
are formalized by the Dolev-Yao intruder[12]. Since we are only interested in
invariants, it is not necessary to consider blocking of messages by the intruder.

A nonce generated by p for sending it to q is denoted by a term n(p, q, r)
whose sort is Nonce, where r is a random number making the nonce unguessable
and unique. Our formalism of NSPK allows a principal to participate in multiple
sessions simultaneously. For each session, a principal needs to generate a fresh
nonce.

Ciphertexts {np, p}k(q), {np, nq}k(p) and {nq}k(q) used in Init, Resp and Ack
messages, respectively, are denoted by terms enc1(q, np, p), enc2(p, np, nq) and
enc3(q, nq), respectively. Their sorts are Cipheri for i = 1, 2, 3, respectively.

Init, Resp and Ack messages are denoted by terms mi(p?, p, q, ei) for i =
1, 2, 3, respectively. Their sorts are Messagei for i = 1, 2, 3, respectively. The
first argument p? is a creator (an actual sender) of the message, the second
argument p a seeming sender, the third argument q a receiver and the fourth
argument ei a ciphertext. The first argument is meta-information in that when
q receives mi(p?, p, q, ei), q cannot loot at p?. If p? is different from p, then p? is
the intruder and the message has been faked by the intruder.

The network is formalized as an associative-commutative collection of mes-
sages whose sort is Network. Associative-commutative collections may be called
just collections. A constant empty and a juxtaposition operator are the construc-
tors of collections of not only messages but also the others such as nonces. We
suppose that once a message mi(p?, p, q, ei) is put into the network, it will be
never deleted, and if there exists such a message in the network, q can receive
it. When q has received it, q thinks that it originates in p.

We formalize the behaviors of NSPK as an OTS SNSPK. We use three
observers that are denoted by the observation operators: “op network :
System -> Network”, “op rands : System -> RandSoup”, and “op nonces
: System -> NonceSoup”, where System is a sort denoting the (reachable) state
space, RandSoup a sort denoting collections of random numbers, and NonceSoup
a sort denoting collections of nonces. Given a state s, network(s) returns the
network, the collections of messages that haven been sent up to s, rands(s) the
collection of (old) random numbers that have been used up to s, and nonces(s)
the collection of nonces that have been gleaned by the intruder up to s.

An arbitrary initial state is denoted by a constant init whose sort is System.
init is a constructor of System. The three observation operators return empty
for init.

Three transitions are used to formalize sending Init, Resp and Ack messages
exactly obeying the protocol, respectively. The corresponding transition op-
erators are as follows: “op sdm1 : System Principal Principal Random ->
System {constr}”, “op sdm2 : System Principal Principal Principal
Random Nonce -> System {constr}”, and “op sdm3 : System Principal
Principal Principal Nonce Nonce -> System {constr}”.

The set of equations defining sdm2 is as follows:

ceq network(sdm2(S,Q?,P,Q,R,N)) = m2(P,P,Q,enc2(Q,N,n(P,Q,R)))
network(S) if c-sdm2(S,Q?,P,Q,R,N) .
ceq rands(sdm2(S,Q?,P,Q,R,N)) = R rands(S) if c-sdm1(S,P,Q,R) .
ceq nonces(sdm2(S,Q?,P,Q,R,N)) = (if Q = intruder then N n(P,Q,R)
nonces(S) else nonces(S) fi) if c-sdm2(S,Q?,P,Q,R,N) .
ceq sdm2(S,Q?,P,Q,R,N) = S if not c-sdm2(S,Q?,P,Q,R,N) .

where c-sdm2(S,Q?,P,Q,R,N) is m1(Q?,Q,P,enc1(P,N,Q)) \in network(S)
and not(R \in rands(S)).

The remaining two transition operators can be defined likewise. Symbols
that appear in terms and are composed of capitals, numerals and ? are CafeOBJ
variables in this section. Among them are S, Q? and RS2. Theirs sorts can be
understood from the context.

c-sdm2(S,Q?,P,Q,R,N) says that there exists an Init message that seems to
have been sent to Q by P in the network and R is a fresh random number. If
that is the case, Q can receive the message and finds that the message obeys the
protocol. Then, the Resp message m2(P,P,Q,...) is put into the network as the
reply to the Init message. Since R is used in m2(P,P,Q,...), it is put into the
collection of old random numbers. If Q is the intruder, the intruder can decrypt
the ciphertext in m2(P,P,Q,...) and obtain the two nonces in it, which are put
into the collection of nonces. Otherwise, the collection of nonces does not change.
If c-sdm2(S,Q?,P,Q,R,N) does not hold. nothing changes. Receiving messages
are implicitly formalized in transition operators.

Two kinds of values can be used to fake messages: messages and nonces.
Since there are three kinds of messages, we use six transitions to formalize fak-
ing messages based on the gleaned information by the intruder. Due to the
space limitation, we only describe two transitions faking Resp messages based
on messages and nonces, respectively. The corresponding transition operators are
as follows: “op fkm21 : System Principal Principal Message2 -> System
{constr}” and “op fkm22 : System Principal Principal Nonce Nonce ->
System {constr}.

The remaining four transition operators can be declared likewise.
The set of equations defining fkm22 is as follows:

ceq network(fkm22(S,P,Q,N1,N2)) = m2(intruder,P,Q,enc2(Q,N1,N2))
network(S) if c-fkm22(S,P,Q,N1,N2) .

eq rands(fkm22(S,P,Q,N1,N2)) = rands(S) .
eq nonces(fkm22(S,P,Q,N1,N2)) = nonces(S) .
ceq fkm22(S,P,Q,N1,N2) = S if not c-fkm22(S,P,Q,N1,N2) .

where c-fkm22(S,P,Q,N1,N2) is N1 \in nonces(S) and N2 \in nonces(S)
and not(N1 = N2). c-fkm22(S,P,Q,N1,N2) says that the intruder has gleaned
two different nonces. If that is the case, the intruder can fake a Resp mes-
sage m2(intruder,P,Q,...), which is put into the network. Otherwise, nothing
changes.

fkm21 and the remaining four transition operators can be defined likewise.

5.3 Specification for Search

Since there are the three observers, the following three operators are used to hold
the values observed by them: “op network:_: Network -> Obs {constr}”,
“op rands:_: RandSoup -> Obs {constr}”, and “op nonces:_: NonceSoup
-> Obs {constr}”. In addition to them, two more operators are used to hold
two values: “op prins:_: PrinSoup -> Obs {constr}” and “op rands2:_:
RandSoup -> Obs {constr}”, where PrinSoup is a sort denoting collections of
principals. The first operator holds a collection of principals participating in the
protocol and the second a collection of fresh random numbers that can be used
in the protocol. The two values are not modified by any transitions.

We suppose that three principals including the intruder participate in the
protocol and two fresh random numbers are available. Then, the initial state de-
noted by init is expressed as “(network: empty) (rands: empty) (nonces:
empty) (prins: (p q intruder)) (rands2: (r1 r2))”.

The transition denoted by sdm2 is specified in the following transition rule:

ctrans [sdm2] : (network: (m1(Q?,Q,P,enc1(P,N,Q)) NW))
(rands: RS) (nonces: NS) (rands2: (R RS2))
=> (network: (m2(P,P,Q,enc2(Q,N,n(P,Q,R)))

m1(Q?,Q,P,enc1(P,N,Q)) NW))
(rands: (R RS))
(nonces: (if Q == intruder then N n(P,Q,R) NS else NS fi))
(rands2: (R RS2)) if not(R \in RS) .

The transition denoted by fkm22 is specified in the following transition rule:

trans [fkm22] :
(network: NW) (nonces: (N1 N2 NS)) (prins: (P Q PS))
=> (network: (m2(intruder,P,Q,enc2(Q,N1,N2)) NW))
(nonces: (N1 N2 NS)) (prins: (P Q PS)) .

The remaining seven transitions can be specified likewise.

5.4 Falsification

AP2 is formalized in terms of the following state predicate inv2:

eq inv2(S,P,Q,P?,R,N) = (not(Q = intruder) and
m2(Q,Q,P,enc2(P,N,n(Q,P,R))) \in network(S) and
m3(P?,P,Q,enc3(Q,n(Q,P,R))) \in network(S)
implies m3(P,P,Q,enc3(Q,n(Q,P,R))) \in network(S)) .

AP1 can also be formalized likewise.
What we did first is to find an upper bound d such that R≤d

SNSPK,init can
be exhaustively traversed as follows: “red init =(1,5)=>* S suchThat false
.”. On a laptop with 2.33GH CPU and 3GB RAM, 5 was the upper bound2.
2 Since the implementation of the CafeOBJ search functionality was not matured

enough, Maude was used to conduct the experiment described in this section.

In R≤5
SNSPK,init, no counterexample was discovered for inv1 and inv2. The

following command tries to find a counterexample for inv2:

red init =(1,5)=>* (network: (m2(Q,Q,P,enc2(P,N,n(Q,P,R)))
m3(P?,P,Q,enc3(Q,n(Q,P,R))) NW)) S
suchThat (not(not(Q == intruder) implies
m3(P,P,Q,enc3(Q,n(Q,P,R))) \in m3(P?,P,Q,enc3(Q,n(Q,P,R))) NW)) .

Then, we conjectured lemmas to discharge the proof scores of inv1 and inv2.
Five lemmas were conjectured. Two out of them are as follows:

eq inv4(S,P,Q,N,R,M2) = (not(P = intruder) and not(Q = intruder)
and m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in network(S) and
M2 \in network(S) and cipher2(M2) = enc2(P,n(P,Q,R),N)
implies m2(Q,Q,P,enc2(P,n(P,Q,R),N)) \in network(S)) .

eq inv5(S,N) = (N \in nonces(S)
implies creator(N) = intruder or forwhom(N) = intruder) .

Each of the five lemmas is a necessary one of neither inv1 not inv2.
No counterexample was found in R≤5

SNSPK,init for the four lemmas including
inv4. But, a counterexample was found for inv5, which formalizes what is called
the nonce secrecy property. Hence, NSPK does not enjoy the nonce secrecy
property. Since inv5 is a necessary lemma of neither inv1 nor inv2, however, we
cannot immediately conclude that NSPK does not enjoy the agreement property.

The state in which inv5 does not hold is as follows:

eq s115890 = (nonces: (n(q,p,r2) n(p,intruder,r1)))
(network: (m1(intruder,p,q,enc1(q,n(p,intruder,r1),p))
m1(p,p,intruder,enc1(intruder,n(p,intruder,r1),p))
m2(intruder,intruder,p,enc2(p,n(p,intruder,r1),n(q,p,r2)))
m2(q,q,p,enc2(p,n(p,intruder,r1),n(q,p,r2)))
m3(p,p,intruder,enc3(intruder,n(q,p,r2)))))
(rands: (r1 r2)) (prins: (intruder p q)) (rands2: (r1 r2)) .

The state, which is reachable, is reported by the search functionality. This is the
115890th state that the search functionality has visited from init.

Instead of R≤5
SNSPK,init, we can then traverse R≤5

SNSPK,s115890 to find a coun-
terexample for inv1 and inv2. But, R≤5

SNSPK,s115890 was too large to be exhaus-
tively traversed. Therefore, we traversed R≤4

SNSPK,s115890 to find a counterexample
for inv1 and inv2. The command to find a counterexample for inv2 is as follows:

red s115890 =(1,4)=>* (network: (m2(Q,Q,P,enc2(P,N,n(Q,P,R)))
m3(P?,P,Q,enc3(Q,n(Q,P,R))) NW)) S
suchThat (not(not(Q == intruder) implies
m3(P,P,Q,enc3(Q,n(Q,P,R))) \in m3(P?,P,Q,enc3(Q,n(Q,P,R))) NW)) .

No counterexample was found for inv1 but a counterexample was found for
inv2. The counterexample found is the same as that was found by Lowe[13].

6 Related Work

Another possible combination of BMC and structural induction has been pro-
posed: k-induction[14]. It has been implemented in SAL[15], which is a toolkit
for analyzing state machines. The primary purpose of k-induction is verification.
k-induction can be used to verify that a system (formalized as a state machine)
enjoys an invariant. It is, however, necessary to fix the number of entities (such
as processes) participating in a system. Since standard structural induction is
used in (the variant of) IGF, only one step is taken back from a state in which
a state predicate concerned does not hold. k-induction allows to take more than
one step back from such a state. Hence, it may make (the variant of) IGF more
powerful to adopt k-induction, which is one piece of our future work.

Maude-NPA[3] has been implemented in Maude[6], relying on the narrow-
ing search functionality. While the term init should be ground in the ordinary
search functionality, it can contain variables in the narrowing search function-
ality. Hence, init can express an arbitrary state in which a state predicate con-
cerned does not hold. The (ordinary and narrowing) search functionality can
conduct a backward reachability analysis by reversing the transition rule speci-
fying each transition. This is how Maude-NPA conducts a backward reachability
analysis. The backward reachability analysis method used by Maude-NPA may
be used for (the variant of) IGF. If so, we only need to have one type of spec-
ifications in which transitions are specified in transition rules. This is another
piece of our future work. The narrowing search functionality may be used to
implement more general k-induction such that it is not necessary to fix number
of entities participating in a system. This is yet another piece of our future work.

7 Conclusion

The primary purpose of (the variant of) IGF is to falsify that a system enjoys
a property. The mainly used technique for this purpose is testing, which can be
roughly classified into exhaustive and non-exhaustive testing. (Bounded) Model
checking can be used for the former. Daniel Jackson, who is the main designer of
Alloy[2], has formed the small scope hypothesis, which says that most errors can
be found by testing a program for all test inputs within some small scope[16].
This implies that it is more beneficial to exhaustively test a program within some
small scope than to test it for some randomly generated test cases within larger
scope. This is why Alloy has adopted a SAT-based bounded model checker.

The state in which AP2 (inv2) does not hold has not been found within
the small scope such that the search functionality can exhaustively traverse the
scope. Some may suggest that the nonce secrecy property should be taken into
account instead of the agreement property because the former is more fundamen-
tal than the latter for authentication protocols. This is why almost all analyzes
of NSPK have taken into account the nonce secrecy property[8, 9, 3]. Generally,
however, we do not know in advance what is more fundamental than a property
concerned such as the agreement property for a system such as NSPK. There-
fore, we need to extend the scope that can be exhaustively traversed so as to find

more errors. This is why (the variant of) IGF has been proposed and a backup
case study has been conducted.

One piece of our future work is to design and implement a tool supporting
(the variant of) IGF. We may use the translator[17] from state machine specifi-
cations in CafeOBJ into those in Maude and the technique to discover lemmas
used in Crème[18], an automatic invariant prover for state machine specifications
in CafeOBJ.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: 5th TACAS. LNCS 1579, Springer (1999) 193–207

2. Jackson, D.: Alloy: A lightweight object modeling notation. ACM TOSEM 11
(2002) 256–290

3. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the
NRL protocol analyser and its meta-logical properties. TCS 367 (2006) 162–202

4. Ogata, K., Nakano, M., Kong, W., Futatsugi, K.: Induction-guided falsification.
In: 8th ICFEM. LNCS 4260, Springer (2006) 114–131

5. Diaconescu, R., Futatsugi, K.: CafeOBJ report. AMAST Series in Computing, 6.
World Scientific (1998)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude – A High-Performance Logical Framework: How to Specify,
Program and Verify Systems in Rewriting Logic. LNCS 4350. Springer (2007)

7. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. CACM 21 (1978) 993–999

8. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: 2nd TACAS. LNCS 1055, Springer (1996) 147–166

9. Denker, G., Meseguer, J., Talcott, C.: Protocol specification and analysis in Maude.
In: Workshop on Formal Methods and Security Protocols. (1998)

10. Ogata, K., Futatsugi, K.: Some tips on writing proof scores in the OTS/CafeOBJ
method. In: Algebra, Meaning, and Computation: A Festschrift Symposium in
Honor of Joseph Goguen. LNCS 4060, Springer (2006) 596–615

11. Gâinâ, D., Futatsugi, K., Ogata, K.: Constructor-based institutions. In: 3rd
CALCO. LNCS 5728, Springer (2009) 398–412

12. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE TIT IT-29
(1983) 198–208

13. Lowe, G.: An attack on the Needham-Schroeder public-key authentication proto-
col. IPL 56 (1995) 131–133

14. de Moura, L., Rueß, H., Sorea, M.: Bounded model checking and induction: From
refutation to verification. In: 15th CAV. LNCS 2392, Springer (2003) 14–26

15. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:
SAL 2. In: 16th CAV. LNCS 3114, Springer (2004) 496–500

16. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006)

17. Zhang, M., Ogata, K., Nakamura, M.: Specification translation of state machines
from equational theories into rewrite theories. In: 12th ICFEM. LNCS (this vol-
ume), Springer (2010)

18. Nakano, M., Ogata, K., Nakamura, M., Futatsugi, K.: Crème: An automatic in-
variant prover of behavioral specifications. IJSEKE 17 (2007) 783–804

