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ABSTRACT
Many cochlear implant (CI) users are able to understand
speech in quiet listening conditions, however, CI users’
speech recognition deteriorates rapidly as the level of back-
ground noise increases. To make CI more applicable in real-
life environments, noise reduction is needed in CI proces-
sor. Recently, we presented a psychoacoustically-motivated
adaptive β-order generalized spectral subtraction (GSS)
which deals with the weakness of the traditional SS algo-
rithms [9, 10]. To apply this adaptive β-order GSS into CI
processor, in this paper, we investigate the effects of noise
estimation approaches and residual noise components for the
proposed adaptive β-order GSS. Word-in-sentence recog-
nition in steady white noise and speech babble noise was
measured in four CI users. Experimental results showed that
1) noise estimation significantly affected performance of the
proposed algorithm, 2) the algorithm with the least resid-
ual noise components was preferred by CI subjects, and 3)
the proposed psychoacoustically-motivated adaptive β-order
GSS outperformed the traditional SS algorithms.

Index Terms— Speech intelligibility, Band-importance
function, Adaptive β-order GSS, Cochlear implant.

1. INTRODUCTION

Assistive hearing devices (e.g., hearing aids, cochlear im-
plants) have restored hearing sensation to many hearing-
impaired individuals. Many cochlear implant (CI) users are
able to understand speech in optimal, quiet listening condi-
tions. However, most devices provide limited benefit in the
presence of background noise or competing speech [1].
To reduce the effects of background noise, many single-

and multi-microphone noise reduction algorithms have been
utilized to improve the quality and/or intelligibility of the
noisy speech [2]. In CI devices, single-microphone tech-
niques are more desirable and appealing than those based on

This study is supported by a Grant-in-Aid for Young Scientists (B) (No.
19700156) from the Ministry of Education, Science, Sports and Culture of
Japan.

multi-microphone inputs [3]. Within the single-microphone
technique, spectral subtraction (SS) has widely been used
due to its simplicity in implementation, and improved to
overcome its shortcomings in different ways [4, 5, 6, 7].
Yang and Fu investigated the benefits of preprocessing the
noisy signal by a standard SS algorithm and showed the
significant benefits in CI users’ word-in-sentence recogni-
tion [8]. In the original SS and its modifications, however,
the spectral order β is usually fixed to some constants, which
greatly limits the noise-reduction benefits in complex and
real-world environments [9]. Moreover, the traditional SS
algorithms are primarily designed to improve speech quality
rather than speech intelligibility, which is a crucial demand
for CI users [4, 5, 6, 7]. To overcome these drawbacks and
improve speech intelligibility, we recently proposed an adap-
tive β-order generalized spectral subtraction (GSS) method
that incorporated the psychoacoustic knowledge on speech
intelligibility, e.g., band-importance function [10]. In the pro-
posed adaptive β-order GSS, the spectral order β is updated
frame by frame within each subband according to the input
local signal-to-noise ratios (SNRs) in the time-frequency do-
main [10]. In its original implementation, the noise spectrum
is assumed to be known a priori. However, to be benefi-
cial in real-world environments, the noise spectrum must be
estimated from the noisy speech signal.

To make the proposed adaptive β-order GSS more appli-
cable for CI users, in this paper, we investigate the effects of
different noise estimation approaches and residual noise com-
ponents for the proposed adaptive β-order GSS on CI users’
speech recognition performance in noise. The effect of noise
estimation was examined by utilizing two noise estimation
approaches: 1) soft-decision based noise estimation and 2)
robust voice activity detector (VAD) based noise estimation.
The effect of residual noise components was investigated by
applying a VAD-based technique to remove all residual noise
components during speech absence periods. Finally, CI users’
word-in-sentence recognition performance was compared be-
tween the proposed adaptive β-order GSS algorithm and the
traditional SS algorithms.

4665978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



2. PSYCHOACOUSTICALLY-MOTIVATED
ADAPTIVE β-ORDER GSS

2.1. β-order GSS

The β-order GSS is defined as [7]∣∣∣Ŝβ (k, �)
∣∣∣β =aβ (k, �)

∣∣∣X(k, �)
∣∣∣β−bβ(k, �)E

[∣∣∣N(k, �)
∣∣∣∣
β]

, (1)

where β denotes the spectral order; aβ(k, �) and bβ(k, �) are
two parameters; k and � are the frequency bin index and the
time frame index; X(k, �), N(k, �), and Ŝβ (k, �) are the
STFTs of the noisy signal, the noise signal and the enhanced
signal by the β-order GSS. Under the complex Gaussian as-
sumption of the spectra of the clean and noise signals, the
gain function of the β-order GSS is derived as [7]
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where ξβ(k, �) and γ(k, �) are the a priori SNR and the a pos-
teriori SNR as defined in [11]; Γ(·) denotes the Gamma func-
tion. The estimate of ξβ(k, �) is updated in a decision-directed
scheme, greatly decreasing the residual “musical” noise [11].

2.2. Psychoacoustically-motivated adaptive β-order GSS

The proposed adaptive β-order GSS is derived based on the
following two observations [10]:

1. SNRs vary greatly with time due to the time-varying
characteristics of speech and noise signals, and also sig-
nificantly vary in different subbands because of the col-
orness of noise signals and the non-uniform distribution
of spectral energy in speech signals. As a result, speech
signal corrupted by real-world noises is characterized
by different local SNRs, which results in that the ap-
propriate value of spectral order β must be adaptively
determined according to the local SNRs for different
partitions in the time-frequency domain.

2. Different frequency bands contribute different amounts
to speech intelligibility, which is defined by the band-
importance function [12]. As a result, the band-
importance function should be integrated when de-
termining the appropriate value of spectral order β.

Then, we propose to optimize the spectral order β by min-
imizing the overall intelligibility-weighted distance between
the spectral amplitude

∣∣S(k, �)
∣∣ of the clean signal and that of

its estimate
∣∣Ŝβ(k, �)

∣∣ summed across all subbands, that is,
βopt= arg min

0.1≤β≤3.0

(
M∑

m=1

ωm+1∑
k=ωm

Im

[∣∣S(k, �)
∣∣−∣∣Ŝβ(k, �)

∣∣]2
)
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where Im is the band-importance function in the m-th sub-
band [12], M is the number of subbands, ωm denotes the
boundary frequency of the m-th subband, and the range of
β is empirically confined to [0.1, 3.0]. Through a data-driven
optimization processing, it is shown that the optimized value
of the spectral order β(m, �) should be adaptively updated
frame by frame in each subband, given by [10]

β̂(m, �) =
B

1 + e−A
[
ρ(m,�)−D

] , (4)

where ρ(m, �) is the local SNR in the m-th subband and �-
th frame, the parameter A controls the changing speed of
the value of β̂(m, �), B determines the range of the value of
β̂(m, �), andD denotes the shift along the SNR axis. Accord-
ing to the optimization results in [10], these parameters were
optimized as A = 0.1, B = 2.0 and D = 7.0. The local SNR
ρ(m, �) is calculated as

ρ(m, �) = 10 log10

⎛
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⎞
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where N̂(k, �) is the noise spectrum estimate that has to be
calculated from the observed noisy signal.

2.3. Noise spectrum estimation

The accuracy of noise spectrum estimation would be expected
to affect the performance of the proposed adaptive β-order
GSS. To investigate this effect, two noise spectrum estima-
tion approaches were tested: 1) the soft-decision based noise
estimation approach [13], and 2) the robust voice activity de-
tection (VAD) based noise estimation approach [14].

2.3.1. soft-decision based noise estimation

The soft-decision based noise estimation approach is given by

E
[|N(k, �)|2] = αE

[|N(k, � − 1)|2]
+ (1 − α)E

[
|N(k, �)|2

∣∣∣X(k, �)
]
,

(6)

where α (0 < α < 1) is a forgetting factor. Under speech
presence uncertainty, the second term in the right side of
Eq. (6) can be estimated as

E
[
|N(k, �)|2

∣∣∣X(k, �)
]
= q(k, �)|X(k, �)|2

+
(
1−q(k, �)

)
E

[|N(k, �−1)|2] .
(7)

where q(k, �) is the speech absence probability defined in [11].

2.3.2. VAD based noise estimation

To determine speech activity, the following VAD decision rule
was used [14]

1
Ωm

ωm+1∑
k=ωm

[
γ(k, �)ξ(k, �)
1 + ξ(k, �)

− log
(
1 + ξ(k, �)

)]
>H1
<H0

δ, (8)
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where Ωm denotes the number of frequency bin in the m-th
subband, H1 and H0 denote the hypothesis of speech pres-
ence and absence, respectively; δ is a fixed threshold set to
δ = 0.5 [14]. Finally, the noise spectrum is updated during
speech-absence periods.

2.4. Residual noise processing

In the proposed adaptive β-order GSS, the residual noise is
expected to be more stationary due to the use of the decision-
directed a priori SNR estimation. To test the effects of the
residual noise components, a VAD-based post-processing
technique was implemented to remove all the noise com-
ponents during speech pauses based on the output of the
adaptive β-order GSS.

3. PERFORMANCE EVALUATIONS

3.1. Subjects

Four post-lingually deafened adults using the Nucleus and
Clarion cochlear implant device participated in this study. All
were native speakers of American English and had at least
nine years experience with the device. All implant subjects
had extensive experience in speech recognition experiments.

3.2. Test materials and procedures

Word-in-sentence recognition was measured using IEEE sen-
tence materials [15]. Sentence stimuli were digitized record-
ings produced by 1 male talker (recorded at House Ear Insti-
tute). Sentence materials were normalized to have the same
long-term RMS (65 dB). Word-in-sentence recognition was
tested in the presence of two types of noise: 1) computer-
generated white Gaussian noise and 2) multi-talker speech
babble noise. Noise was added to the clean speech at 5dB
and 0 dB SNRs, where the long term average of each sen-
tence was used to calculate the SNR. Speech and noise were
mixed together at the target SNR and then processed by the
noise-reduction algorithms.
Baseline performance was first tested for all noise types

and SNRs without any noise reduction. Three experimen-
tal adaptive β-order GSS algorithms were tested: 1) soft-
decision based noise estimation (SD), 2) voice activity de-
tection based noise estimation (VAD) and 3) VAD with post-
filter processing to remove all residual noise (VADPF). In ad-
dition, three traditional SS algorithms were tested with fixed
β-order values: β= 0.5, 1.0, and 2.0. All stimuli were pre-
sented over a single loudspeaker at a comfortably-loud listen-
ing level (fixed speech level = 65 dBA). Subjects were tested
using their clinically assigned CI speech processors; subjects
were asked to set their microphone sensitivity and volume set-
tings for comfortably-loud speech and to not change these set-
tings or their processor program for the duration of the exper-
iment. Subjects were tested while seated in a sound-treated

Fig. 1. Word-in-sentence recognition by four CI users for original
speech-in-noise and the proposed adaptive β-order GSS algorithms
with noise estimation based on either soft-decision (SD) or voice
activity detector (VAD) noise estimation techniques. The error bars
show one standard error of the mean.

booth. During testing, a list was chosen randomly (without
replacement) from among 60 lists, and sentences were cho-
sen randomly (without replacement) from among the 10 sen-
tences within that list. Subjects responded by repeating the
sentence as accurately as possible; the experimenter tabulated
correctly identified words and sentences. At least two sen-
tence lists were tested for each condition. Processing con-
ditions, noise types and SNR levels were randomized within
and across subjects.

3.3. Evaluation results and discussions

3.3.1. Effect of noise estimation techniques

Speech recognition performance was compared between orig-
inal speech-in-noise and the proposed adaptive β-order GSS
algorithm with different (SD and VAD) noise estimation ap-
proaches. As shown in Fig. 1, both noise estimation tech-
niques produced markedly better speech performance. A two-
way repeated measures analysis of variance (RM ANOVA)
showed that both algorithms significantly improved perfor-
mance in noise [F(2,18)=25.25, p=0.001].

3.3.2. Effect of residual noise components

To examine the effect of residual noise components on perfor-
mance, word-in-sentence recognition was compared between
original speech-in-noise, and the proposed adaptive β-order
GSS with (VADPF) and without (VAD) post-filter process-
ing. The VADPF processing removed all residual noise com-
ponents, as described in section 2.4. As shown in Fig. 2,
both techniques provided improved speech performance in
noise. A two-way RM ANOVA showed that both algorithms
significantly improved performance in noise [F(2,18)=17.18,
p=0.003]. While performance was slightly better with the
VAD algorithm, post-hoc Bonferroni t-tests showed no sig-
nificant effect for post-processing.
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Fig. 2. Improvement in performance (relative to original speech-
in-noise) for the VAD noise estimation algorithm, with (VADPF) or
without (VAD) post-filtering to remove all residual noise. The error
bars show one standard error of the mean.

Fig. 3. Improvement in performance (relative to original speech-in-
noise) for the proposed adaptive β-order GSS and three traditional
SS algorithms with fixed β values. The error bars show one standard
error of the mean.

3.3.3. Superiority of the adaptive β-order GSS

Performance of the proposed adaptive β-order GSS was com-
pared to that of the traditional SS methods with fixed spec-
tral order β values. For the traditional SS methods, β was
fixed at 2.0 (power SS), 1.0 (amplitude SS) or 0.5 in Eq. (2).
In all these algorithms, the VAD based noise estimation was
exploited without the post processing for removing the resid-
ual noise components. As shown in Fig. 3, the adaptive β-
order GSS provided a much greater improvement in speech
understanding in noise. A two-way RM ANOVA showed
that all the algorithms significantly improved performance in
noise [F(4,12)=22.92, p<0.003]. Post-hoc Bonferroni t-tests
showed that the adaptive β-order GSS provided significantly
better performance than the traditional SS algorithms with
fixed β values (p<0.05), and that there was no significant dif-
ference between the SS algorithms with the fixed β values.

4. CONCLUSION

In this paper, we proposed and tested a psychoacoustically-
motivated adaptive β-order GSS. Speech recognition in noise
was tested in CI users with and without the proposed noise-
reduction algorithms. Results showed that the adaptive β-
order outperformed the traditional SS algorithms with fixed
β-order values. Experimental results also showed that noise
estimation plays a crucial role in the proposed adaptive β-
order GSS, and that CI users preferred the proposed adaptive
β-order GSS algorithm without residual noise processing.
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