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Abstract—In state-of-the-art voice conversion systems, GMM-
based voice conversion methods are regarded as some of the
best systems. However, the quality of converted speech is still far
from natural. There are three main reasons for the degradation
of the quality of converted speech: (i) modeling the distribution
of acoustic features in voice conversion often uses unstable
frames, which degrades the precision of GMM parameters (ii)
the transformation function may generate discontinuous features
if frames are processed independently (iii) over-smooth effect
occurs in each converted frame. This paper presents a new
spectral voice conversion method to deal with the two first draw-
backs of standard spectral modification methods, insufficient
precision of GMM parameters and insufficient smoothness of the
converted spectra between frames. A speech analysis technique
called temporal decomposition (TD), which decomposes speech
into event targets and event functions, is used to effectively
model the spectral evolution. For improvement of estimation
of GMM parameters, we use phoneme-based features of event
targets as spectral vectors in training procedure to take into
account relations between spectral parameters in each phoneme,
and to avoid using spectral parameters in transition parts. For
enhancement of the continuity of speech spectra, we only need
to convert event targets, instead of converting source features
to target features frame by frame, and the smoothness of
converted speech is ensured by the shape of the event functions.
Experimental results show that our proposed spectral voice
conversion method improves both the speech quality and the
speaker individuality of converted speech.

Keywords: spectral voice conversion, temporal decompo-

sition, Gaussian mixture model (GMM)

I. INTRODUCTION

The aim of voice conversion is to convert a speaker voice

(source speaker) to sound as if it were the voice of a defined

speaker (target speaker). Applications of voice conversion

systems can be found in several fields, such as Text-to-Speech

customization, automatic translation, education, medical aids

and entertainment, etc..

The core process in a voice conversion system is the

transformation of the spectral envelope of the source speaker

to match that of the target speaker. There are many approaches

which have been proposed to implement the transform function

for converting source features to target features, such as

codebook-based conversion [1], neural network-based con-

version [2], hidden Markov model (HMM)-based conversion

[3], and Gaussian mixture model (GMM)-based conversion

[4] [5] [6] [7] [8] [9] [10] [11] [12] [13]. Among those

techniques, the vast majority of the current voice conversion

systems focus on data-driven GMM-based transformation on

the spectral aspects of conversion. Research results found in

the literature have shown that the GMM-based approaches can

be used successfully in voice conversion. These approaches

are still regarded as robust and capable of producing high

speech quality [10]. Although the GMM-based voice con-

version methods can give reasonably acceptable speech, the

quality of converted speech is still far from natural. Three

major problems remain to be solved, i.e. insufficient pre-

cision of GMM parameters, insufficient smoothness of the

converted spectra between frames, and over-smooth effect in

each converted frame. This paper deals with the first two of the

three drawbacks in a GMM-based voice conversion system,

insufficient precision of GMM parameters, and insufficient

smoothness of the converted spectra between frames.

A GMM-based voice conversion method normally includes

two parts, a training procedure and a transformation proce-

dure. In the training procedure, the methods are often based

on parallel training data, where both the source and target

speakers utter the same sentences. In this case, the dynamic

time warping (DTW) algorithm is often used to align the two

signals, to extract matching source and target training vectors.

Both unstable frames, which often come from transition parts

between phonemes, and stable frames are used to model the

distribution of acoustic features. This leads to addition of

noise to the GMM parameters. To overcome this drawback,

some solutions have been proposed. In the work of Kumar

and Verma [8], acoustic space of a speaker was partitioned

explicitly into phones using the phonetic alignments and GMM

was used for finer modeling of each phone. This approach

could prevent the interference of frames between phones.

However, it still used unstable frames in each phone. Liu et

al. [11] segmented frames according to each phoneme, and

eliminated unstable frames in each phoneme by proposing a

method for identifying stable frames based on limitation of

maximal variation range for the first three formant frequencies.

After getting the stable frames, Liu et al. also used GMM

to model the distribution of acoustic features. Nguyen and

Akagi [13] used event targets as spectral vectors to estimate
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GMM parameters, instead of using spectral parameters of

aligned frames. However, all methods in [8], [11], and [13]

did take into account the relations between frames when

estimating GMM parameters. GMM parameters therefore are

more precisely estimated when being considered the relations

between frames.

In the transformation procedure, there are two main draw-

backs, i.e. insufficient smoothness of the converted spectra

between frames, and over-smooth effect in each converted

frame. Until now, most voice conversion methods perform

voice transformation function frame by frame. This means that

to convert one frame, the information about past and future

frames is not relevant. This may cause a discontinuity prob-

lem between adjacent frames when unexpected modifications

happen in some frames. As a result, there are some clicks

in the converted speech. Moreover, Knagenhjelm and Kleijn

[14] pointed out that spectral discontinuities between adjacent

frames were one of the major sources of quality degradation

in speech coding systems. Some approaches to deal with this

problem were discussed. In the work of Chen et al. [7], to

maintain a continuous transformation in consecutive frames,

the converted features were smoothed along the time axis by

employing a median filter and a low pass filter. However, ap-

plying these filters could lead to a loss of temporal resolution,

and it was a relatively crude implementation. Duxans et al.

[9] included dynamic information in their GMM-based voice

conversion system to take into the relations between frames.

However, according to Duxans et al. [9], this method did not

improve the performance of a GMM-based voice conversion

system. Therefore, the discontinuity problem between adjacent

frames should be solved to enhance the quality of converted

speech. The problem of over-smooth effect happens in each

converted frame, because of the statistical averaging operation

[6]. Some works attempted to solve it [6] [7] [10], but defining

solutions for this problem is beyond the scope of this paper.

This paper addresses two of the three main issues mentioned

above, insufficient precision of GMM parameters, and insuffi-

cient smoothness of the converted spectra between frames. We

propose a new spectral voice conversion method based on tem-

poral decomposition (TD) [15] [16] and GMM [4] [5]. In our

proposed method, we employ the modified restricted temporal

decomposition (MRTD) algorithm [16] in both training and

transformation procedures. We extract a set of phoneme-based

features of event targets. We then use them as spectral vectors

for training to take into the relations between spectral param-

eters in each phoneme, and to avoid using spectral parameters

in transition parts. In the transformation procedure, we only

need to convert event targets, instead of converting spectral

parameters frame by frame, and the smoothness of converted

speech is ensured by the shape of the event functions. In

addition, since the fundamental frequency and vocal tract

information are not independent, modifying them separately

will often degrade the quality of converted speech. Therefore,

a high quality analysis-synthesis framework, STRAIGHT [17]

is utilized in this paper.

II. CONVENTIONAL GMM-BASED VOICE CONVERSION

As previously mentioned, the GMM-based voice conversion

methods are found to be superior to other methods. In this

section, we describe the basic GMM-based voice conversion

method which is employed as our baseline system. A GMM-

based voice conversion method often includes two parts, the

training procedure and the transformation procedure.

A. Training Procedure

The source speech is represented by a time sequence X =
[x1, x2, ..., xn], where xi is a D dimensional feature vector for

the i
th frame, i.e. xi = [x1, x2, ..., xD]T . The target speech

is represented by a time sequence Y = [y1, y2, ..., y
m

], where

y
j

= [y1, y2, ..., yD]T . The DTW algorithm is then adopted

to align source features with their counterparts in target series

to obtain feature pair series Z = [z1, z2, ..., zq] where zq =
[xT

i
, yT

j
]T .

The distribution of Z is modeled by Gaussian mixture

model, as in Eq. (1).

p(z) =
M
∑

m=1

αmN (z; µm, Σm) = p(x, y) (1)

where M is the number of Gaussian components.

N (z; µm, Σm) denotes the 2D dimension normal distribution

with the mean µm and the covariance matrix Σm. αm is the

prior probability of z having been generated by component m,

and it satisfies 0 ≤ αm ≤ 1,
∑

M

m=1 αm = 1. The parameters

(αm, µm, Σm) for the joint density p(x, y) can be estimated

using the expectation maximization (EM) algorithm [18].

B. Transformation Procedure

The transformation function that converts source feature x

to target feature y is given by Eq. (2).

F (x) = E(y|x) =
∫

yp(y|x)dy

=
M
∑

m=1

pm(x)
(

µ
y

m
+ Σyx

m
(Σxx

m
)−1(x − µ

x

m
)
)

(2)

pm(x) =
αmN (x; µx

m
, Σxx

m
)

∑

M

m=1 αmN (x; µx

m
, Σxx

m
)

(3)

where µm =
[

µ
x

m

µ
y

m

]

, Σm =
[

Σxx

m
Σxy

m

Σyx

m
Σyy

m

]

, and pm(x) is the

probability of x belonging to the m
th Gaussian component.

III. TEMPORAL DECOMPOSITION

A shortcoming of the conventional GMM-based voice con-

version methods is that they do not take into account the

correlation between frames in both training and transformation

procedures. As a result, the precision of estimated GMM

parameters is degraded, and there are some clicks in the

converted speech because of discontinuous spectral contours.

Therefore, we employ TD to deal with the problem.
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In articulatory phonetics, speech is described as a sequence

of distinct articulatory gestures, each of which produces an

acoustic event that should approximate a phonetic target. Due

to the overlap of the gestures, these phonetic targets are often

only partly realized.

Atal [15] proposed a method based on the temporal de-

composition of speech into a sequence of overlapping target

functions and corresponding event targets, as given in Eq. (4).

ŷ(n) =
K

∑

k=1

akφk(n), 1 ≤ n ≤ N (4)

where ak is the speech parameter corresponding to the k
th

event target. The temporal evolution of this target is described

by the k
th event function, φk(n). ŷ(n) is the approximation of

the n
th spectral parameter vector y(n), and is produced by the

TD model. N and K are the number of frames in the speech

segment, and the number of event functions, respectively

(N≫K).

Many applications of TD have been explored in the litera-

ture, such as speech coding [16], and speaker identification

[19]. In this paper, we investigate the application of TD

in speech modification. To modify the speech spectra, we

only need to modify the speech spectra of event targets and

the corresponding event functions, instead of modifying the

speech spectra frame by frame. The smoothness of modified

speech will be ensured by the shape of the event functions.

This leads to easy modification of the speech spectra, as well

as ensuring the smoothness of the speech spectra between

frames, and thereby enhances the quality of modified speech.

A. Modified Restricted Temporal Decomposition (MRTD)

The original method of TD is known to have two major

drawbacks, high computational costs, and high parameter

sensitivity to the number and locations of events. A num-

ber of modifications have been explored to overcome these

drawbacks. In this study, we employ the MRTD algorithm

[16]. The reasons for using the MRTD algorithm in this work

are twofold: (i) the MRTD algorithm enforces a new property

on event functions, named the “well-shapedness” property,

to model the temporal structure of speech more effectively

[16]; (ii) event targets can convey the speaker’s identity [19].

In the MRTD algorithm, LSF parameters are chosen for the

input of TD because of their sensitivity (an adverse alteration

of one coefficient results in a spectral change only around

that frequency) and efficiency (LSFs result in low spectral

distortion when being interpolated and/or quantized). In this

paper, LSF parameters are extracted from spectral envelopes

of STRAIGHT [17]. The STRAIGHT spectra are suitable for

TD, because they are smooth in the time-frequency domain.

B. Phoneme-based Determination of Event Locations

The MRTD algorithm uses a spectral stability criterion

to determine the initial event locations [16]. It is assumed

that each acoustic event that exists in speech gives rise to

a spectrally stable point in its neighborhood. Therefore, the

locations of the spectrally stable points and the corresponding

spectral parameter sets can be used as good approximations of

event locations and event targets, respectively. This algorithm

is automatically performed, and the subsequent computation

of refined event targets and event functions is much less

demanding than the traditional TD method. This algorithm

is useful for applications in speech coding [16], and speaker

identification [19]. However, this algorithm does not ensure

a one-to-one correspondence between event locations and

phonemic units. This makes it difficult to align parallel training

data in voice conversion systems.

Shibata and Akagi [20] proposed a new method for deter-

mination of event locations based on phonemes. To increase

the accuracy of phoneme segmentation, this algorithm is

effectively used when labeled data of utterances are available.

Each phoneme is divided into four equal segments, and the

five points marking these segments are used for identifying

the event locations. Using this algorithm, the quality of syn-

thesized speech is very high. Specially, since we can represent

each phoneme by five event targets, these five event targets of

each phoneme can be regarded as a “voice font”. It should be

noted that we can easily increase the quality of synthesized

speech by increasing the number of event locations in each

phoneme.

IV. PHONEME-BASED SPECTRAL VOICE CONVERSION

USING TEMPORAL DECOMPOSITION AND GAUSSIAN

MIXTURE MODEL

A. Spectral Parameters

The overall shape of the spectral envelope provides an

effective representation of the vocal tract characteristics of

the speaker. However, the dimension of the spectral envelope

is rather high, and it is not effective for direct use in a

voice conversion system. We therefore often use another

representation of the spectral envelope. MFCC coefficients

are used to represent the spectral envelope in [4] [6] [8],

while line spectral frequency (LSF) coefficients are used in [5]

[7] [10] [9] [12] for the reason that LSFs have better linear

interpolation attributes. In our voice conversion system, we

choose LSFs for the representation of the spectral envelope.

The reason for selecting LSFs is that these parameters closely

relate to formant frequencies, but in contrast to formant

frequencies they can be estimated quite reliably. Also, they

have good interpolation characteristics, and a badly predicted

component adversely affects only a portion of the frequency

spectrum. Moreover, they are easily integrated with the MRTD

algorithm, which uses LSFs as its input.

B. Proposed Spectral Voice Conversion Method

As previously mentioned, our proposed method focuses

on spectral voice conversion, and is based on the GMM

method [4] [5]. The processing flow of our spectral voice

conversion system, which includes training and transformation

procedures, is described as follows, and is shown in Fig. 1.

In the training procedure, STRAIGHT [17] decomposes

input speech signals into spectral envelopes, F0 (fundamental
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Fig. 1. Diagram of our proposed voice conversion method training procedure (top), and transformation procedure (bottom).

frequency) information, and aperiodic components (AP). Since

the spectral envelopes can be further analyzed into LSF

parameters, MRTD [16] is employed in the next step to

decompose the LSF parameters into event targets and event

functions. Note that the method for determination of event

locations is from [20]. Each phoneme is represented by five

event targets, and a vector of phoneme-based features of event

targets EV = [aT

1 , aT

2 , aT

3 , aT

4 , aT

5 ], where ak(1 ≤ k ≤ 5)
is the k

th event target in each speech segment (a phoneme),

can be a good vector to present the relations between event

targets in a phoneme. Moreover, each event target ak in the

MRTD algorithm [16] is a valid LSF coefficient. An important

property of LSFs {LSFi} is that they are ordered (0, π), as

follows.

0 < LSF1 < LSF2 < . . . < LSFP < π (5)

where P is the order of LSF. To prevent a bad initialization in

estimation of GMM parameters, we normalize the vectors of

phoneme-based features of event targets extracted from each

phoneme in utterances of source and target speakers, EVx and

EVy, as follows.

EVx = [aT

x1, aT

x2 + π, aT

x3 + 2π, aT

x4 + 3π, aT

x5 + 4π]T (6)

EVy = [aT

y1, aT

y2 + π, aT

y3 + 2π, aT

y4 + 3π, aT

y5 + 4π]T (7)

where axk, ayk are the k
th event targets in each phoneme of

the source and target speakers, respectively. As a result, the

vectors EVx and EVy are ordered (0, 5π). All the phoneme-

based features are then aligned according to each phoneme,

and modeled by GMM parameters in Eq. (1).

In the transformation procedure, normalized phoneme-based

features are also extracted from each utterance of the source

speaker by using STRAIGHT and MRTD. We then convert

each of the normalized phoneme-based features by using Eq.

(2), and convert back to event targets. The converted event

targets are re-synthesized as converted LSF by MRTD synthe-

sis. In the following step, the converted LSF parameters are

synthesized as spectral envelopes by LSF synthesis. Finally,

STRAIGHT synthesis is employed to output the converted

speech. Note that this paper does not deal with prosodic,

energy conversion. Therefore, to implement a complete voice

conversion system, our proposed method should be integrated

with some methods for prosodic, energy conversion, such as

in [6] [12].

V. EXPERIMENTS AND RESULTS

A. Experimental Conditions

The corpus used for the experiments is a dataset consisting

of 460 sentences spoken once each by two speakers (one male

& one female) in the MOCHA-TIMIT English speech database

[21]. The speech data was recorded at 16KHz sampling rate.

In our experiments, two different voice conversion tasks were

investigated: male-to-female, and female-to-male conversion.
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TABLE I
ANALYSIS CONDITIONS FOR EXPERIMENTS ON THE VOICE CONVERSION

METHODS.

Sampling frequency 16 kHz

Window length 40 ms

Window shift 1 ms

FFT points 1024

LSF order 18

Gaussian components 20

For each kind of conversion, we used 300 pair utterances for

training, and 30 other pair utterances for evaluation.

To evaluate the performance of our proposed method, we

performed an objective test, and also subjective evaluation

experiments regarding speech quality and speaker individu-

ality. We compared our proposed method (the phoneme-based

TD+GMM method) with two other methods. The first method

used for comparison is the conventional method (the GMM

method) [4] [5]. The second method used for comparison

also used event targets for training, and the transformation

procedure was performed for each event target (the TD+GMM

method). The difference between the second method and our

proposed method is that the second method does not take into

account the relations between event targets in training and

transformation procedures. Since we only focus on spectral

voice conversion, we automatically copy the prosody infor-

mation and energy from the utterances of the target speaker

to converted utterances. In addition, because the problem of

the over-smooth effect in each converted frame is outside

the scope of this paper, without loss of generality, all three

methods utilize the same transformation mapping function of

the conventional method [4] [5] (see Eq. (2)). The analysis

conditions for these experiments are shown in Table I.

B. Objective Test

We use LSF performance index PILSF for the objective

test. This measure is defined as follows.

PILSF = 1 − ELSF (t(n),̂t(n))
ELSF (t(n), s(n))

(8)

where t(n) represents the utterance of the target speaker,

s(n) represents the utterance of the source speaker, and ̂t(n)
represents the converted utterance. ELSF (t(n),̂t(n)) is the

mean transform LSF error, and ELSF (t(n), s(n)) is the mean

inter-speaker LSF error, defined as follows.

ELSF (A, B) =
1
L

L
∑

l=1

√

√

√

√

1
P

P
∑

i=1

(

LSF
l,i

A
− LSF

l,i

B

)2

(9)

where L is the number of frames, P is the order of LSF, and

LSF
l,i is the LSF component i in the frame l.

PILSF = 0 indicates that the output of the system is no

more similar to the target than the source is, whereas PILSF

TABLE II
OBJECTIVE RESULTS FOR THE VOICE CONVERSION METHODS (1)

CONVENTIONAL METHOD (GMM METHOD) (2) TD+GMM METHOD (3)
OUR PROPOSED METHOD (PHONEME-BASED TD+GMM METHOD).

Type of conversion
LSF performance index

(1) (2) (3)

Male to Female 0.3692 0.3819 0.4013

Female to Male 0.3517 0.3745 0.3829

TABLE III
MOS RESULTS FOR VOICE CONVERSION METHODS (1) CONVENTIONAL

METHOD (GMM METHOD) (2) TD+GMM METHOD (3) OUR PROPOSED

METHOD (PHONEME-BASED TD+GMM METHOD).

Type of conversion
Mean opinion score

(1) (2) (3)

Male to Female 3.17 3.50 3.89

Female to Male 2.67 3.13 3.67

= 1 indicates that the output of the system is identical to the

target. In general, a higher value for PILSF suggests a better

system.

The results of this objective test are shown in Table II. These

results indicate that the performance of our proposed method

is significantly better than that of the conventional method,

and also better than that of the second method (the TD+GMM

method).

C. Subjective Tests

Subjective tests concerning speech quality and speaker

individuality were carried out. Six graduate students known

to have normal hearing ability were recruited for the listening

experiments.

In the test of speech quality, we randomly presented each of

ten converted utterances from both kinds of conversion (male-

to-female and female-to-male) to listeners, and asked them to

rate the perceptual quality of the speech on a five-point scale

(1: bad, 2: poor, 3: fair, 4: good, 5: excellent). Table III shows

the average scores, which indicate that the speech quality of

our proposed method (the phoneme-based TD+GMM method)

is superior to that of the conventional method (the GMM

method), and also better than that of the second method (the

TD+GMM method).

In the test of speaker individuality, an ABX test was

conducted. A represents the source speaker, B represents the

target speaker, and X represents the converted speech, which

supplied from each one of the three test systems. The listeners

were asked to select if X was closer to A or B, and adjusted the

score from 1 to 5 according to his/her perception of speaker

individuality when comparing. The score of 1 means that

the converted speech is very similar to the source speaker,

and the score of 5 means that the converted speech is very

similar to the target speaker. Results of the ABX test are

shown in Table IV. These results also indicate that the speech
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TABLE IV
ABX RESULTS FOR VOICE CONVERSION METHODS (1) CONVENTIONAL

METHOD (GMM METHOD) (2) TD+GMM METHOD (3) OUR PROPOSED

METHOD (PHONEME-BASED TD+GMM METHOD).

Type of conversion
ABX score

(1) (2) (3)

Male to Female 4.06 4.17 4.50

Female to Male 3.44 3.56 4.00

individuality of converted utterances of our proposed method

is the most similar to the target speaker among the three

methods. It should be noted that the score of the test of speaker

individuality is rather high because in this paper, we only

focus on spectral conversion, and we therefore copied prosodic

information and energy from utterances of the target speaker

for all three methods.

VI. CONCLUSIONS

In this paper, we proposed a new spectral voice conversion

method to deal with two of three main drawbacks of standard

voice conversion techniques, insufficient precision of GMM

parameters, and insufficient smoothness of the converted

spectra between frames. Our proposed method considers the

relations between frames when estimating GMM, by using

a set of phoneme-based features of event targets as spectral

vectors for training. Therefore, our approach can improve the

precision of GMM parameters. Our proposed method also

ensures the smoothness of converted speech by performing the

conversion procedure for event targets, instead of converting

the spectral parameters frame by frame. The experimental

results prove the effectiveness of our proposed method.

There are however issues which still remain to be solved.

Although prosodic conversion, and duration conversion are

outside of the scope of this paper, they are important features

for the realization of speaker personality, and to improve

the natural quality of converted speech. Prosodic conversion,

duration conversion, and the problem of over-smooth effect in

each converted frame will be considered in our future work.
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