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Abstract
Aims of voice transformation are to change styles of given ut-
terances. Most voice transformation methods process speech
signals in a time-frequency domain. In the time domain, when
processing spectral information, conventional methods do not
consider relations between neighboring frames. If unexpected
modifications happen, there are discontinuities between frames,
which lead to the degradation of the transformed speech qual-
ity. This paper proposes a new modeling of temporal structure
of speech to ensure the smoothness of the transformed speech
for improving the quality of transformed speech in the voice
transformation. In our work, we propose an improvement of the
temporal decomposition (TD) technique, which decomposes a
speech signal into event targets and event functions, to model
the temporal structure of speech. The TD is used to control the
spectral dynamics and to ensure the smoothness of transformed
speech. We investigate the TD in two applications, concatena-
tive speech synthesis and spectral voice conversion. Experimen-
tal results confirm the effectiveness of TD in terms of improving
the quality of the transformed speech.
Index Terms: spectral modification, voice transformation, tem-
poral decomposition

1. Introduction
Voice transformation is a process of changing certain perceptual
properties of speech while leaving other properties unchanged.
Voice transformation has many applications in our lives. For
example, we employ voice transformation techniques to create
various wave sounds from a pre-recorded database in a Text-to-
Speech system. In foreign language learning, it will be much
easier to listen when slowing down the speed of sounds. To
enhance the hearing abilities of deaf people, we can adjust the
frequency of sounds so that it is located in their hearing portion.

The goals of voice transformation systems are to generate
wave sounds from a pre-recorded speech database, or to alter
styles of speech utterances without losing the utterance content,
etc. The styles which can be changed include the speaker’s gen-
der, the speaker’s identity, or the speaker’s emotion and so on.

Spectral modification lies at the heart of the voice transfor-
mation. Since spectral processing is closely linked to human
perception, it is an effective way to perform sound processing.
Most methods of spectral modification process speech signals
in the time-frequency domain. The basic idea of spectral pro-
cessing is to convert a time-domain digital signal into its repre-
sentation in a time-frequency domain. In the time axis, most of
them process speech signals frame-by-frame. They do not en-
sure the smoothness of synthesized speech after modification,
which leads to the degradation of modified speech quality. One
study [1] points out that spectral dynamics is more important
than spectral distortion in human perception. Therefore, it is
necessary to have a new method for ensuring the smoothness of
the transformed speech.

In the area of voice transformation, many methods have
been proposed to solve discontinuities of speech signals after
modification. For example, in the concatenative synthesis area,
Plumpe et al. [2] introduce a HMM-based smoothing technique.
A large training database is required to estimate the HMM pa-
rameters, and this point is a limitation. Wouters and Macon [3]

propose a method which controls spectral dynamics. In this ap-
proach, synthesis is performed by combining information from
two tiers of speech units, denoted concatenation units and fu-
sion units. The concatenation units specify initial estimates of
the spectral trajectories for an utterance, while the fusion units
characterize the spectral dynamics at the join points between
concatenation units. These two unit tiers are fused during syn-
thesis to obtain natural spectral transitions throughout the syn-
thesized speech. Preparation of a fusion unit for each concate-
nation point is required. Kain et al. [4] also propose a new
method of controlling spectral dynamics which has same idea
with the work of Wouters and Macon [3]. They smooth the tra-
jectory of formant frequencies. In [4], it is not necessary to pre-
pare the fusion units. Apart from that, this method considers the
smoothness of energy. Since this method use formant frequen-
cies as parameters to interpolate between two segments, some
steps in this method need to be manually performed. Therefore,
a new method for concatenative speech synthesis which is au-
tomatically performed is needed. In the spectral voice conver-
sion area, to maintain a continuous transformation in consecu-
tive frames, Chen et al. [5] smooth the converted features along
the time axis by employing a median filter and a low pass filter.
Applying these filters can lead to a loss of temporal resolution,
and it is a relatively crude implementation. Duxans et al. [6]
include dynamic information in their GMM-based voice con-
version system to take into the relations between frames. Ac-
cording to Duxans et al. [6], this method does not improve the
performance of a GMM-based voice conversion system. In [7],
Toda at al. include dynamic features and the global variance
to solve the discontinuities of spectral conversion in the time
domain. This method improves the quality of the converted
speech.

One of the effective ways to solve the discontinuity problem
of the voice transformation applications is to develop a method
for modeling the temporal evolution of speech. In the litera-
ture, a hidden Markov model (HMM) is well-known to model
the temporal trajectories of speech parameters. However, two
major drawbacks of the HMM are discussed: the assumption of
conditional independence of successive states is grossly unre-
alistic, and the HMM has to rely on a large amount of training
data to (partially) capture the temporal evolution. Another tech-
nique, the temporal decomposition (TD) technique [8], is also
used to model the temporal evolution of speech, and it can over-
come the two drawbacks of the HMM.

In the remaining paper, we first present our improvements
of the temporal decomposition (TD) technique [8, 9] to model
the temporal structure of speech. Based on our modeling of
temporal decomposition of speech, we then introduce our new
methods in two applications of the voice transformation, con-
catenative speech synthesis and spectral voice conversion, to
improve the quality of the transformed speech.

2. Temporal decomposition
2.1. Introduction
Modeling the temporal trajectories of speech parameters gives
the advantages to speech processing applications. This section
presents the TD technique [8, 9] as an efficient model of tempo-
ral structure of speech.
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Atal proposes a method based on the temporal decomposi-
tion of speech into a sequence of overlapping event functions
and corresponding event targets [8], as given in Eq. (1).

ŷ(n) =

K∑
k=1

akφk(n), 1 ≤ n ≤ N (1)

where ak is the spectral parameter vector corresponding to the

kth event target. The temporal evolution of this target is de-

scribed by the kth event function, φk(n). ŷ(n) is the approx-

imation of the nth spectral parameter vector y(n) produced
by the TD model. N and K are the number of frames in the
speech segment and the number of event functions, respectively
(N�K). The TD does not need to assume the independence
of event targets, and the TD bases on only the speech segment
when estimating the event targets and event functions (spec-
tral evolution). These are advantages when comparing with the
HMM.

The original method of TD is known to have two major
drawbacks, high computational costs and high parameter sensi-
tivity to the number and locations of events. A number of mod-
ifications have been explored to overcome these drawbacks. In
this study, we employ the MRTD algorithm [9]. The reasons
for using the MRTD algorithm in this work are two-fold: (i) the
MRTD algorithm enforces a new property on event functions,
named the “well-shapedness” property, to model the temporal
structure of speech more effectively [9]; (ii) event targets can
convey the speaker’s identity [10]. In the MRTD algorithm,
LSF parameters are chosen for the input of TD, because LSFs
have good linear interpolation attributes. In addition, the tem-
poral pattern of the excitation parameters can also be described
by using the same event functions evaluated for the spectral pa-
rameters φk(n) in Eq. (1) and excitation targets bk.

Since the same event functions evaluated for the spectral
parameters are also used to model the temporal pattern of the
excitation parameters, we only need to modify these targets, ak,
bk, and the corresponding event functions φk(n) for modify-
ing the speech signals, instead of modifying the speech signals
frame by frame. The smoothness of modified speech will be
ensured by the shape of the event functions φk(n). This leads
to easy modification of the speech signals in time-frequency do-
main, as well as ensuring the smoothness of the speech signals
between frames, and thereby enhances the quality of modified
speech.

2.2. Modeling of the event function using polynomial fitting

MRTD algorithm uses a spectral stability criterion to determine
the initial event locations [9]. This algorithm is useful for ap-
plications in speech coding [9] and speaker identification [10].
However, this algorithm does not ensure one-to-one correspon-
dence between events and phonemic units, which makes it dif-
ficult for applications in voice transformation (e.g. alignment
between two utterances), speech perception (e.g. sharing the
event functions, event targets).

In [11], we present a new method for the determination
of event locations based on phonemes, and a new method for
modeling the event function by using the nonlinear least square
method as follows.

R = −
( t

d

)S

+ e (2)

where t is time variance, which indicates duration between a
spectral parameter vector and the first event of the modeling
event function, d is the duration of two consecutive events, e
is the maximum value of the event function φk, and e is equal
to 1. The polynomial fitting was done in 0 ≤ φk ≤ 1. The
value of S indicates slope of event function. Shape of the event
function can be changed according to the values of d and S. As
a result, it is possible and flexible to control the event function
by changing the value of d and S. More details of our methods
can be found in [11].

3. Applications to voice transformation
In this paper, to show the effectiveness of our modeling for en-
suring the smoothness of the transformed speech, we investigate
the TD in two applications in voice transformation: concatena-
tive speech synthesis and spectral voice conversion. Moreover,
in voice transformation applications, we modify not only vocal
tract information but also excitation information. Since the ex-
citation and vocal tract information are not independent, mod-
ifying them separately often degrades the quality of converted
speech. Therefore, a high quality analysis-synthesis framework,
STRAIGHT [12] is utilized in this paper.

3.1. Proposed spectral smoothing for concatenative speech
synthesis
Since controlling spectral dynamics can improve the quality of
concatenation speech, we propose a new method for concatena-
tive speech synthesis based on temporal decomposition [8, 9].
Our algorithm is described as follows.

First, LSF parameters are extracted from STRAIGHT spec-
tral envelope [12]. MRTD is employed in the next step to de-
compose the LSF parameters of each speech segment into event
targets and event functions. The same event function evaluated
for LSF parameters are used to decompose the fundamental fre-
quency and gain to get fundamental frequency targets and gain
targets. In the ideal case, the last target of the first speech seg-
ment and the first target of second speech segment are identical.
However, in concatenative speech synthesis, two event targets
are often different. We need to modify these targets to smooth
the transition between two speech segments. Since each event
target is a valid LSF parameter, we should modify event targets
so that they become a valid LSF parameter. In our algorithm,
the modified event target is calculated by applying following
equation.

LSF modified
i = βLSF last ET

i +(1−β)LSF first ET
i (3)

where i = 1 . . . P , P is the order of LSF. The LSF last ET and
LSF first ET are the LSF parameters of the last event target
of the first speech segment and the first event target of the sec-
ond speech segment, respectively. β is the weight factor, and
satisfies 0 ≤ β ≤ 1. We can adjust the value of β to control
the degree of modification of each concatenation part in accor-
dance with their importance. In this paper, we choose β = 1

2
.

The optimal value of β for each concatenation point will be in-
vestigated in our future work. After combining the last event
target of the first speech segment and the first event target of the
second speech segment, we also modify the fundamental fre-
quency targets and gain targets to smooth all of the most impor-
tant parameters in the concatenation point. The modified event
targets, modified fundamental frequency targets and modified
gain targets are then re-synthesized as modified LSFs, modified
fundamental frequency information and modified gain informa-
tion by TD synthesis, respectively. In the next step, the modified
LSF parameters and modified gain information are synthesized
as spectral envelopes by LSF synthesis. Finally, STRAIGHT
synthesis is employed to output the synthesized speech. Note
that when we modify these targets, the spectral and source in-
formation of adjacent frames around on the concatenation point
are also modified, and the smoothness is ensured by the shape
of the event functions.

3.2. Proposed spectral voice conversion using temporal de-
composition and Gaussian mixture model
Until now, GMM-based spectral voice conversion methods are
regarded as some of the most successful techniques. However,
the quality of the converted speech is still far from natural.
There are three main problems: insufficient smoothness of the
converted spectra between frames, the insufficient precision of
GMM parameters and over-smooth effect happens in each con-
verted frame.

The first problem is discussed in the Introduction. The sec-
ond problem is described as follows. In the training phase of the
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GMM-based methods, both unstable frames, which often come
from transition parts between phonemes, and stable frames are
used to model the distribution of acoustic features. This leads
to addition of noise to the GMM parameters. To overcome
this drawback, some solutions have been proposed. Kumar and
Verma [13] explicitly partition acoustic space of a speaker into
phones by using the phonetic alignments. After that, GMM pa-
rameters are used for finer modeling of each phone. This ap-
proach can prevent the interference of frames between phones.
However, it still uses unstable frames in each phone. Liu et al.
[14] segment frames according to each phoneme, and eliminate
unstable frames in each phoneme by proposing a method for
identifying stable frames based on limitation of maximal varia-
tion range for the first three formant frequencies. After getting
the stable frames, Liu et al. also use GMM parameters to model
the distribution of acoustic features. Nguyen and Akagi [15] use
event targets as spectral vectors to estimate GMM parameters,
instead of using spectral parameters of aligned frames. How-
ever, all methods in [13, 14, 15] do not take into account the re-
lations between frames when estimating the GMM parameters.
The GMM parameters therefore are more precisely estimated
when considering the relations between frames. Defining solu-
tions for the third problem, over-smooth effect happens in each
converted frame, is beyond the scope of this section

This section addresses two of the three main issues men-
tioned above, the insufficient smoothness of the converted spec-
tra between frames and the insufficient precision of GMM pa-
rameters. Our proposed method focuses on spectral voice con-
version, and is based on the GMM method [16, 17]. The pro-
cessing flow of our spectral voice conversion system is de-
scribed as follows.

In the training phase, LSF parameters (extracted from
STRAIGHT spectral envelope [12]) are decomposed into event
targets and event functions by using the MRTD [9]. Each
phoneme is represented by five event targets. In these five event
targets, two edge event targets coincide with edge event tar-
gets of adjoining phonemes and the beginning of a phoneme
is more important than the ending of a phoneme. We formu-
late a vector of phoneme-based features of event targets EV =
[aT

1 , aT
2 , aT

3 , aT
4 ], where ak(1 ≤ k ≤ 4) is the kth event target

in each speech segment (a phoneme). EV = [aT
1 , aT

2 , aT
3 , aT

4 ]
represents sequences of four consecutive event targets in a
phoneme, and can therefore explicitly characterize the relation-
ship between these vectors. Moreover, each event target ak in
the MRTD algorithm [9] is a valid LSF coefficient. An impor-
tant property of LSFs {LSFi} is that they are ordered (0, π),
as follows.

0 < LSF1 < LSF2 < . . . < LSFP < π (4)

where P is the order of LSF. To prevent a bad initialization
in estimation of GMM parameters, we normalize the vectors
of phoneme-based features of event targets extracted from each
phoneme in utterances of source and target speakers, x and y, as
follows.

x = [aT
s1, aT

s2 + π, aT
s3 + 2π, aT

s4 + 3π]T (5)

y = [aT
t1, aT

t2 + π, aT
t3 + 2π, aT

t4 + 3π]T (6)

where ask, atk are the kth event targets in each phoneme of the
source and target speakers, respectively. As a result, the vec-
tors x and y are ordered (0, 4π). We align the phoneme-based
features, x and y, and formulate a set of joint vectors of event
targets between source and target speakers Z = [z1, z2, ..., zq]

where zi = [xT
i , yT

i ]T , and xi, yi are event target sets of ith

phoneme of source speaker and the corresponding event tar-
get of the target speaker, respectively. Our transformation pro-
cedure is the same with that in the conventional GMM-based
method [17], except that the vectors for the transformation
procedure are the sets on normalized phoneme-based features,
x and y, in Eqs. (5) and (6). When getting the converted
phoneme-based features, we convert these vectors back to event
targets. The converted event targets are re-synthesized as con-

Figure 1: Results of subjective tests of concatenative speech synthesis.

verted LSF by MRTD synthesis. Then, the converted LSF pa-
rameters are synthesized as spectral envelopes by LSF synthe-
sis. Finally, STRAIGHT synthesis is employed to output the
converted speech. Note that our method does not deal with
prosodic, energy conversion. To implement a complete voice
conversion system, our work should be integrated with some
methods for prosodic, energy conversion, such as in [18].

4. Experiments and results
This section evaluates the effectiveness of our proposed meth-
ods in voice transformation. We evaluate our spectral smooth-
ing method in Subsection 4.1 and spectral voice conversion
method in Subsection 4.2.

4.1. Concatenative speech synthesis
Stimuli consisted of the five Japanese vowels (/a/, /e/, /i/, /o/,
and /u/) in a consonant-vowel-consonant (CVC) context. We
selected a dataset consisting of five words containing the five
Japanese vowels from the ATR Japanese speech database [19].
We exchanged the vowels in these words, and smoothed the bor-
ders by using different methods. Some synthesized words were
meaningless. The main analysis conditions for these experi-
ments are as follows. Sampling frequency is 16 kHz, the order
of LSF is 32.

To evaluate the performance of our proposed method, we
performed subjective experiments regarding speech quality. We
compared our proposed method with two other methods. In
the first method, we only concatenated speech segments to-
gether (the raw concatenation method); in the second method,
we only smoothed spectral parameters by using TD, but we did
not smooth F0 and energy (TD-based LSF smoothing method).
We presented the synthesized sounds to eight Japanese graduate
students with normal hearing ability, and asked them to rate the
perceptual quality of the speech on a five-point scale (1: bad, 2:
poor, 3: fair, 4: good, 5: excellent). Results of the subjective
tests are shown in Fig. 1. These results indicate that the quality
of words modified by using our proposed method is the best in
all three methods. Fig. 2 shows the parts of the LSF contours
before and after modification at the concatenation points by re-
placing the vowel “u” in the word “takumi” by the vowel “e”
in the word “jiten”.

4.2. Spectral voice conversion
The corpus used for the experiments is a dataset consisting of
460 sentences spoken once each by two speakers (one male &
one female) in the MOCHA-TIMIT English speech database
[20]. In our experiments, two different voice conversion tasks
were investigated: male-to-female (M2F) and female-to-male
(F2M) conversion. For each kind of conversion, we used 300
pair utterances for training and 30 other pair utterances for eval-
uation.

To evaluate the performance of our proposed method, we
performed subjective experiments regarding speech quality and
speaker individuality. Six graduate students known to have
normal hearing ability were recruited for the listening exper-
iments. We compared our proposed method (the phoneme-
based TD+GMM method) with two other methods. The first
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Figure 2: Parts of the LSF contours before and after modification at the
concatenation points by replacing the vowel “u” in the word “takumi”

by the vowel “e” in the word “jiten”. The dot line indicates the LSF
contours of the two speech units before modification. The solid line
indicates the LSF contours of the two speech units after modification by
using our proposed method.

method used for comparison is the conventional method (the
GMM method) [17]. The second method used for comparison
also employed event targets for training, and the transformation
procedure was performed for each event target (the TD+GMM
method). The difference between the second method and our
proposed method is that the second method does not take into
account the relations between event targets in training and trans-
formation procedures. Since we only focus on spectral voice
conversion, we automatically copy the prosody information
and energy from the utterances of the target speaker to con-
verted utterances. In addition, because the problem of the over-
smooth effect in each converted frame is outside the scope of
this section, without loss of generality, all three methods utilize
the same transformation mapping function of the conventional
method [17]. The main analysis conditions for these experi-
ments are as follows. Sampling frequency is 16 kHz, the order
of LSF is 32, and the number of Gaussian components is 128.

We randomly presented each of ten converted utterances
from both kinds of conversion (male-to-female and female-to-
male) to listeners, and asked them to rate the perceptual quality
of the speech on a five-point scale (1: bad, 2: poor, 3: fair,
4: good, 5: excellent). In the test of speaker individuality, an
ABX test was conducted. A represents the source speaker, B
represents the target speaker, and X represents the converted
speech, which supplied from each of two test methods. The
listeners were asked to select if X was closer to A or B, and
adjusted the score from 1 (very similar to A) to 5 (very simi-
lar to B) according to his/her perception of speech individuality
when comparing. Results of the subjective tests are shown in
Fig. 3. These results indicate that the quality of utterances con-
verted using our proposed method better than that using the con-
ventional method (GMM method) [17] and the second method
(TD+GMM method).

5. Conclusions
In this paper, we have presented the effectiveness of TD in voice
transformation applications, concatenative speech synthesis and
spectral voice conversion. The event targets are considered to
be “ideal” spectral parameters, can convey speaker’s identity.
The event functions are regarded as modelings of the spectral
evolutions. Using the TD in voice transformation, we only need
to modify the event targets and event functions, which leads
to efficient and flexible modifications of speech. Experimental
results show the effectiveness of our methods when applied to
voice transformation in terms of improving the quality of mod-
ified speech.

Modeling the temporal structure of speech gives benefits
to most of areas in the speech technology, such as speech cod-
ing, speech recognition, speaker verification and identification,

Figure 3: Results of subjective tests of spectral voice conversion re-
garding speech quality and speaker individuality. 1st method: con-
ventional GMM method, 2nd method: TD+GMM without considering
phoneme relations, our proposed method: phoneme-based TD+GMM.

speech modification. In our work, spectral evolution can be con-
trolled by changing values of duration between two consecutive
events, d, and slope of each event function, S. In addition, in
our modeling, S indicates a slope of an event function, and S can
be seen as dynamic information between multiple frames. It is
of interest to investigate the incorporation between event tar-
gets ak and the slopes of event functions S in speech processing
applications, such as speech and speaker recognition.
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