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Abstract
The challenge of speech modification is to flexibly modify the
speech without degrading speech quality. The conventional
methods are limited by their inability to flexibly control speech
signals in time and frequency domains. This causes degradation
of the quality of modified speech. This paper proposes a high-
quality analysis/synthesis method for speech modification. To
control the temporal evolution, we use a speech analysis tech-
nique called temporal decomposition (TD), which decomposes
a speech signal into event targets and event functions. The same
event functions evaluated for the spectral parameters are also
used to model the temporal evolution of the excitation parame-
ters. The event functions describe the temporal evolution of the
spectral and excitation parameters, and the event targets repre-
sent the “ideal” spectral parameters. To flexibly control speech
signals in both time and frequency domains, we propose new
methods to model the event functions and the event targets. The
experimental results show that our proposed analysis/synthesis
method produces high-quality synthesized speech, and allows
the flexibility to modify speech signals.
Index Terms: analysis/synthesis method, speech modification,
temporal decomposition

1. Introduction
The aim of speech modification is to modify attributes of
speech. Time-scale and spectral modifications are core pro-
cesses in speech modification.

Time-scale modification is used to alter the signal’s appar-
ent time-evolution without affecting the quality, pitch or natu-
ralness of the original signal. This kind of technique can be
used in many applications, such as slowing down or speeding
up the playback rate in foreign language learning, compressing
data for communications or storage, altering speaking rate in
Text-to-Speech systems, etc.

Several approaches are available in the literature for time-
scale modification. Altering the time-scale of a speech signal
can be achieved in the time domain [1], or frequency domain
[2]. Time-domain techniques are based on overlap-add (OLA)
methods [1]. These techniques first segment the waveform into
a series of overlapping frames by windowing the speech signal
with a suitable window function. To perform time-scale modifi-
cation, some of the windowed segments are either replicated or
omitted. In these cases, the information about the pitch mark-
ers is not used for splitting the speech signal into short seg-
ments. As a result, the periodicity due to pitch is not preserved
well after time-scale modification [3]. Therefore, these tech-
niques tend to perform poorly when large modification factors
must be used (e.g., factors greater than ± 20% to ± 30%) [4].
Frequency-domain techniques are based on short-time Fourier
transform (STFT) or phase vocoder methods [2]. These algo-
rithms require high computation costs, but are capable of pro-
viding high-quality output. However, they still suffer from some
distortion, mainly due to the effects of “phase dispersion” [5].
That is, while the scaled signal has the same frequency, the

phases between the components change, resulting in a differ-
ent wave shape. In the STRAIGHT method [6], the analysis
algorithm does not extract phase information. Its reconstruc-
tion algorithm adopts the minimum phase assumption for the
spectral envelope, and further applies all-pass filters to reduce
the buzz timbre of the reconstructed signal. This method offers
high-quality modified speech signals without introducing the ar-
tificial timbre. However, this approach still processes speech
signals frame by frame, and speech manipulation is performed
by using interpolation functions. This method does not consider
the temporal evolution of parameters when modifying speech
signals.

Spectral modification is used to perform a variety of mod-
ifications to speech spectra, such as modifications of formant
structures, amplitude, etc. This kind of technique can be used
in many applications, such as transforming the identity of a
speaker, enhancing speech, etc.

A variety of spectral modification methods have been dis-
cussed in the literature. They can be classified into two major
approaches: LP-based methods [7, 8], and frequency warping
methods [9]. LP-based methods often meet the pole interaction
problem suffered by pole modification techniques. An iterative
algorithm for overcoming pole interaction during formant mod-
ification was developed by Mizuno et al. [7]. While this method
produces spectral envelopes with desired formant amplitudes at
the formant frequencies, one drawback to this technique is that
the bandwidth of each formant cannot be controlled. Recently,
a method for modifying formant locations and bandwidths di-
rectly in the line spectral frequency (LSF) domain has been de-
veloped in [8]. By taking advantage of the nearly linear re-
lationship between the LSFs and formants, modifications are
performed based on desired shifts in formant frequencies and
bandwidths. However, the main drawback to this type of modi-
fication, the lack of control over the spectral shape, has not been
solved. Frequency warping methods, such as [9], provide high-
quality modified speech. However, the modification is still not
successful, because frequency warping methods do not allow
merging or splitting the spectral peaks, which is often desired
in spectral modification.

In addition, two methods mentioned above [7, 8] only men-
tion the way to perform the spectral modification in a frame,
and they [7, 8, 9] rarely deal with constraints between frames
after modification. When there are unexpected modifications in
some frames, the modified speech may be not smooth. As a re-
sult, there are some clicks in the modified speech, which lead to
degradation of speech quality.

In this paper, we propose a high-quality analysis/synthesis
method based on temporal decomposition [10, 11] for speech
modification. Temporal decomposition (TD) is a technique to
decompose a speech signal into event targets and event func-
tions. To flexibly control the speech signals in both time and fre-
quency domains, we introduce new methods to model the event
functions and event targets. We then explain how to modify
duration and speech spectra in our proposed analysis/synthesis
method.
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2. Temporal decomposition
A shortcoming of conventional speech modification methods
is that they do not take into account the correlation between
frames, which makes it difficult to model and control the tem-
poral trajectories of parameters of speech signals. Therefore,
we employ TD to deal with the problem.

Atal proposed a method based on the temporal decompo-
sition of speech into a sequence of overlapping event functions
and corresponding event targets [10], as given in Eq. (1).

ŷ(n) =
KX

k=1

akφk(n), 1 ≤ n ≤ N (1)

where ak is the spectral parameter vector corresponding to the

kth event target. The temporal evolution of this target is de-

scribed by the kth event function, φk(n). ŷ(n) is the approx-

imation of the nth spectral parameter vector y(n), and is pro-
duced by the TD model. N and K are the number of frames in
the speech segment, and the number of event functions, respec-
tively (N�K).

The original method of TD is known to have two major
drawbacks, high computational costs, and high parameter sensi-
tivity to the number and locations of events. A number of mod-
ifications have been explored to overcome these drawbacks. In
this study, we employ the MRTD algorithm [11]. The reasons
for using the MRTD algorithm in this work are twofold: (i) the
MRTD algorithm enforces a new property on event functions,
named the “well-shapedness” property, to model the temporal
structure of speech more effectively [11]; (ii) event targets can
convey the speaker’s identity [12]. In the MRTD algorithm,
LSF parameters are chosen for the input of TD, because LSFs
have good linear interpolation attributes.

In the MRTD algorithm, the same event functions evaluated
for the spectral parameters are also used to describe the tempo-
ral pattern of the excitation parameters. Let b(n) be an excita-
tion parameter, i.e. F0, gain, and aperiodic component (AP), in

the nth frame. b(n) can be approximated by using event target
of excitation bk and its event function φk(n), as follows.

b̂(n) =

KX
k=1

bkφk(n), 1 ≤ n ≤ N (2)

where φk(n) is estimated from Eq. (1).
Since the same event functions evaluated for the spectral

parameters are also used to model the temporal pattern of the
excitation parameters, we only need to modify these targets, ak

and bk, and the corresponding event functions φk(n) for mod-
ifying the speech signals, instead of modifying the speech sig-
nals frame by frame. The smoothness of modified speech will
be ensured by the shape of the event functions φk(n). This leads
to easy modification of the speech signals in time-frequency do-
main, as well as ensuring the smoothness of the speech signals
between frames, and thereby enhances the quality of modified
speech.

3. Modeling of the event function using
polynomial fitting

3.1. Identifying the event locations
MRTD algorithm uses a spectral stability criterion to determine
the initial event locations [11]. It is assumed that each acous-
tic event that exists in speech gives rise to a spectrally stable
point in its neighborhood. Therefore, the locations of the spec-
trally stable points and the corresponding spectral parameter
sets can be used as good approximations of event locations and
event targets, respectively. This algorithm is automatically per-
formed, and the subsequent computation of refined event tar-
gets and event functions is much less demanding than the tra-
ditional TD method. This algorithm is useful for applications
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Figure 1: A fitted curve (the solid line) using the non-linear least

square method for an event function (the dashed line) (top), and

a time-scale modification of this event function (bottom).

in speech coding [11], and speaker identification [12]. How-
ever, the event functions calculated by using this algorithm are
difficult to model and control.

This paper proposes a new method for determination of
event locations based on phonemes. Although automatic
phoneme segmentation is a significant problem, we do not deal
with it in this paper. We use labeled data of utterances to seg-
ment speech signals into phonemes. Each phoneme is divided
into eight equal segments, and the nine points marking these
segments are used for identifying the event locations. In our
method, the window shift is set to 1 ms. Therefore, in each
speech segment (a phoneme), the number of event functions K
is nine, and the number of frames N is equal to the duration of
this phoneme (ms). Note that we can easily increase the quality
of synthesized speech by increasing the number of event func-
tions in each phoneme.

3.2. Proposed method
To control the event functions, the event functions should be
modeled. The MRTD algorithm enforces the “well-shapedness”
property of event functions. That is, the event functions in the
MRTD are monotonic during the transition from one event to-
wards the next. In addition, the MRTD method employs the re-
stricted second order TD model, in which only two event func-
tions at any moment of time can overlap and all event functions
sum up to one [11]. Therefore, to model the event function,
polynomial fitting for the event function is performed by using
the nonlinear least square method as follows.

Z = −
“X

c

”M

+ e (3)

where e is the maximum value of φ, and e is equal to 1. Z is
equal to 0 when

X = c (4)

where c is the duration of two consecutive events. The polyno-
mial fitting was done in 0 ≤ φ ≤ 1. The value of M indicates
slope of event function. Shape of the event function can be
changed according to the values of c and M . As a result, it is
possible to control the event function. Fig. 1 shows an example
of modeled event function by the proposed method for an event
function extracted by MRTD.

3.3. Time-scale modification
Since F0, gain, AP, and spectral parameters are decomposed by
using the same event functions, in order to perform time-scale
modification, we only need to change length of each event func-
tion. From Eq. (3), we can modify the duration of the speech
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segment by changing the value of c. We modify the values of M
to alter the slope of the event function. By changing the values
of c and M , we can control the evolution of all important param-
eters of speech signals (i.e. F0, gain, AP, and spectral parame-
ters). Therefore, it enhances the quality of modified speech. An
example of time-scale modification of an event function is also
shown in Fig. 1. In this example, to show the flexibility of our
proposed method, we only altered the shape of the right side of
the event function by the modification factors of c and M 3 and
3.9 times, respectively.

4. Modeling of the event target using
Gaussian mixture model

4.1. Proposed method
In the MRTD algorithm, event targets are valid LSF coefficients.
However, this kind of representation is limited by the inability
to independently control important formant characteristics such
as amplitude and bandwidth, or to control the spectral shape.

Zolfaghari et al. proposed a technique to fit a Gaussian mix-
ture model to the smoothed magnitude spectrum of a speech
signal [13, 14, 15]. The parameters of Gaussian mixture model
are called spectral-GMM parameters in this paper. The abil-
ity to independently control the parameters of each Gaussian
component enables precise estimation of the spectral envelope,
enables a wide variety of modifications, and enables indepen-
dent control of the formants. However, the original method does
not ensure a one-to-one correspondence between spectral peaks
and Gaussian components. This creates difficulty in modifying
the speech spectrum in both dimensions, frequency and ampli-
tude. To overcome this drawback, we propose an improvement
in modeling the speech spectrum for speech modification. The
aim of our proposed method is not only to model the speech
spectrum well, but also to ensure a one-to-one correspondence
between spectral peaks and Gaussian components. Our pro-
posed method is as follows.

First, from a speech spectrum, we start to estimate spectral-
GMM parameters with the initial 18 Gaussian components. The
requirement of the initial number of Gaussian components is
that the number of components be high enough to model the
speech spectrum well. Note that the initial Gaussian compo-
nents depend on the sampling frequency. We assume that if
the linear sum of two Gaussian components has only one peak,
these two Gaussian components are dependent, and also that,
if the linear sum of two Gaussian components has two peaks,
these two Gaussian components are independent. After we get
the spectral-GMM parameters in the first iteration, we check
whether or not all Gaussian components are independent com-
ponents. If not, we divide the spectral-GMM parameters into
two groups. The first group models the spectral shape of the
speech spectrum, and the other group models the spectral peaks
of the speech spectrum. On the basis of the geometric char-
acteristics of normal distribution, i.e. the empirical rule, we
assume that a Gaussian component m is a spectral shape factor
if there are at least two other Gaussian components located be-
tween [−3μm, 3μm], where μm is the mean of this Gaussian
component m. If two Gaussian components i, j are dependent
spectral peaks, we merge these two Gaussian components by
the following equations.

μij =
ωiμi + ωjμj

ωi + ωj
(5)

σ2
ij =

ωi(σ
2
i + (μij − μi)

2) + ωj(σ
2
j + (μij − μj)

2)

ωi + ωj
(6)

where μi, σi and μj , σj are the mean, and standard deviation of
Gaussian components i and j, respectively. After merging Gaus-
sian components, a new process of estimating spectral-GMM
parameters is executed, with the condition that the initial pa-
rameters for the new process are current Gaussian components.
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Figure 2: Example of the spectral envelope restored by our pro-

posed method: the thin lines indicate Gaussian components,

the bold line indicates the restored spectral envelope (top), and

STRAIGHT spectral envelope (bottom).
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Figure 3: Example of our spectral modification algorithm ap-

plied to a spectrum: ΔF1 = 30%, ΔF2 = −10%, ΔF3 =
20%, and ΔF4 = 15%.

The process of spectral-GMM estimation continues to iterate,
and terminates when all Gaussian components are independent
components. Obviously, this algorithm always converges, since
after each iteration, the number of Gaussian components de-
creases by at least 1. An example of the spectral envelope re-
stored by our proposed method is illustrated in Fig. 2.

4.2. Spectral modification

Formant frequency is one of the most important parameters in
characterizing speech, and control of formants can effectively
modify the spectral envelope. Spectral-GMM parameters ex-
tracted from the spectral envelope are spectral peaks, which
may be related to formant information. To modify the spectral-
GMM parameters in accordance with formant scaling factors, it
is necessary to find relations between formants and the spectral-
GMM parameters.

We already proposed a new algorithm for modifying
spectral-GMM parameters in accordance with formant frequen-
cies [16]. In our proposed algorithm, we can independently
modify each peak. Also, we can control the spectral shape,
which is difficult to do using the conventional spectral modifi-
cation methods. An example of our proposed algorithm applied
to a spectrum is shown in Fig. 3.

664



5. Proposed speech analysis/synthesis
method

In Sections 3 and 4, we proposed new methods to model both
the event functions and the event targets for flexibly control-
ling them. To modify the speech signals, we only need to
modify event targets and event functions, and the smoothness
of modified speech will be ensured by the shape of the event
functions. In this section, we propose a new high-quality anal-
ysis/synthesis method for speech modification based on new
models of the event functions and the event targets. The pro-
cessing flow of our proposed method is as follows.

First, STRAIGHT [6] decomposes input speech signals into
spectral envelopes, F0, and AP. Since the spectral envelopes can
be further analyzed into LSF parameters, MRTD [11] is em-
ployed in the next step to decompose the LSF parameters into
event targets and event functions. The event functions are mod-
eled by using Eq. (3). Since the event targets are valid LSF
parameters [11], the spectral envelope of each event target can
be restored, and then the spectral envelopes are converted to
spectral-GMM parameters. By using spectral-GMM parame-
ters to model the event targets, we can flexibly perform modifi-
cations of the event targets. The same event functions evaluated
for the spectral parameters are also used to describe the tempo-
ral pattern of the F0, gain, and AP. The modified event targets
are then re-synthesized as modified LSF by TD synthesis. In the
following step, the modified LSF parameters are synthesized
as spectral envelopes by LSF synthesis. Finally, STRAIGHT
synthesis is employed to output the synthesized speech. Note
that our proposed method is integrated with the STRAIGHT
method, it therefore can use the merits of the STRAIGHT to
modify the F0.

6. Experiments and Results
Since we use spectral-GMM parameters to model each event
target, the order of LSFs has to be high enough to precisely
restore the spectral envelope. Via a small experiment, by
calculating the average log spectral distortion (LSD) between
STRAIGHT spectra and the spectral envelopes restored from
LSFs with different orders in a set of 250 sentence utterances of
the ATR Japanese speech database [17] at sampling frequency
of 16 kHz, we chose the LSF order of 40 in this paper. With this
order, the average LSD is smaller than 1 dB.

A set of 100 sentence utterances of the ATR Japanese
speech database [17] was selected as the speech data. This
speech dataset is spoken by 4 speakers (2 male & 2 female)
re-sampled at 16 kHz sampling frequency.

To evaluate the performance of our proposed analy-
sis/synthesis method, we compare the quality of synthesized
speech restored by our method with that of the framewise-
GMM method [13]. In the framewise-GMM method [13], we
estimated the spectral-GMM parameters from the STRAIGHT
spectrum frame by frame. We used the perceptual evaluation of
speech quality (PESQ) score (ITU-T P.862) to evaluate the qual-
ity of synthesized speech. Having high correlation (ρ > 0.92)
with subjective listening tests, the PESQ can be used reliably to
predict the subjective speech quality [18]. The score of PESQ
ranges from -0.5 to 4.5. The higher the score, the better the
perceptual quality. In this section, we also calculated the av-
erage PESQ of the synthesized speech restored by STRAIGHT
for the reference. We used the original sounds as the reference
signals, and the synthesized utterances restored by STRAIGHT,
the framewise-GMM method, and our proposed method as the
degraded signals. Since the average number of Gaussian com-
ponents in our proposed method is 9.2, we chose 9 Gaussian
components to model each speech spectrum in the framewise-
GMM method. The average PESQ results are shown in Table 1.
These results indicate that the quality of synthesized speech of
our proposed method is better than that of the framewise-GMM
method. Moreover, in our proposed method, both the speech

Table 1: Average PESQ for analysis/synthesis methods.

STRAIGHT method 3.5551

Framewise-GMM method 3.0294

Proposed method 3.3241

spectra (i.e. the spectral evolution and the speech spectrum)
and the temporal evolution of the excitation parameters (i.e. F0,
gain, and AP) can be modeled, which gives the flexibility to
control these parameters.

7. Conclusions
In this paper, we have presented a high-quality analy-
sis/synthesis method based on temporal decomposition for
speech modification. The same event functions evaluated for
the spectral parameters are also used to describe the temporal
pattern of the F0, gain, and AP. We then model the event func-
tions by using polynomial fitting, and event targets by using
spectral-GMM parameters. These models give the flexibility to
control the speech signals in both time and frequency domains.
The experimental results have shown that the quality of the re-
constructed speech signal is high, and we can flexibly perform
both duration and spectral modification. In our future work, we
will investigate our proposed method for voice conversion, and
for transformation of speaking voice into singing voice.
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