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Abstract
This paper proposes two methods for robust automatic speech
recognition (ASR) in reverberant environments. Unlike other
methods which mostly apply inverse filtering by blindly esti-
mated room impulse responses to achieve dereverberation, the
proposed methods are based on the utilization of the charac-
teristics of speech. The first method - Harmonicity based Fea-
ture Analysis – takes advantage of the harmonic components
of speech, which are assumed to be undistorted. The second
method - Temporal Power Envelope Feature Analysis – utilizes
the temporal modulation structure of speech, representing the
phoneme level temporal events which contain most intelligibil-
ity information. Both methods increase the recognition perfor-
mance remarkably in a different way. Combining both of them
connects their individual advantages. In order to examine the
performance of utilizing harmonicity and modulation temporal
structure for reverberant ASR, the methods are tested in clean
and reverberant training. As results show, even in strong re-
verberant conditions both methods obtain practical applicable
performance for reverberant training. In addition, besides test-
ing their performance in dependency on the reverberation time,
their performance considering the speaker-to-microphone dis-
tance is tested, which is another new contributions in this paper.
Index Terms: reverberation, robust ASR, harmonicity based
feature analysis, temporal power envelope feature analysis

1. Introduction
Reverberation is one of the major and still unsolved problems
of current research on automatic speech recognition (ASR). It
has a strong degrading effect on the recognition rate (RR) [1].
Methods in the more traditional field of noise robustness are not
applicable since reverberation and noise have different effects.
Effects of room acoustics: Inside of rooms reverberation
smears the spectro-temporal structure of speech. The reverber-
ant signal x(t) consists of direct (clean) and reverberant (distur-
bance) sound components (xD(t) and xR(t)) which add at the
microphone. The direct sound energy (field) wD degrades with
the speaker-microphone-distance (SMD) r following wD(r) ≈
1/r2. The reverberant sound energy (field) is position inde-
pendent (wR(r) ≈ const.; ideal assumption). Both result in a
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Figure 1: SCHROEDER-integral of RIRs, measured at different
SMDs in a SMART room [2] at UPC in Barcelona.

position dependent signal to reverberation ratio (SRR(r), de-
creasing with the SMD. The SMD, where wD = wR is known
as the reverberation distance rR. Far (approx.: SMD > rR;
wD < wR) and near (approx.: SMD < rR; wD > wR)
sound field behavior can be distinguished. The system between
the speaker and microphone can be described by the room im-
pulse response (RIR) h(t). This also contains direct (hD(t),
impulse) and reverberation (hR(t), tail) components. The en-
ergy of hR(t) decays exponentially (ideal assumption), which
leads to a linear function in dB, decaying with the velocity
−60 dB/T60. The reverberation time T60 is the most commonly
used property to describe a specific room. Hence, many ASR
and dereverberation researchers have utilized T60 as the only
parameter to evaluate the quality of their systems in reverber-
ant environments. Figure 1 shows a three-dimensional graphic
of the SCHROEDER-integral of RIRs in decibels (LSchr(t, r))
measured at varying SMDs. It gives a graphical explanation
why the only use of T60 is insufficient by far to describe de-
pendencies of systems on reverberation; it is only suitable for
the far sound field. The investigation of the dependency on the
SMD is a new contribution of the paper.
Inverse-filtering-based dereverberation: Traditional and new
approaches are proposed to solve the dereverberation task (e.g.,
[3, 4, 5]). Most dereverberation algorithms are based on blind
estimation of the RIR and subsequent filtering of the input sig-
nal with the inverse of h(t). However, certain blind estimation
of RIRs is a tough task, which is even more problematic while
tracking of changing RIRs (varying speakers location, moving
objects/persons inside the room). Long reverberation times lead
to more unstable systems. Adaptation times are mostly far too
long to enable practical applications for command-word ASR.
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Figure 2: Schematic illustration of disturbances caused by re-
verberation (r) for voiced (v) and unvoiced (u) speech.

Dereverberation utilizing speech characteristics: Ap-
proaches that do not need to estimate the RIR are preferred
for real ASR systems. Unlike signal enhancement systems
which demands sophisticated speech quality, ASR has the ad-
vantage, that only features need to be restored. One possible
way of enhancing features is the utilization of speech proper-
ties, which are not affected by reverberation. The authors pro-
pose two techniques, each utilizing a different speech property:
(I) Harmonicity-based feature analysis (HFA) [6] utilizes two
assumptions of reverberant speech: (a) harmonic components
are assumed to be undisturbed and (b) the low frequency en-
ergy of unvoiced sections is most probably reverberation and
can be deleted. (II) Temporal power envelope feature analysis
(TPEFA) as similar in [7, 8] utilizes the temporal modulation
structure that remains under reverberant conditions.
Requirements for applicable command word ASR: Appli-
cable ASR in reverberant rooms requires: (a) a robust accept-
able recognition rate (RR) (≈ 90% [9]) under typical vary-
ing indoor conditions (living/home/office environments: 0.3 s
< T60 < 1.0 s; 0.5 m < SMD < 4 m), (b) no or real time
adaptation (< 2.0 s), (c) robustness against changes in the
RIR (movements of speakers/object) and (d) feasible numerical
complexity. Practical applicable dereverberation methods have
to meet these demanding requirements.

2. Utilizing Speech Properties for Rev. ASR
In this paper only a brief overview of implemented ideas of the
applied front-end methods is given. The exact implementations
are described in associated references: (a) CFA (Conventional
Feature Analysis) as used in [10], (b) HFA proposed in detail
in [6], (c) TPEFA as used in [7, 8] and (d) HFA+TPEFA com-
bined proposed in this article. Before any of these front-end
methods are evaluated, the model has to be trained applying the
appropriate front-end on the training data.

2.1. Conventional Feature Analysis
For comparison subsequent methods have to adapt to the same
conditions as the CFA used in [1, 10]. These involve clas-
sical short time Fourier analysis (STFA) followed by a mel
filterbank (MFB). STFA includes framing of the input signal
x(k) (fs = 16 kHz) into x(a, k) (frame index a), windowing
and FFT (N = 512). MFB includes a logarithm and cepstral
smoothing on magnitude spectrum |X(a, n)|, energy derivation
and normalization of 30 mel-scaled filter channels composing a
feature vector, �x(a). The absolute frame energy is added as the
31st component.

2.2. Harmonicity-based Feature Analysis
HFA implements three ideas:
(i) Harmonic components are assumed to be clean: This
principle is already used in [5]. HFA synthesizes voiced spectra
Xs,v(n) based on the measured harmonic components at har-

monic indices nh (multiples of F0). Waveform interpolation is
carried out between two nh’s taking into consideration the typ-
ical structure of logarithmized voiced spectra.
(ii) Unvoiced speech is highly reverberated at low frequen-
cies: Unvoiced speech sections, e.g., fricatives, have their main
features in the higher frequency regions. Their lower frequency
regions are highly distorted by reverberation coming from pre-
vious voiced sections as shown in Fig. 2. These low frequency
reverberation have high energy compared to the unvoiced fea-
tures due to the more energetic production process of voiced
speech. Therefore HFA barely suppresses low frequency com-
ponents, enhancing the structure of the feature vector into a
more unvoiced shape. Some information is lost for unvoiced
wideband signals, but this also applies to the training data. This
processing also recovers the low frequency temporal structure
of speech, which is actually the key issue in TPEFA.
(iii) High frequency reverberation is harmless: According to
[6] reverberation above 2500 Hz is almost harmless for ASR.
Therefore, HFA involves the previous ideas of (i) voiced and
(ii) unvoiced speech only at low frequencies. High frequency
components remain unchanged. The fading interaction between
the original high frequency components and the two types of
low frequency processes is smoothly accomplished by a spec-
tral overlap-and-add. A number of experiments achieved opti-
mal fading parameters [6].
The implementation follows Fig. 3(a). As previously pointed
out, this behavior results in two different types of analysis for
voiced and unvoiced frames, generating the synthetic spectra,
Xs,v(n) and Xs,u(n), which are passed to the MFB.
F0 estimation: Initially the autocorrelation function (ACF)
method is used. Under reverberation this simple approach per-
forms similar compared to advanced methods [11].
VUD: Voiced unvoiced decision (VUD) also uses a simple ap-
proach where the mean energy of the harmonic components of
a frame is compared to a dynamically derived threshold [6].
Considering F0 estimation and VUD errors: Using other
more sophisticated approaches for F0 estimation, F0 post-
processing or VUD (e.g., [12]) did not lead to better results of
RR, concluding that these easy approaches appeared as suffi-
cient. Their errors are handled by the model, since errors also
occur while analyzing the training data. Error modeling per-
forms even better for reverberant training (compare the results
in sections 3.1 and 3.2). This is especially the case for VUD
errors, which therefore demand at least a two-Gaussian Mix-
ture Model (two-GMM) Hidden Markov Model (HMM). Due to
occurring VUD errors, two different methods of analysis gen-
erating Xs,v(n) and Xs,u(n) can be undertaken for the same
phoneme (one for the correct and the second for the incorrect
VUD), forming two distant clusters in the feature space for the
same phoneme. One could argue that analyzing voiced frames
in an unvoiced manner would delete too much information for
discrimination. Only low frequency components are suppressed
but second and third formant information still remains result-
ing in slightly reduced discrimination. Despite these errors,
the overall processing of HFA increases the performance of the
ASR for reverberant training even more.

2.3. Temporal Power Envelope Feature Analysis
Recent researches show that most speech intelligibility informa-
tion is encoded in the temporal modulation envelopes (TMEs)
of frequency subbands [13]. Furthermore, as these TMEs are
robust against noise distortion in speech-enhancement systems,
they have to be restored. Following the same idea to enhance
ASR features, techniques such as Relative Spectral Filtering
(RASTA) for spectral or cepstral trajectories [14] are proposed.
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Figure 3: Block diagrams of (a) HFA and (b) TPEFA.

For the reverberant conditions the authors investigate and dis-
cuss, that the fine temporal structure of speech is smeared
but the large-scale TME structures corresponding to linguistic
events (phonemes) are still retained. However, they are flat-
tened due to reverberation. As some researchers (e.g., [15])
show, most speech intelligibility information is distributed in
the TME structures between 2 Hz and 20 Hz. Concluding, oc-
curing higher modulation frequencies can be seen as induced by
distortions as reverberation. According to these assumptions,
the implemented TPEFA front-end (Fig. 3(b)) aims to restore
the temporal modulated power envelope (TPE) for frequencies
below 20 Hz. Considering the temporal co-modulation prop-
erty of speech [7], x(k) is decomposed into C = 64 evenly
distributed frequency bands (channel index c; time domain con-
stant band filterbank (CBFB), and a bandwidth of 100 Hz ac-
cording to previous research [7, 8] by the authors). Each sub-
band signal xc(k) can be regarded as a temporal (amplitude)
modulated signal:

xc(n) = α̂c(n) cos

(
ωc

k

fs
+ ϕc

)
, (1)

where α̂c is the TME, ωc and ϕc are the associated carrier fre-
quency and phase of the c-th subband. To extract TPE êc(k),
the squared magnitude of the complex analytical signal xc(k)
is derived. xc(k) is composed of xc(k) as the real part and the
Hilbert transform (Hilbert [·]) of xc(k) as the imaginary part.
Subsequently, êc(k) is low-pass filtered (LPF with a cutoff fre-
quency of 20 Hz according to [15], ref. above):

êc(k) = LPF
[|xc(k) + jHilbert [xc(k)]|2] . (2)

êc(k) is still a time signal. The index c can be seen as a fre-
quency index of a C-channel TPE spectrum for each time index
k. To use this preprocessor for ASR, framing is applied by down
sampling with Mk = Ia (frame interval Ia = 160, the same as
for CFA) resulting in êc(a). No anti-aliasing filter is needed,
because of the previous LPF (20 < fs/(2Ia) Hz). To com-
pare the performance of TPEFA with the other methods, êc(a)
is interfaced with MFB, which requires N/2 frequency bins as
input. Therefore, êc(a) is up-sampled in frequency by Lc = 4
(simple trapezoid interpolation).

2.4. Combination of HFA and TPEFA
HFA+TPEFA uses the synthesized spectra Xs(a, n) generated
within HFA for resynthesis into short time signals xs(a, k)
applying the Fourier series, which incorporates the original
phase ϕ(X(a, n)). An overlap-and-add algorithm assembles
the HFA-processed time signal as input for the TPEFA. An in-
verse processing order, i.e., TPEFA before HFA is not possible
since TPEs cannot be resynthesized or retain harmonicity infor-
mation. For the same reason as HFA also HFA+TPEFA requires
at least a 2-GMM model.
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3. Evaluation
This work uses the same evaluation system as described in [1, 6]
(UASR recognizer, subset of APOLLO corpus [9] consisting of
1020 command phrases (each ≈2 s speech) of 17 classes. Two
sets of dependency experiments are accomplished:
•RR(SMD) in the SMART room environment (Fig. 1)
•RR(T60) in rooms for near and far field (SMD = 1 m/3 m).

3.1. Evaluation Results for Clean Training
•RR(SMD) (Fig. 4 (a)): A strong degradation using CFA can
be observed even after a few cm of SMD. HFA and TPEFA in-
crease the performance over the whole range, closely won by
HFA. HFA+TPEFA performs best and takes advantages of both
methods. Interesting point: The results adumbrate the reverber-
ation distance of this room (rR ≈1.5,. . . ,2.5 m).
•RR(T60) (Fig. 5 (a1), (a2) (near, far field)): CFA again per-
forms poorly, decreasing with increasing T60,Test. HFA grad-
ually improves for clean training, due to some loss of informa-
tion in the undistorted data (reverberant training compensates
for this effect, as described below). For increasing T60,Test, the
degradation in RR is less than for CFA; → HFA increases the
RR for reverberant conditions. TPEFA enhances the general in-
formation properties of speech, increasing the RR already for
the clean case but also over the whole reverberant test range.
HFA+TPEFA leads to a slight drop at clean conditions com-
pared to TPEFA, due to the loss caused by HFA. But for the
more reverberant conditions, the advances of HFA and TPEFA
add again.

3.2. Evaluation Results for Reverberant Training
In difference to speech enhancement systems, ASR has the ad-
vantage to train models at the disturbing conditions. However, a
dedicated reverberant model usually tends to support the train-
ing condition, but drops other conditions (refer CFA in all dia-
grams). Good behavior is achieved by a method when a training
condition can be used for general test conditions.
•RR(SMD) (Fig. 4 (b), (c)): The model is trained under rever-
berant conditions of the SMART room at several SMDs. CFA
performs better for the far field, but loses RR in the near field.
HFA training at SMD = 280 cm achieves the best performance,
although there is a slight decrease for clean case. TPEFA per-
forms significantly better than CFA, but the results tend to sup-
port the training condition resulting in a loss for clean test data.
HFA+TPEFA is marginally outperformed by HFA, due to the
RR drop of TPEFA at short SMDs.
•RR(T60)(Fig. 5 (b) – (d)): Reverberant training conditions at
several T60’s (at SMD = 1 m; far field training (3 m) did not
lead to good results) are applied. CFA performs better for the
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particular training condition, but drops the RR for other condi-
tions. HFA increases the RR of CFA and keeps it stable under
various rev. conditions when training becomes more reverber-
ant. This can especially be observed in Fig. 5(d1) (HFA com-
pared to TPEFA and CFA). TPEFA performs significantly better
than CFA but also better than HFA (in most cases). However, it
tends to support the actual training conditions and decreases un-
der different test conditions. HFA+TPEFA again combines the
advantages of HFA and TPEFA (stable vs. high improvement).
T60,Train = 1 s achieves the best overall results (both top and
bottom figures should always be considered for rating).

4. Conclusions
Comprehensive recognition experiments show that both applied
methods, HFA and TPEFA, can improve recognition. Although
the RR is drastically increased (e.g., from 35% up to 70%) un-
der clean training conditions, the performance is still insuffi-
cient for practical considerations (< 90%). Additional rever-
berant training achieves practical application requirements; also
for varying reverberation conditions. The gain at HFA is caused
by harmonic components, which can be considered as clean
and by the deletion of low frequency reverberation in unvoiced
speech, which is highly disturbing. HFA suffers at clean condi-
tions since some information is deleted but stably improves in
reverberant condition. TPEFA gains the ASR performance by
information about the temporal envelope modulation, which is
a robust information carried by speech also in noisy and rever-
berant environments. However TPEFA tends to support the ap-
plied training condition. The combination HFA+TPEFA takes
advantages of both methods (stable improvement and high im-
provement) and compensates their weak points. The enhance-
ment of both methods is achieved by emphasizing feature in-
formation by characteristic preferences of speech, resulting in
high practical applicable RRs even in adverse environments. No
adaptation as in current dereverberation approaches is needed
leading to real time processing ability, required in command
word recognition applications. A disadvantage of the TPEFA is
a high processing load due to the time domain filter bank, which
cannot be handled by current embedded devices, but will be in
future systems.
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