JAIST Repository >
ソフトウェア検証研究センター 2010~2016 >
z9-10. 学術雑誌論文等  >
z9-10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/12861

タイトル: Separating intermediate predicate logics of well-founded and dually well-founded structures by monadic sentences
著者: Beckmann, Arnold
Preining, Norbert
キーワード: Intermediate logics
Kripke frames
monadic logic
発行日: 2014-03-17
出版者: Oxford University Press
誌名: Journal of Logic and Computation
巻: 25
号: 3
開始ページ: 527
終了ページ: 547
DOI: 10.1093/logcom/exu016
抄録: We consider intermediate predicate logics defined by fixed well-ordered (or dually well-ordered) linear Kripke frames with constant domains where the order-type of the well-order is strictly smaller than ω^ω. We show that two such logics of different order-type are separated by a first-order sentence using only one monadic predicate symbol. Previous results by Minari, Takano and Ono, as well as the second author, obtained the same separation but relied on the use of predicate symbols of unbounded arity.
Rights: © The Author, 2014. Published by Oxford University Press. All rights reserved. This is a pre-copyedited, author-produced PDF of an article accepted for publication in Journal of Logic and Computation following peer review. The version of record [J Logic Computation (2015) 25 (3): 527-547. doi: 10.1093/logcom/exu016] is available online at: http://dx.doi.org/10.1093/logcom/exu016 .
URI: http://hdl.handle.net/10119/12861
資料タイプ: author
出現コレクション:z9-10-1. 雑誌掲載論文 (Journal Articles)


ファイル 記述 サイズ形式
20667.pdf393KbAdobe PDF見る/開く



お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係