JAIST Repository >
c. マテリアルサイエンス研究科・マテリアルサイエンス系 >
c10. 学術雑誌論文等 >
c10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/14269
|
タイトル: | Metal-Organic Coordination Network Thin Film by Surface-Induced Assembly |
著者: | Laokroekkiat, Salinthip Hara, Mitsuo Nagano, Shusaku Nagao, Yuki |
キーワード: | Porphyrin Self-assembly Multilayer thin film Surface-Induced Assembly (SIA) Organized structure |
発行日: | 2016-06-21 |
出版者: | American Chemical Society |
誌名: | Langmuir |
巻: | 32 |
号: | 26 |
開始ページ: | 6648 |
終了ページ: | 6655 |
DOI: | 10.1021/acs.langmuir.6b01251 |
抄録: | The growth of metal-organic coordination network thin films on surfaces has been pursued extensively and intensively to manipulate the molecular arrangement. For this study, the oriented multilayer thin films based on porphyrinic nano-architecture were synthesized toward metal-organic coordination networks using surface-induced assembly (SIA). Nanoscale molecular thin films were prepared at room temperature using cobalt(II) ion and porphyrin building blocks as precursors. Stepwise growth with a highly uniform layer was characterized using UV-Vis, AFM, IR, and XPS studies. The grazing incidence small angle X-ray scattering (GI-SAXS) and X-ray reflectivity (XRR) results remarkably suggested a periodic structure in in-plane (IP) direction with constant and high mass density (ca. 1.5 g/cm^3) throughout the multilayer formation. We propose that orientation of the porphyrin macrocycle plane with a hexagonal packed model by single anchoring mode was tilted approximately 60° with respect to the surface substrate. It is noteworthy that the well-organized structure of porphyrin-based macrocyclic framework on the amine-terminated surface substrate can be achieved efficiently using a simple SIA approach under mild synthetic conditions. The synthesized thin film provides a different structure from that obtained using bulk synthesis. This result suggests that the SIA technique can control not only the film thickness, but also the structural arrangement on the surface. This report of our research provides insight into the ordered porphyrin-based metal-organic coordination network thin films, which opens up opportunities for exploration of unique thin film materials for diverse applications. |
Rights: | Salinthip Laokroekkiat, Mitsuo Hara, Shusaku Nagano, and Yuki Nagao, Langmuir, 2016, 32(26), pp.6648-6655. This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Langmuir, copyright (c) American Chemical Society after peer review. To access the final edited and published work, see http://dx.doi.org/10.1021/acs.langmuir.6b01251 |
URI: | http://hdl.handle.net/10119/14269 |
資料タイプ: | author |
出現コレクション: | c10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
22536.pdf | | 1324Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|