JAIST Repository >
JAIST >
Theses >
Doctor of Philosophy(Information Science) >
R04) (Jun.2022 - Mar.2023 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10119/18142

Title: 大容量交通流のメゾスコピックモデル化手法に関する研究
Authors: 上原, 健嗣
Authors(alternative): うえはら, けんじ
Keywords: Traffic flow simulation
Mesoscopic model
Object Petri nets
Process Mining
Trajectory clustering
Issue Date: Sep-2022
Description: Supervisor: 平石 邦彦
情報科学研究科
博士
Title(English): A Study on Mesoscopic Modeling Methodologies for Large Volume Traffic Flow Data
Authors(English): UEHARA, KENJI
Language: eng
URI: http://hdl.handle.net/10119/18142
Academic Degrees and number: 甲第1343号
Degree-granting date: 2022-09-22
Degree name: 博士(情報科学)
Degree-granting institutions: 北陸先端科学技術大学院大学
Appears in Collections:D-IS. 2022年度(R04) (Jun.2022 - Mar.2023)

Files in This Item:

File Description SizeFormat
abstract.pdf要旨151KbAdobe PDFView/Open
paper.pdf本文6341KbAdobe PDFView/Open
summary.pdf内容の要旨及び論文審査の結果の要旨191KbAdobe PDFView/Open

All items in DSpace are protected by copyright, with all rights reserved.

 


Contact : Library Information Section, Japan Advanced Institute of Science and Technology