JAIST Repository >
School of Materials Science >
Articles >
Journal Articles >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10119/19407
|
Title: | Enhancement of removing OH bonds from low-temperature-deposited silicon oxide films by adding water vapor into NH3 gas annealing at 130 °C |
Authors: | Horita, Susumu |
Issue Date: | 2024-12-10 |
Publisher: | IOP Publishing on behalf of the Japan Society of Applied Physics (JSAP) |
Magazine name: | Japanese Journal of Applied Physics |
Volume: | 63 |
Start page: | 111007 |
DOI: | 10.35848/1347-4065/ad8b8b |
Abstract: | In this study, it is revealed that annealing with water-vapor-added NH3 gas (water-added NH3) is more effective than with dry NH3 at removing residual OH bonds in silicon oxide (SiOx) films deposited by atmospheric chemical vapor deposition with an organic silicon source. Fourier transform infrared spectra showed that the reduction amount of OH bonds using the water-added NH3 was ∼4 or ∼1.3 times larger than using the conventional dry N2 or dry NH3 mixed with N2 gas without water, respectively. This result is somewhat surprising because water is a potential candidate as a source of OH. The effect of water vapor on OH bond removal can be explained by considering the following three factors; the first is that low-temperature SiOx films are constrained somewhat, the second is that strained Si-O-Si bonds are in a higher or more unstable energy state than strain-free ones, and the third is that highly strained bonds are easily hydroxylated to form Si-OH bonds. |
Rights: | Copyright (c) 2024 Author(s). Susumu Horita. Japanese Journal of Applied Physics 63, 111007 (2024). This is an Open Access article distributed under the terms of Creative Commons Licence CC-BY [https://creativecommons.org/licenses/by/4.0/]. Original publication is available on IOP Science via https://doi.org/10.35848/1347-4065/ad8b8b. |
URI: | http://hdl.handle.net/10119/19407 |
Material Type: | publisher |
Appears in Collections: | c10-1. 雑誌掲載論文 (Journal Articles)
|
Files in This Item:
File |
Description |
Size | Format |
S-HORITA-M-1220.pdf | | 1588Kb | Adobe PDF | View/Open |
|
All items in DSpace are protected by copyright, with all rights reserved.
|