JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/10667
|
タイトル: | Generalization and Multirate Models of Motor Adaptation |
著者: | Tanaka, Hirokazu Krakauer, John W. Sejnowski, Terrence J. |
キーワード: | Motor Adaptation Generalization State Space Models System Identification Computational Modeling |
発行日: | 2012-03-05 |
出版者: | MIT Press |
誌名: | Neural Computation |
巻: | 24 |
号: | 4 |
開始ページ: | 939 |
終了ページ: | 966 |
DOI: | 10.1162/NECO_a_00262 |
抄録: | When subjects adapt their reaching movements in the setting of a systematic force or visual perturbation, generalization of adaptation can be assessed psychophysically in two ways: by testing untrained locations in the work space at the end of adaptation (slow postadaptation generalization) or by determining the influence of an error on the next trial during adaptation (fast trial-by-trial generalization). These two measures of generalization have been widely used in psychophysical studies, but the reason that they might differ has not been addressed explicitly. Our goal was to develop a computational framework for determining when a two-state model is justified by the data and to explore the implications of these two types of generalization for neural representations of movements. We first investigated, for single-target learning, how well standard statistical model selection procedures can discriminate two-process models from single-process models when learning and retention coefficients were systematically varied. We then built a two-state model for multitarget learning and showed that if an adaptation process is indeed two-rate, then the postadaptation generalization approach primarily probes the slow process, whereas the trial-by-trial generalization approach is most informative about the fast process. The fast process, due to its strong sensitivity to trial error, contributes predominantly to trial-by-trial generalization, whereas the strong retention of the slow system contributes predominantly to postadaptation generalization. Thus, when adaptation can be shown to be two-rate, the two measures of generalization may probe different brain representations of movement direction. |
Rights: | This is the uncorrected proof version of the work. Copyright (C) 2012 MIT Press. Hirokazu Tanaka, John W. Krakauer, Terrence J. Sejnowski, Neural Computation, 24(4), 2012, 939-966. http://dx.doi.org/10.1162/NECO_a_00262 |
URI: | http://hdl.handle.net/10119/10667 |
資料タイプ: | author |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
17741.pdf | | 2733Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|