JAIST Repository >
School of Information Science >
JAIST Research Reports >
Research Report - School of Information Science : ISSN 0918-7553 >
IS-RR-2013 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10119/10901

Title: Using Shallow Semantic Parsing and Relation Extraction for Finding Contradiction in Text
Authors: Pham, Minh Quang Nhat
Nguyen, Minh Le
Shimazu, Akira
Issue Date: 2013-01-18
Publisher: 北陸先端科学技術大学院大学情報科学研究科
Magazine name: Research report (School of Information Science, Japan Advanced Institute of Science and Technology)
Volume: IS-RR-2013-002
Start page: 1
End page: 10
Abstract: The problem of text representation is an important issue in textual inference tasks. Given the fact that full predicate-logic analysis is not practical in wide-coverage semantic processing, using shallow semantic representations is an intuitive and straightforward approach. Previous work on finding contradiction in text incorporate information derived from predicate-argument structures as features in supervised machine learning frameworks. In contrast to previous work, we explore the use of shallow semantic representations for contradiction detection in a rule-based framework. We address the low-coverage problem of shallow semantic representations by using a backup module which relies on binary relations extracted from sentences for contradiction detection. Evaluation experiments conducted on standard data sets indicated that using the backup module increases the coverage of contradiction phenomena for the contradiction detection system. Our system achieves better recall and F1 score for contradiction detection than most of baseline methods, and the same recall as a state of the art supervised method for the task.
URI: http://hdl.handle.net/10119/10901
Material Type: publisher
Appears in Collections:IS-RR-2013

Files in This Item:

File Description SizeFormat
IS-RR-2013-002.pdf106KbAdobe PDFView/Open

All items in DSpace are protected by copyright, with all rights reserved.

 


Contact : Library Information Section, Japan Advanced Institute of Science and Technology