JAIST Repository >
b. 情報科学研究科・情報科学系 >
b30. リサーチレポート >
Research Report - School of Information Science >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/10901

タイトル: Using Shallow Semantic Parsing and Relation Extraction for Finding Contradiction in Text
著者: Pham, Minh Quang Nhat
Nguyen, Minh Le
Shimazu, Akira
発行日: 2013-01-18
出版者: 北陸先端科学技術大学院大学情報科学研究科
誌名: Research report (School of Information Science, Japan Advanced Institute of Science and Technology)
巻: IS-RR-2013-002
開始ページ: 1
終了ページ: 10
抄録: The problem of text representation is an important issue in textual inference tasks. Given the fact that full predicate-logic analysis is not practical in wide-coverage semantic processing, using shallow semantic representations is an intuitive and straightforward approach. Previous work on finding contradiction in text incorporate information derived from predicate-argument structures as features in supervised machine learning frameworks. In contrast to previous work, we explore the use of shallow semantic representations for contradiction detection in a rule-based framework. We address the low-coverage problem of shallow semantic representations by using a backup module which relies on binary relations extracted from sentences for contradiction detection. Evaluation experiments conducted on standard data sets indicated that using the backup module increases the coverage of contradiction phenomena for the contradiction detection system. Our system achieves better recall and F1 score for contradiction detection than most of baseline methods, and the same recall as a state of the art supervised method for the task.
URI: http://hdl.handle.net/10119/10901
資料タイプ: publisher
出現コレクション:Research Report - School of Information Science


ファイル 記述 サイズ形式
IS-RR-2013-002.pdf106KbAdobe PDF見る/開く



お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係