JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/13703

タイトル: Study on Quality Improvement of HMM-Based Synthesized Voices Using Asymmetric Bilinear Model
著者: Dinh-Anh, Tuan
Morikawa, Daisuke
Akagi Masato
発行日: 2016-07
出版者: 信号処理学会
誌名: Journal of Signal Processing
巻: 20
号: 4
開始ページ: 205
終了ページ: 208
DOI: 10.2299/jsp.20.205
抄録: Hidden Markov model (HMM)-based synthesized voices are intelligible but not natural especially under limited-data conditions due to over-smoothed speech spectra. Improving naturalness is a critical problem of HMM-based speech synthesis. One solution is to use voice conversion techniques to convert over-smoothed spectra to natural spectra. Although conventional conversion methods transform speech spectra to natural ones to improve naturalness, they cause unexpected distortions in the intelligibility of synthesized speech. The aim of the study is to improve naturalness without reducing the intelligibility of synthesized speech by employing our novel asymmetric bilinear model (ABM) to separate the intelligibility and naturalness of synthesized speech. In the study, our ABM was implemented on the modulation spectrum domain of Mel-cepstral coefficient (MCC) sequences to enhance the fine structure of spectral parameter trajectory generated from HMMs. Subjective evaluations carried out on English data confirmed that the achieved naturalness of the method using the ABM involving singular value decomposition (SVD) was competitive with other methods under large-data conditions and outperformed other methods under limited-data conditions. Moreover, modified rhyme test (MRT) showed that the intelligibility of synthesized speech was well preserved with our method.
Rights: Copyright (C) 2016 信号処理学会. Tuan Dinh-Anh, Daisuke Morikawa, Masato Akagi, Journal of Signal Processing, 20(4), 2016, 205-208. http://dx.doi.org/10.2299/jsp.20.205
URI: http://hdl.handle.net/10119/13703
資料タイプ: publisher
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
2212.pdf413KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係