JAIST Repository >
School of Information Science >
Articles >
Journal Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10119/13776

Title: Computational Complexity of Piano-Hinged Dissections
Authors: Abel, Zachary
Demaine, Erik D.
Demaine, Martin L.
Horimaya, Takashi
Uehara, Ryuhei
Keywords: GeoLoop
hinged dissection
Ivan's Hinge
NP-hardness
paper folding
Issue Date: 2014-06
Publisher: 電子情報通信学会
Magazine name: IEICE transactions on fundamentals of electronics, communications and computer sciences
Volume: E97-A
Number: 6
Start page: 1206
End page: 1212
DOI: 10.1587/transfun.E97.A.1206
Abstract: We prove NP-completeness of deciding whether a given loop of colored right isosceles triangles, hinged together at edges, can be folded into a specified rectangular three-color pattern. By contrast、 the same problem becomes polynomially solvable with one color or when the target shape is a tree-shaped polyomino.
Rights: Copyright (C)2014 IEICE. Zachary Abel, Erik D. Demaine, Martin L. Demaine, Takashi Horimaya, and Ryuhei Uehara, IEICE transactions on fundamentals of electronics, communications and computer sciences, E97-A(6), 2014, 1206-1212. http://www.ieice.org/jpn/trans_online/
URI: http://hdl.handle.net/10119/13776
Material Type: publisher
Appears in Collections:b10-1. 雑誌掲載論文 (Journal Articles)

Files in This Item:

File Description SizeFormat
20243.pdf2759KbAdobe PDFView/Open

All items in DSpace are protected by copyright, with all rights reserved.

 


Contact : Library Information Section, Japan Advanced Institute of Science and Technology