JAIST Repository >
School of Information Science >
Articles >
Journal Articles >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10119/13776
|
Title: | Computational Complexity of Piano-Hinged Dissections |
Authors: | Abel, Zachary Demaine, Erik D. Demaine, Martin L. Horimaya, Takashi Uehara, Ryuhei |
Keywords: | GeoLoop hinged dissection Ivan's Hinge NP-hardness paper folding |
Issue Date: | 2014-06 |
Publisher: | 電子情報通信学会 |
Magazine name: | IEICE transactions on fundamentals of electronics, communications and computer sciences |
Volume: | E97-A |
Number: | 6 |
Start page: | 1206 |
End page: | 1212 |
DOI: | 10.1587/transfun.E97.A.1206 |
Abstract: | We prove NP-completeness of deciding whether a given loop of colored right isosceles triangles, hinged together at edges, can be folded into a specified rectangular three-color pattern. By contrast、 the same problem becomes polynomially solvable with one color or when the target shape is a tree-shaped polyomino. |
Rights: | Copyright (C)2014 IEICE. Zachary Abel, Erik D. Demaine, Martin L. Demaine, Takashi Horimaya, and Ryuhei Uehara, IEICE transactions on fundamentals of electronics, communications and computer sciences, E97-A(6), 2014, 1206-1212. http://www.ieice.org/jpn/trans_online/ |
URI: | http://hdl.handle.net/10119/13776 |
Material Type: | publisher |
Appears in Collections: | b10-1. 雑誌掲載論文 (Journal Articles)
|
Files in This Item:
File |
Description |
Size | Format |
20243.pdf | | 2759Kb | Adobe PDF | View/Open |
|
All items in DSpace are protected by copyright, with all rights reserved.
|