JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/14784
|
タイトル: | Optimizing Fuzzy Inference Systems for Improving Speech Emotion Recognition |
著者: | Elbarougy, Reda Akagi, Masato |
キーワード: | Fuzzy Inference System (FIS) Particle swarm optimization Speech emotion recognition Optimum clusters radius |
発行日: | 2016-10-18 |
出版者: | Springer |
誌名: | Advances in Intelligent Systems and Computing |
巻: | 533 |
開始ページ: | 85 |
終了ページ: | 95 |
DOI: | 10.1007/978-3-319-48308-5_9 |
抄録: | Fuzzy Inference System (FIS) is used for pattern recognition and classification purposes in many fields such as emotion recognition.However, the performance of FIS is highly dependent on the radius of clusters which has a very important role for its recognition accuracy. Although many researcher initialize this parameter randomly which does not grantee the best performance of their systems. The purpose of thispaper is to optimize FIS parameters in order to construct a high efficient system for speech emotion recognition. Therefore, a novel optimizationalgorithm based on particle swarm optimization technique is proposed for finding the best parameters of FIS classifier. In order to evaluate theproposed system it was tested using two emotional speech databases; Fujitsu and Berlin database. The simulation results show that the optimized system has high recognition accuracy for both languages with 97% recogintion acuracy for Japanese and 80% for German database. |
Rights: | This is the author-created version of Springer, Reda Elbarougy and Masato Akagi, Advances in Intelligent Systems and Computing, 533, 2016, 85-95. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/978-3-319-48308-5_9 |
URI: | http://hdl.handle.net/10119/14784 |
資料タイプ: | author |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
2215.pdf | | 395Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|