JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/16219

タイトル: Integrated Factor Graph Algorithm for DOA-based Geolocation and Tracking
著者: Cheng, Meng
Aziz, Muhammad Reza Kahar
Matsumoto, Tad
キーワード: Factor graph (FG)
direction of arrival (DOA)
extended Kalman filter (EKF)
geolocation
tracking
complexity analysis
CRLB
発行日: 2020-03-09
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: IEEE Access
巻: 8
開始ページ: 49989
終了ページ: 49998
DOI: 10.1109/ACCESS.2020.2979510
抄録: This paper proposes a new position tracking algorithm by integrating extended Kalman filter (EKF) and direction-of-arrival (DOA)-based geolocation into one factor graph (FG) framework. A distributed sensor network is assumed for detecting an anonymous target, where the process and observation equations in the state space model (SSM) are unknown. Importantly, the predicted state information can be utilized not only for filtering, but also for enhancing the observation process. To be specific, by taking the prediction into account as the a priori, a new FG scheme is proposed for GEolocation, denoted by FG-GE. The benefits are two-fold, compared with the conventional geolocation scheme which does not rely on the a priori information. First of all, significant performance improvement can be observed, in terms of the root mean square error (RMSE), when severe sensing errors are suddenly encountered. Furthermore, the proposed FG-GE can achieve dramatic reduction of computational complexity. In addition, this paper also proposes the use of a predicted Cramer-Rao lower bound (P-CRLB) to dynamically estimate the observation error variance, which demonstrates more robust tracking performance than that with only fixed average variance approximation.
Rights: Meng Cheng, Muhammad Reza Kahar Aziz, Tad Matsumoto, IEEE Access, 2020. DOI:10.1109/ACCESS.2020.2979510. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.
URI: http://hdl.handle.net/10119/16219
資料タイプ: publisher
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
3067.pdf4837KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係