JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/16285

タイトル: Cross-correlation task-related component analysis (xTRCA) for enhancing evoked and induced responses of event-related potentials
著者: Tanaka, Hirokazu
Miyakoshi, Makoto
キーワード: EEG data analysis
Multivariate analysis
Trial-by-trial reproducibility
Generalized eigenvalue problem
Matrix perturbation
Woody’s method
Evoked response
Induced response
発行日: 2019-04-27
出版者: Elsevier
誌名: NeuroImage
巻: 197
開始ページ: 177
終了ページ: 190
DOI: 10.1016/j.neuroimage.2019.04.049
抄録: We propose an analysis method that extracts trial-reproducible (i.e., recurring) event-related spatiotemporal EEG patterns by optimizing a spatial filter as well as trial timings of task-related components in the time domain simultaneously in a unified manner. Event-related responses are broadly categorized into evoked and induced responses, but those are analyzed commonly in the time and the time-frequency domain, respectively. To facilitate a comparison of evoked and induced responses, a unified method for analyzing both evoked and induced responses is desired. Here we propose a method of cross-correlation task-related component analysis (xTRCA) as an extension of our previous method. xTRCA constructs a linear spatial filter and then optimizes trial timings of single trials based on trial reproducibility as an objective function. The spatial filter enhances event-related responses, and the temporal optimization compensates trial-by-trial latencies that are inherent to ERPs. We first applied xTRCA to synthetic data of induced responses whose phases varied from trial to trial, and found that xTRCA could realign the induced responses by compensating the phase differences. We then demonstrated with mismatch negativity data that xTRCA enhanced the event-related-potential waveform observed at a single channel. Finally, a classification accuracy was improved when trial timings were optimized by xTRCA, suggesting a practical application of the method for a brain computer interface. We conclude that xTRCA provides a unified framework to analyze and enhance event-related evoked and induced responses in the time domain by objectively maximizing trial reproducibility.
Rights: Copyright (C)2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0). [http://creativecommons.org/licenses/by-nc-nd/4.0/] NOTICE: This is the author's version of a work accepted for publication by Elsevier. Hirokazu Tanaka, Makoto Miyakoshi, NeuroImage, 197, 2019, 177-190, http://dx.doi.org/10.1016/j.neuroimage.2019.04.049
URI: http://hdl.handle.net/10119/16285
資料タイプ: author
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
25198.pdf2278KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係