JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/16289

完全登録情報レコード

ダブリン・コア・フィールド言語
contributor.authorAtmaja, Bagus Trisen_US
contributor.authorAkagi, Masatoen_US
date.accessioned2020-06-03T01:03:43Z-
date.available2020-06-03T01:03:43Z-
date.issued2020-05-27en_US
identifier.urihttp://hdl.handle.net/10119/16289-
description.abstractThe majority of research in speech emotion recognition (SER) is conducted to recognize emotion categories. Recognizing dimensional emotion attributes is also important, however, and it has several advantages over categorical emotion. For this research, we investigate dimensional SER using both speech features and word embeddings. The concatenation network joins acoustic networks and text networks from bimodal features. We demonstrate that those bimodal features, both are extracted from speech, improve the performance of dimensional SER over unimodal SER either using acoustic features or word embeddings. A significant improvement on the valence dimension is contributed by the addition of word embeddings to SER system, while arousal and dominance dimensions are also improved. We proposed a multitask learning (MTL) approach for the prediction of all emotional attributes. This MTL maximizes the concordance correlation between predicted emotion degrees and true emotion labels simultaneously. The findings suggest that the use of MTL with two parameters is better than other evaluated methods in representing the interrelation of emotional attributes. In unimodal results, speech features attain higher performance on arousal and dominance, while word embeddings are better for predicting valence. The overall evaluation uses the concordance correlation coefficient score of the three emotional attributes. We also discuss some differences between categorical and dimensional emotion results from psychological and engineering perspectives.en_US
format.extent744243 bytes-
format.mimetypeapplication/pdf-
language.isoenen_US
publisherCambridge University Pressen_US
rightsSIP (2020), vol. 9, e17, page 1 of 12 (c) The Author(s), 2020. Published by Cambridge University Press in association with Asia Pacific Signal and Information Processing Association. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/ATSIP.2020.14en_US
subjectSpeech emotion recognitionen_US
subjectMultitask learningen_US
subjectFeature fusionen_US
subjectDimensional emotionen_US
subjectAffective computingen_US
titleDimensional speech emotion recognition from speech features and word embeddings by using multitask learningen_US
type.niiJournal Articleen_US
identifier.niiissn2048-7703en_US
identifier.jtitleAPSIPA Transactions on Signal and Information Processingen_US
identifier.volume9en_US
identifier.spagee17en_US
relation.doi10.1017/ATSIP.2020.14en_US
rights.textversionpublisheren_US
language.iso639-2engen_US
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
SIP_Atmaja.pdf726KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問合せ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係 (ir-sys[at]ml.jaist.ac.jp)