JAIST Repository >
JAIST >
Theses >
Master of Science(Information Science) >
R02) (Jun.2020 - Mar.2021 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10119/17082

Title: Optimized-FDanQ: Implementation of Hybrid Neural Network "DanQ" on Cloud Multi-FPGA and its Optimization under Given Costs
Authors: 稲葉, 貴大
Authors(alternative): いなば, たかひろ
Keywords: Deep Learning
深層学習
Cloud Optimization
クラウド最適化
FPGA
FPGA
Acceleration
高速化
Issue Date: Mar-2021
Description: Supervisor:井口 寧
先端科学技術研究科
修士(情報科学)
Title(English): Optimized-FDanQ: Implementation of Hybrid Neural Network "DanQ" on Cloud Multi-FPGA and its Optimization under Given Costs
Authors(English): Inaba, Takahiro
Language: eng
URI: http://hdl.handle.net/10119/17082
Appears in Collections:M-IS. 2020年度(R02) (Jun.2020 - Mar.2021)

Files in This Item:

File Description SizeFormat
abstract.pdf135KbAdobe PDFView/Open
paper.pdf1973KbAdobe PDFView/Open

All items in DSpace are protected by copyright, with all rights reserved.

 


Contact : Library Information Section, Japan Advanced Institute of Science and Technology