| 
JAIST Repository >
b. 情報科学研究科・情報科学系 >
 b10. 学術雑誌論文等 >
 b10-1. 雑誌掲載論文 >
 
        
        
        
            | このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/4923 |  
 
| タイトル: | A Generalization of Magic Squares with Applications to Digital Halftoning |  | 著者: | Aronov, Boris Asano, Tetsuo
 Kikuchi, Yosuke
 Nandy, Subhas C.
 Sasahara, Shinji
 Uno, Takeaki
 |  | キーワード: | digital halftoning discrepancy
 latin square
 magic square
 matrix
 |  | 発行日: | 2008-02 |  | 出版者: | Springer |  | 誌名: | Theory of Computing Systems |  | 巻: | 42 |  | 号: | 2 |  | 開始ページ: | 143 |  | 終了ページ: | 156 |  | DOI: | 10.1007/s00224-007-9005-x |  | 抄録: | A semimagic square of order n is an n × n matrix containing the integers 0,…,n^2 _1 arranged in such a way that each row and column add up to the same value. We generalize this notion to that of a zero k × k-discrepancy matrix by replacing the requirement that the sum of each row and each column be the same by that of requiring that the sum of the entries in each k × k square contiguous submatrix be the same. We show that such matrices exist if k and n are both even, and do not if k and n are relatively prime. Further, the existence is also guaranteed whenever n = k^m, for some integers k,m ≥ 2. We present a space-efficient algorithm for constructing such a matrix. Another class that we call constant-gap matrices arises in this construction. We give a characterization of such matrices. An application to digital halftoning is also mentioned. |  | Rights: | This is the author-created version of Springer, Boris Aronov, Tetsuo Asano, Yosuke Kikuchi, Subhas C. Nandy, Shinji Sasahara and Takeaki Uno, Theory of Computing Systems, 42(2), 2008, 143-156. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/s00224-007-9005-x |  | URI: | http://hdl.handle.net/10119/4923 |  | 資料タイプ: | author |  | 出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles) 
 |  
 | このアイテムのファイル: | ファイル | 記述 | サイズ | 形式 | 
|---|
 | C7574.pdf |  | 127Kb | Adobe PDF | 見る/開く | 
 | 
 
    
     当システムに保管されているアイテムはすべて著作権により保護されています。   |