JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/11580

タイトル: Computational Reconstruction of Cognitive Music Theory
著者: Tojo, Satoshi
Hirata, Keiji
Hamanaka, Masatoshi
キーワード: Music information processing
Cognitive Thoery of Music
Computational Musicology
Generative Theory of Tonal Music
発行日: 2013-01
出版者: Springer
誌名: New Generation Computing
巻: 31
号: 2
開始ページ: 89
終了ページ: 113
DOI: 10.1007/s00354-013-0202-7
抄録: In order to obtain a computer-tractable model of music, we first discuss what conditions the music theory should satisfy from the various viewpoints of artificial intelligence and/or other computational notions. Then, we look back on the history of cognitive theory of music, i.e., various attempts to represent our mental understandings and to show music structures. Among which, we especially pay attention to the Generative Theory of Tonal Music (GTTM) by Lehrdahl and Jackendoff, as the most promising candidate of cognitive/computational theory of music. We briefly overview the theory as well as its inherent problems, including the ambiguity of its preference rules. By our recent efforts, we have solved this ambiguity problem by assigning parametrized weights, and thus we could implement an automatic tree analyzer. After we introduce the system architecture, we show our application systems.
Rights: This is the author-created version of Springer, Satoshi Tojo, Keiji Hirata, Masatoshi Hamanaka, New Generation Computing, 31(2), 2013, 89-113. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/s00354-013-0202-7
URI: http://hdl.handle.net/10119/11580
資料タイプ: author
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
20064.pdf3280KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係