JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/11580
|
タイトル: | Computational Reconstruction of Cognitive Music Theory |
著者: | Tojo, Satoshi Hirata, Keiji Hamanaka, Masatoshi |
キーワード: | Music information processing Cognitive Thoery of Music Computational Musicology Generative Theory of Tonal Music |
発行日: | 2013-01 |
出版者: | Springer |
誌名: | New Generation Computing |
巻: | 31 |
号: | 2 |
開始ページ: | 89 |
終了ページ: | 113 |
DOI: | 10.1007/s00354-013-0202-7 |
抄録: | In order to obtain a computer-tractable model of music, we first discuss what conditions the music theory should satisfy from the various viewpoints of artificial intelligence and/or other computational notions. Then, we look back on the history of cognitive theory of music, i.e., various attempts to represent our mental understandings and to show music structures. Among which, we especially pay attention to the Generative Theory of Tonal Music (GTTM) by Lehrdahl and Jackendoff, as the most promising candidate of cognitive/computational theory of music. We briefly overview the theory as well as its inherent problems, including the ambiguity of its preference rules. By our recent efforts, we have solved this ambiguity problem by assigning parametrized weights, and thus we could implement an automatic tree analyzer. After we introduce the system architecture, we show our application systems. |
Rights: | This is the author-created version of Springer, Satoshi Tojo, Keiji Hirata, Masatoshi Hamanaka, New Generation Computing, 31(2), 2013, 89-113. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/s00354-013-0202-7 |
URI: | http://hdl.handle.net/10119/11580 |
資料タイプ: | author |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
20064.pdf | | 3280Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|