JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/12799

タイトル: Efficiency of Static Knowledge Bias in Monte-Carlo Tree Search
著者: Ikeda, Kokolo
Viennot, Simon
キーワード: Monte Carlo Tree Search
Search Bias
Static Evaluation Function
Progressive Widening
Game of Go
発行日: 2014-07-12
出版者: Springer
誌名: Lecture Notes in Computer Science
巻: 8427
開始ページ: 26
終了ページ: 38
DOI: 10.1007/978-3-319-09165-5_3
抄録: Monte-Carlo methods are currently the best known algorithms for the game of Go. It is already known that Monte-Carlo simulations based on a probability model containing static knowledge of the game are more efficient than random simulations. Such probability models are also used by some programs in the tree search policy to limit the search to a subset of the legal moves or to bias the search, but this aspect is not so well documented. In this article, we try to describe more precisely how static knowledge can be used to improve the tree search policy, and we show experimentally the efficiency of the proposed method with a large number of games against open source Go programs.
Rights: This is the author-created version of Springer, Kokolo Ikeda and Simon Viennot, Lecture Notes in Computer Science, 8427, 2014, 26-38. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/978-3-319-09165-5_3
URI: http://hdl.handle.net/10119/12799
資料タイプ: author
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
19519.pdf108KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係