|
JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/15856
|
| タイトル: | Complexity of the Maximum k-Path Vertex Cover Problem |
| 著者: | Miyano, Eiji Saitoh, Toshiki Uehara, Ryuhei Yagita, Tsuyoshi Zanden, Tom van der |
| キーワード: | path vertex cover problem NP-hardness split graph treewidth |
| 発行日: | 2018-01-31 |
| 出版者: | Springer |
| 誌名: | Lecture Notes in Computer Science |
| 巻: | 10755 |
| 開始ページ: | 240 |
| 終了ページ: | 251 |
| DOI: | 10.1007/978-3-319-75172-6_21 |
| 抄録: | This paper introduces the maximum version of the k-path vertex cover problem, called the Maximum k-Path Vertex Cover problem (MaxP_k VC for short): A path consisting of k vertices, i.e., a path of length k-1 is called a k-path. If a k-path P_k includes a vertex v in a vertex set S, then we say that S or v covers Pk . Given a graph G=(V,E) and an integer s, the goal of MaxP_kVC is to find a vertex subset S included in V of at most s vertices such that the number of k-paths covered by S is maximized. MaxPk VC is generally NP-hard. In this paper we consider the tractability/intractability of MaxP_kVC on subclasses of graphs: We prove that MaxP_3 VC and MaxP_4VC remain NP-hard even for split graphs and for chordal graphs, respectively. Furthermore, if the input graph is restricted to graphs with constant bounded treewidth, then MaxP_3 VC can be solved in polynomial time. |
| Rights: | This is the author-created version of Springer, Eiji Miyano, Toshiki Saitoh, Ryuhei Uehara, Tsuyoshi Yagita and Tom van der Zanden, Lecture Notes in Computer Science, 10755, 2018, 240-251. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/978-3-319-75172-6_21 |
| URI: | http://hdl.handle.net/10119/15856 |
| 資料タイプ: | author |
| 出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
| ファイル |
記述 |
サイズ | 形式 |
| 23993.pdf | | 280Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|