JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/16961
|
タイトル: | Continuous Audiovisual Emotion Recognition Using Feature Selection and LSTM |
著者: | Elbarougy, Reda Atmaja, Bagus Tris Akagi, Masato |
キーワード: | continuous emotion recognition audiovisual feature selection LSTM |
発行日: | 2020-11-01 |
出版者: | Research Institute of Signal Processing Japan |
誌名: | Journal of Signal Processing |
巻: | 24 |
号: | 6 |
開始ページ: | 229 |
終了ページ: | 235 |
DOI: | 10.2299/jsp.24.229 |
抄録: | Speech and visual information are the most dominant modalities for a human to perceive emotion. A method of recognizing human emotion from these modalities is proposed by utilizing feature selection and long short-term memory (LSTM) neural networks. A feature selection method based on support vector regression is used to select the relevant features among thousands of features extended from speech and video features via bag-of-X-words. The LSTM neural networks then are trained using a number of selected features and also separately optimized for every emotion dimension. Instead of utterance-level emotion recognition, time-frame-based processing is performed to enable continuous emotion recognition using a database labeled for each time frame. Experimental results reveal that a system with feature selection is more effective for predicting emotion dimensions for a single language than the baseline system without feature selection. The performance is measured in terms of the concordance correlation coefficient obtained by averaging the valence, arousal, and liking dimensions. |
Rights: | Copyright (C) 2020 Research Institute of Signal Processing Japan. Reda Elbarougy, Bagus Tris Atmaja and Masato Akagi, Journal of Signal Processing, 24(6), 2020, pp.229-235. http://dx.doi.org/10.2299/jsp.24.229 |
URI: | http://hdl.handle.net/10119/16961 |
資料タイプ: | publisher |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
3359.pdf | | 2751Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|