JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/4899

タイトル: Back-Propagation Learning of Infinite-Dimensional Dynamical Systems
著者: Tokuda, Isao
Tokunaga, Ryuji
Aihara, Kazuyuki
キーワード: back-propagation learning
time-delay
recurrent neural network
retarded functional differential equations
infinite-dimensional dynamical system
発行日: 2003-10
出版者: Elsevier
誌名: Neural Networks
巻: 16
号: 8
開始ページ: 1179
終了ページ: 1193
DOI: 10.1016/S0893-6080(03)00076-5
抄録: This paper presents numerical studies of applying back-propagation learning to a delayed recurrent neural network (DRNN). The DRNN is a continuoustime recurrent neural network having time delayed feedbacks and the backpropagation learning is to teach spatio-temporal dynamics to the DRNN. Since the time-delays make the dynamics of the DRNN infinite-dimensional, the learning algorithm and the learning capability of the DRNN are different from those of the ordinary recurrent neural network (ORNN) having no time-delays. First, two types of learning algorithms are developed for a class of DRNNs. Then, using chaotic signals generated from the Mackey- Glass equation and the R¨ossler equations, learning capability of the DRNN is examined. Comparing the learning algorithms, learning capability, and robustness against noise of the DRNN with those of the ORNN and time delay neural network (TDNN), advantages as well as disadvantages of the DRNN are investigated.
Rights: NOTICE: This is the author's version of a work accepted for publication by Elsevier. Isao Tokuda, Ryuji Tokunaga and Kazuyuki Aihara, Neural Networks, 16(8), 2003, 1179-1193, http://dx.doi.org/10.1016/S0893-6080(03)00076-5
URI: http://hdl.handle.net/10119/4899
資料タイプ: author
出現コレクション:b10-1. 雑誌掲載論文 (Journal Articles)

このアイテムのファイル:

ファイル 記述 サイズ形式
C6289.pdf385KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係