JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/4899
|
タイトル: | Back-Propagation Learning of Infinite-Dimensional Dynamical Systems |
著者: | Tokuda, Isao Tokunaga, Ryuji Aihara, Kazuyuki |
キーワード: | back-propagation learning time-delay recurrent neural network retarded functional differential equations infinite-dimensional dynamical system |
発行日: | 2003-10 |
出版者: | Elsevier |
誌名: | Neural Networks |
巻: | 16 |
号: | 8 |
開始ページ: | 1179 |
終了ページ: | 1193 |
DOI: | 10.1016/S0893-6080(03)00076-5 |
抄録: | This paper presents numerical studies of applying back-propagation learning to a delayed recurrent neural network (DRNN). The DRNN is a continuoustime recurrent neural network having time delayed feedbacks and the backpropagation learning is to teach spatio-temporal dynamics to the DRNN. Since the time-delays make the dynamics of the DRNN infinite-dimensional, the learning algorithm and the learning capability of the DRNN are different from those of the ordinary recurrent neural network (ORNN) having no time-delays. First, two types of learning algorithms are developed for a class of DRNNs. Then, using chaotic signals generated from the Mackey- Glass equation and the R¨ossler equations, learning capability of the DRNN is examined. Comparing the learning algorithms, learning capability, and robustness against noise of the DRNN with those of the ORNN and time delay neural network (TDNN), advantages as well as disadvantages of the DRNN are investigated. |
Rights: | NOTICE: This is the author's version of a work accepted for publication by Elsevier. Isao Tokuda, Ryuji Tokunaga and Kazuyuki Aihara, Neural Networks, 16(8), 2003, 1179-1193, http://dx.doi.org/10.1016/S0893-6080(03)00076-5 |
URI: | http://hdl.handle.net/10119/4899 |
資料タイプ: | author |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
C6289.pdf | | 385Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|