JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/7885
|
タイトル: | Uniform Normalisation beyond Orthogonality |
著者: | Khasidashvili, Zurab Ogawa, Mizuhito Oostrom, Vincent van |
発行日: | 2001 |
出版者: | Springer |
誌名: | Lecture Notes in Computer Science |
巻: | 2051 |
開始ページ: | 122 |
終了ページ: | 136 |
DOI: | 10.1007/3-540-45127-7_11 |
抄録: | A rewrite system is called uniformly normalising if all its steps are perpetual, i.e. are such that if s → t and s has an infinite reduction, then t has one too. For such systems termination (SN) is equivalent to normalisation (WN). A well-known fact is uniform normalisation of orthogonal non-erasing term rewrite systems, e.g. the λI-calculus. In the present paper both restrictions are analysed. Orthogonality is seen to pertain to the linear part and non-erasingness to the non-linear part of rewrite steps. Based on this analysis, a modular proof method for uniform normalisation is presented which allows to go beyond orthogonality. The method is shown applicable to biclosed first- and second-order term rewrite systems as well as to a λ-calculus with explicit substitutions. |
Rights: | This is the author-created version of Springer, Zurab Khasidashvili, Mizuhito Ogawa, and Vincent van Oostrom , Lecture Notes in Computer Science, 2051, 2001, 122-136. The original publication is available at www.springerlink.com, http://dx.doi.org/10.1007/3-540-45127-7_11 |
URI: | http://hdl.handle.net/10119/7885 |
資料タイプ: | author |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
RTA01.pdf | | 269Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|