JAIST Repository >
a. 知識科学研究科・知識科学系 >
a30. リサーチレポート >
Research Report - School of Knowledge Science: ISSN 1347-1570 >
KS-RR-2009 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/8448

タイトル: Feature similarity: geometrical framework and discriminative kernel learning
著者: Nguyen, Canh Hao
Ho, Tu Bao
発行日: 2009-02-20
出版者: 北陸先端科学技術大学院大学知識科学研究科
誌名: Research report (School of Knowledge Science, Japan Advanced Institute of Science and Technology)
巻: KS-RR-2009-001
開始ページ: 1
終了ページ: 22
抄録: We propose geometrical models of features of a learning problem. We show that there are two alternative ways to interpret similarities between features. The syntactic way is well studied and applied in feature selection while the semantic way, in the context of kernel methods, is less understood. We show that the latter is equivalent to feature semantic similarity (FSS) and there are a number of methods that fall into this framework. We analyze to show relations among these methods and differences to feature selection ones. Our analysis shows a natural extension to all these methods. It automatically suggests that this framework can be applied in a general context. We also note that all the methods using FSS are inherently unsupervised in nature. None of these methods make use of labels for classification or regression tasks. On the other hand, the feature selection counterparts consider labels as an important information. Therefore, we propose an algorithm to learn the feature proximity matrix for FSS for supervised tasks. We show the merit of our algorithm in various applications.
URI: http://hdl.handle.net/10119/8448
資料タイプ: publisher


ファイル 記述 サイズ形式
KS-RR-2009-001.pdf31474KbAdobe PDF見る/開く



お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係