JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/8527
|
タイトル: | On constructing completions |
著者: | Crosilla, Laura Ishihara, Hajime Schuster, Peter |
発行日: | 2005-09 |
出版者: | Association for Symbolic Logic |
誌名: | The Journal of Symbolic Logic |
巻: | 70 |
号: | 3 |
開始ページ: | 969 |
終了ページ: | 978 |
抄録: | The Dedekind cuts in an ordered set form a set in the sense of constructive Zermelo-Fraenkel set theory. We deduce this statement from the principle of refinement, which we distill before from the axiom of fullness. Together with exponentiation, refinement is equivalent to fullness. None of the defining properties of an ordering is needed, and only refinement for two-element coverings is used. In particular, the Dedekind reals form a set; whence we have also refined an earlier result by Aczel and Rathjen, who invoked the full form of fullness. To further generalise this, we look at Richman's method to complete an arbitrary metric space without sequences, which he designed to avoid countable choice. The completion of a separable metric space turns out to be a set even if the original space is a proper class; in particular, every complete separable metric space automatically is a set. |
Rights: | Copyright (C) 2005 Association for Symbolic Logic. It is posted here by permission of Association for Symbolic Logic. Laura Crosilla, Hajime Ishihara, and Peter Schuster, The Journal of Symbolic Logic, 70(3), 2005, 969-978. |
URI: | http://hdl.handle.net/10119/8527 |
資料タイプ: | publisher |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
5415.pdf | | 152Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|