JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/15506

タイトル: Towards machine learning of time task scheduling in cyber-physical systems
著者: FANG, Yuan
OOI, Sian En
LIM, Yuto
TAN, Yasuo
キーワード: Time Task
System of Sytems
Cyber-Physical Systems
発行日: 2018-09
出版者: The Institute of Electronics, Information and Communication Engineers (IEICE)
誌名: Proceedings of the 2018 IEICE Society Conference
開始ページ: S-45
抄録: Cyber-Physical Systems (CPS) are complex systems with tight composition of computation, communications and control technologies. The modeling and analysis that act an important part of the model-driven system of systems (SoS) development play also a great significant role in CPS. Scheduling algorithms are an important part of CPS model design. With the increasing number of system service tasks, CPS needs to complete computing, control, and communication in a limited amount of time. The newly added physical devices and newly generated system services will impose higher time requirements on task scheduling calculations. To adapt to such conditions, CPS application system often adopt machine learning techniques to eliminate the need for unnecessary redesign. In this paper, we present machine learning method for time task scheduling based on the Simple and Proximate Time Model (SPTimo) framework for to solve the problem of efficient scheduling when the system scale is expanded.
Rights: Copyright (C) 2018 The Institute of Electronics, Information and Communication Engineers (IEICE). Yuan FANG, Sian En OOI, Yuto LIM, and Yasuo TAN, Proceedings of the 2018 IEICE Society Conference, 2018, S-45.
URI: http://hdl.handle.net/10119/15506
資料タイプ: publisher
出現コレクション:b11-1. 会議発表論文・発表資料 (Conference Papers)


ファイル 記述 サイズ形式
24668.pdf131KbAdobe PDF見る/開く



お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係