JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/15513

タイトル: Unsupervised Singing Voice Separation Based on Robust Principal Component Analysis Exploiting Rank-1 Constraint
著者: Li, Feng
Akagi, Masato
発行日: 2018
誌名: 2018 26th European Signal Processing Conference (EUSIPCO)
開始ページ: 1934
終了ページ: 1938
DOI: 10.23919/EUSIPCO.2018.8553584
抄録: In this paper, we address the singing voice separation problem and propose a novel unsupervised approach based on robust principal component analysis (RPCA) exploiting rank-1 constraint (CRPCA). RPCA is a recently proposed singing voice separation algorithm that can separate singing voice from the monaural recordings. Although RPCA has been successfully applied to singing voice separation task, it ignores the different characteristic values of singular value decomposition and computational complexity to minimize the nuclear norm for separating singing voice. Since rank-l constraint in the background music, as the background music has a large variation in richness than singing voice among different songs. Furthermore, rank-1 constraint can utilize a prior target rank to separate singing voice and background music from the mixture music signal. Accordingly, the proposed CRPCA method utilizes rank-1 constraint minimization of singular values in RPCA instead of minimizing the whole nuclear norm, which can not only describe the different values of singular value decomposition, but also the computation complexity is reduced. The experiment evaluation results reveal that CRPCA can achieve better separation performance than the previous methods, especially with regard to use time frequency masking on ccMixter and DSD100 datasets. In addition, the running time on CRPCA is shorter than others under the same conditions.
Rights: This is the author's version of a work. Copyright (C) 2018 EURASIP. Feng Li and Masato Akagi, 2018 26th European Signal Processing Conference (EUSIPCO), 2018, pp.1934-1938. DOI:10.23919/EUSIPCO.2018.8553584. First published in the Proceedings of the 26th European Signal Processing Conference (EUSIPCO-2018) in 2018, published by EURASIP.
URI: http://hdl.handle.net/10119/15513
資料タイプ: author
出現コレクション:b11-1. 会議発表論文・発表資料 (Conference Papers)


ファイル 記述 サイズ形式
EUSIPCO2018_Feng.pdf580KbAdobe PDF見る/開く



お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係