JAIST Repository >
b. 情報科学研究科・情報科学系 >
b11. 会議発表論文・発表資料等 >
b11-1. 会議発表論文・発表資料 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10119/15776

タイトル: Maximal Information Coefficient and Predominant Correlation-Based Feature Selection Toward A Three-Layer Model for Speech Emotion Recognition
著者: Li, Xingfeng
Akagi, Masato
発行日: 2018-11-15
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)
開始ページ: 1428
終了ページ: 1434
DOI: 10.23919/APSIPA.2018.8659695
抄録: This paper describes an efficient attempt to build a three-layer emotion perception model consisting of acoustic features, semantic primitives, and emotion dimensions with a focus on acoustic feature subset selection. Previous studies using this model focused on the most relevant acoustic features using a Pearson correlation coefficient-based filter approach, which could only capture the relation limited to linear function well. However, perception of human emotion is vague; linear correlation measures could not capture the relations that are not linear in nature. In this study, we introduce a novel feature selection algorithm based on the maximal information coefficient and predominant correlation, which can identify relevant features between paired variables in spite of linear or nonlinear relations and remove redundancies among the relevant features. Experimental results on the Berlin Emo-DB and Chinese Emotional Speech Corpus demonstrated that the proposed algorithm achieves an improvement to estimation of emotion dimensions, resulting in a smaller mean absolute error and higher correlation coefficient between estimations and human evaluations, compared with the referred Pearson correlation coefficient-based method, and the commonly used wrapper-based method of sequential floating forward selection.
Rights: This is the author's version of the work. Copyright (C) 2018 IEEE. 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 2018, 1428-1434. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
URI: http://hdl.handle.net/10119/15776
資料タイプ: author
出現コレクション:b11-1. 会議発表論文・発表資料 (Conference Papers)

このアイテムのファイル:

ファイル 記述 サイズ形式
2907.pdf550KbAdobe PDF見る/開く

当システムに保管されているアイテムはすべて著作権により保護されています。

 


お問い合わせ先 : 北陸先端科学技術大学院大学 研究推進課図書館情報係