JAIST Repository >
b. 情報科学研究科・情報科学系 >
b10. 学術雑誌論文等 >
b10-1. 雑誌掲載論文 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10119/16755
|
タイトル: | A Self-trainable Depth Perception Method from Eye Pursuit and Motion Parallax |
著者: | Prucksakorn, Tanapol Jeong, Sungmoon Chong, Nak Young |
キーワード: | active depth perception developmental vision motion parallax eye pursuit sensory-motor coordination |
発行日: | 2018-08-30 |
出版者: | Elsevier |
誌名: | Robotics and Autonomous Systems |
巻: | 109 |
開始ページ: | 27 |
終了ページ: | 37 |
DOI: | 10.1016/j.robot.2018.08.009 |
抄録: | When humans move in a lateral direction (frontal plane), they intuitively understand the motion parallax phenomenon while jointly developing sensory neurons and pursuit eye movements with the help of their life-long learning experiences. At that time, various ranges of motion parallax effects are used to extract meaningful pieces of information such as relative depth of variously positioned objects and the spatial separation between the robot and the fixating object (absolute distance). By mimicking the visual learning in mammals to realize an autonomous robot system, a visual learning framework was proposed to concurrently develop both visual sensory coding and pursuit eye movement with an addition of depth perception. Within the proposed framework, an artificial neural network was used to learn the relationship between the eye movements and the absolute distance. Nonetheless, the limitation of the proposed framework is that the predefined single lateral body movement can not fully evoke the motion parallax effect for depth perception. Here, we extend the presented visual learning framework to accurately and autonomously represent the various ranges of absolute distance by using pursuit eye movements from multiple lateral body movements. We show that the proposed model, which is implementedin a HOAP3 humanoid robot simulator, can successfully enhance the smooth pursuit eye movement control with the self-calibrating ability and the distance estimation comparing to the single lateral movement based approach. |
Rights: | Copyright (C)2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0). [http://creativecommons.org/licenses/by-nc-nd/4.0/] NOTICE: This is the author's version of a work accepted for publication by Elsevier. Tanapol Prucksakorn, Sungmoon Jeong, Nak Young Chong, Robotics and Autonomous Systems, 109, 2018, 27-37, http://dx.doi.org/10.1016/j.robot.2018.08.009 |
URI: | http://hdl.handle.net/10119/16755 |
資料タイプ: | author |
出現コレクション: | b10-1. 雑誌掲載論文 (Journal Articles)
|
このアイテムのファイル:
ファイル |
記述 |
サイズ | 形式 |
24429.pdf | | 1631Kb | Adobe PDF | 見る/開く |
|
当システムに保管されているアイテムはすべて著作権により保護されています。
|